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Abstract
The essential variety is an algebraic subvariety of dimension 5 in real projective
space RP8 which encodes the relative pose of two calibrated pinhole cameras. The
5-point algorithm in computer vision computes the real points in the intersection of
the essential variety with a linear space of codimension 5. The degree of the essential
variety is 10, so this intersection consists of 10 complex points in general.We compute
the expected number of real intersection points when the linear space is random.
We focus on two probability distributions for linear spaces. The first distribution is
invariant under the action of the orthogonal group O(9) acting on linear spaces in
RP8. In this case, the expected number of real intersection points is equal to 4. The
second distribution is motivated from computer vision and is defined by choosing 5
point correspondences in the image planesRP2 ×RP2 uniformly at random. AMonte
Carlo computation suggests that with high probability the expected value lies in the
interval (3.95 − 0.05, 3.95 + 0.05).
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1 Introduction

The mathematical abstraction of a pinhole camera is a projective linear map

RP3 ��� RP2, x �→ Cx,

where C ∈ R
3×4 is a matrix of rank 3. The camera is called calibrated, when C =

[R, t], where R ∈ SO(3) is a rotation matrix and t ∈ R
3 is a translation vector.

The relative-pose problem is the problem of computing the relative position of two
cameras in 3-space; see [8, Section 9]. Suppose that we have two calibrated cameras
given by two matrices C1 and C2 of rank 3. Since we are only interested in relative
positions, we can assume C1 = [13, 0] and C2 = [R, t]. If x ∈ RP3 is a point in
3-space, u = C1x ∈ RP2 and v = C2x ∈ RP2 are called a point-correspondence.
Any point-correspondence (u, v) satisfies the algebraic equation

uT E(R, t)v = 0, where E(R, t) = [t]× R, (1.1)

and [t]× is the matrix acting by [t]×x = t × x, the cross-product in R
3. The set

of all such matrices is denoted ̂E := {E(R, t) | R ∈ SO(3), t ∈ R
3}. This is an

algebraic variety defined by the 10 cubic and homogeneous polynomial equations
det(E) = 0, 2EET E − Tr(EET )E = 0; see [7, Section 4]. Therefore, if π :
R
3×3 �→ P(R3×3) ∼= RP8 denotes the projectivization map, ̂E is the cone over the

projective variety

E = π(̂E), (1.2)

which is called the essential variety.
In the following we view elements in RP8 as real 3× 3 matrices up to scaling. The

essential varietyE is of dimension 5 = dim SO(3)+dimR
3−1.Demazure showed that

its complexification has degree 10; see [6, Theorem 6.4]. Denote by G := G(3,RP8)
the Grassmannian of 3-dimensional linear spaces in RP8. By (1.1), every point cor-
respondence induces a linear equation on E . For 5 general point correspondences
(u1, v1), . . . , (u5, v5) ∈ RP2 × RP2, the linear space

L := {E ∈ RP8 | uT1 Ev1 = · · · = uT5 Ev5 = 0}

is general in G. Thus

#(E ∩ L) ≤ 10.

That is, the relative pose problem can be solved by computing the real zeros of a
system of polynomial equations that has 10 complex zeros in general. Once we have
computed E = E(R, t) we can recover the relative position of the two cameras from
E . The process of recovering the relative pose of two calibrated cameras from five
point correspondences is known as the 5-point algorithm, see [12].
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The system of polynomial equations that we need to solve as part of the 5-point
algorithm has 10 complex zeros in general, but the number of real zeros depends on
L . Often, one computes all complex zeros and sorts out the real ones. Whether or not
this is an efficient approach depends on how likely it is to have many real zeros out of
10 complex ones. Motivated by this observation, in this paper we study the average
degree E #(E ∩ L) for random L .

Consider L = U · L0, where L0 ∈ G is fixed and U ∼ Unif(O(9)) then with
respect to Haar measure on G we in fact have L ∼ Unif(G); see [10, 13]. Our first
result shows with this uniform distribution, we expect 4 of the 10 complex intersection
points to be real.

Theorem 1.1 Let L ∼ Unif(G) then

E
L∼Unif(G)

#(E ∩ L) = 4.

This result is in fact quite surprising, because we get an integer, though there is no
reason why it should even be a rational number (see also [3, Remark 2]).

Toworkwithin the computer vision framework,we need a different distribution than
used inTheorem1.1.Theprobability distribution isO(9)-invariant, yet linear equations
of the typeuT Ev = 0 are notO(9)-invariant. These special linear equations areO(3)×
O(3)-invariant by the group action (U , V ).(u, v) := (Uu, V v). The corresponding
invariant probability distribution is given by the random point a = U · a0 ∈ RP2,
where U ∼ Unif(O(3)) and a0 ∈ RP2 is fixed. We denote this by a ∼ Unif(RP2).

Remark 1.2 The definition of Unif(G) does not depend on the choice of L0, and the
definition of Unif(RP2) does not depend on the choice of a0.

We write L ∼ ψ , where L = {E ∈ RP8 | uT1 Ev1 = · · · = uT5 Ev5 = 0} ∈ G is the
random linear space given by i.i.d. points u1, v1, . . . ,u5, v5 ∼ Unif(RP2). We have
the following result.

Theorem 1.3 With the distribution ψ defined above,

E
L∼ψ

#(E ∩ L) = π3

4
· E ∣∣det [z1 z2 z3 z4 z5

]∣

∣ ,

where z1, z2, z3, z4, z5 ∼ z are i.i.d.,

z = [b · r · sin θ, b · r · cos θ, a · s · sin θ, a · s · cos θ, rs
]T ∈ R

5

and a, b, r , s ∼ N (0, 1), θ ∼ Unif([0, 2π)) are independent.

We were not able to determine the exact value of the integral in this theorem. Yet,
we can independently sample N random matrices of the form

[

z1 z2 z3 z4 z5
]

and
compute their absolute determinants. This gives an empirical average value μN . An
experiment with sample size N = 5 · 109 gives an empirical average of

μN ≈ 3.95
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Fig. 1 The two pie charts show the outcome of the following two experiments. We sampled N = 1000
random linear spaces, once with distribution Unif(G) (the left chart) and once with distribution ψ (the
right chart). Then, we computed E ∩ L by solving the system of polynomial equations with the software
HomotopyContinuation.jl [4]. The charts show the empirical distribution of real zeros and the
corresponding empirical means in these experiments

In fact,μN is itself a randomvariable andwehave P
( |μN − EL∼ψ #(E ∩ L)| ≥ ε

) ≤
π6

16 · σ 2

N ·ε2 by Chebychev’s inequality, where σ 2 is the variance of the absolute deter-

minant. We show in Proposition 4.4 below that σ 2 ≤ 360. Using this in Chebychev’s
inequality we get

P

(

|μN − E
L∼ψ

#(E ∩ L)| ≥ 0.05

)

≤ 0.0175%

(in fact, since 360 is an extremely coarse upper bound, the true probability should be
much smaller). Therefore, it is likely thatEL∼ψ #(E∩L) is strictly smaller than 4; i.e.,
it is likely that the expected value in Theorem 1.3 is less than the one in Theorem 1.1.
See Fig. 1.

The distribution of zeros shown in Fig. 1 gives rise to further questions of interest in
computer vision. When applying the 5-point algorithm it is important to know when
there are no real solutions. In Fig. 1, for 1000 sampled spaces, the distribution with
respect to Unif(G) had 10 instances with no real solutions, and the distribution with
ψ had only 1 instance with no real solutions. The experiments give an indication that
no real solutions is a relatively rare occurrence, but further work will need to be done
to quantify and geometrically characterize these occurrences with respect to different
distributions.

We remark that the distributions Unif(G) and ψ are different in the following
sense. For L ∼ Unif(G) every linear space L ∈ G has the same probability. But when
L ∼ ψ , it must be defined by 5 linear equations that are given by rank-one matrices
of size 3. The Segre variety of rank-one matrices of size 3 in RP8 has dimension 4
(see1 [11, Section 4.3.5]), so that a general linear space of codimension 4 = 9 − 5
in RP8, spanned by 5 general 3 × 3 matrices, intersects the Segre variety in finitely
many points. There is an Euclidean open subset in G, such that this intersection has

1 In [11] one can find a formula for the dimension of the complex Segre variety. The real Segre variety is
Zariski dense in the complex Segre variety, so their real and complex dimensions coincide.
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strictly less than 5 points. Hence, there is a measurable subset W ⊂ G such that
PL∼Unif(G)(L ∈ W) > 0 but PL∼ψ(L ∈ W) = 0.

In Sect. 5 we use a result byVitale [16] to express the expected value in Theorem 1.3
through the volume of a certain convex body K ⊂ R

5. Namely,

E
L∼ψ

#(E ∩ L) = 30π2 · vol(K ), (1.3)

and K defined by its support function hK (x) = 1
2 Ez |xT z|, and z ∈ R

5 is as above;
K is a zonoid and we call it the essential zonoid. We use this to prove a lower bound
for the expected number of real points EL∼ψ #(E ∩ L) in Theorem 5.1.

The two probability distributions in Theorem 1.1 and Theorem 1.3 are geometric,
meaning that they are not biased towards preferred points inG orRP2, respectively. In
applications, however, one might be interested in other distributions, like for instance
taking the ui and vi uniformly in a box (see Examples 4.1 and 4.3 below). For such a
case, we do not get concrete results like Theorem 1.1 or Theorem 1.3. Nevertheless,
in Theorem 4.2 below we give a general integral formula.

Outline

In Sect. 2 we give preliminaries. We recall the integral geometry formula in projective
space and study the geometry of the essential variety. In Sect. 3 we prove Theorem 1.1
by computing the volume of the essential variety. In Sect. 4 we prove Theorems 1.3
and 4.2. In the last section, Sect. 5, we study the essential zonoid.

2 Preliminaries

Let us start by setting up our notation as well as making note of many key volume
computations used throughout the paper. We consider the Euclidean space R

n with
the standard metric 〈x, y〉 = xT y. The norm of a vector x ∈ R

3 will be denoted by
‖x‖ := √〈x, x〉 and the unit sphere by S

n−1 := {x ∈ R
n | ‖x‖ = 1}. The Euclidean

volume of the sphere is

vol(Sn) = 2π
n+1
2

�
( n+1

2

) . (2.1)

In particular vol(S1) = 2π and vol(S2) = 4π . The standard basis vectors in R
n are

denoted ei for 1 ≤ i ≤ n. The space of real n×n matricesRn×n is also endowed with
a Euclidean structure

〈A, B〉 := 1

2
Tr(ABT ), A, B ∈ R

n×n .

We denote the identity matrix 1n ∈ R
n×n and the zero matrix 0n . The orthogonal

group will be denoted by O(n), while the special orthogonal group is SO(n). Both
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the orthogonal and special orthogonal group are Riemannian submanifolds of Rn×n .
Volumes of the two manifolds are

vol(O(n)) = 2
n−1
∏

k=1

vol(Sk) and vol(SO(n)) = 1

2
vol(O(n));

see [9, Equation (3-15)]. For instance, vol(SO(2)) = 2π and vol(SO(3)) = 8π2.

2.1 Integral Geometry

The real projective space of dimension n−1 is defined to beRPn−1 := (Rn \{0})/ ∼,
where the equivalence relation is x ∼ y ⇔ ∃λ ∈ R : x = λy. The projection
π : Sn−1 → RPn−1 that maps x to its class is a 2 : 1 cover. It induces a Riemannian
structure on RPn−1 by declaring π to be a local isometry.

Let now X ⊆ RPn−1 be a submanifold of dimensionm and L ⊆ RPn−1 be a linear
space of codimension m. Howard [9] proved that for almost all U ∈ O(n) we have
that X ∩U · L is finite and

E
U∼Unif(O(n))

vol(X ∩U · L) = vol(X)

vol(RPm)
; (2.2)

see [9, Theorem 3.8 & Corollary 3.9]. This formula will be used for proving Theo-
rem 1.1.

2.2 The Coarea Formula

The proof of (2.2) is based on the coarea formula, which we will also need. In order to
state the formula we need to introduce the normal Jacobian. Let M, N be Riemannian
manifolds with dim(M) ≥ dim(N ) and let F : M → N be a surjective smooth map.
Fix a point x ∈ M . The normal Jacobian NJ(F, x) of F at x is

NJ(F, x) =
√

det J J T ,

where J is the matrix representation of the derivative DxF relative to orthonormal
bases in TxM and TF(x)N . Then for any integrable function h : M → R

∫

M
h(x) dx =

∫

y∈N

(∫

x∈F−1(y)

h(x)
NJ(F, x)

dx
)

dy. (2.3)

See, e.g., [9, Section A-2].
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2.3 The Geometry of the Essential Variety

In this subsection, we study in more detail the geometry of the essential variety E .
Recall from (1.2) that E is the projection of the cone ̂E to projective space RP8. We
can also project ̂E to the sphere. This defines the spherical essential variety

ES := {E ∈ ̂Emid‖E‖ = 1}.

Recall from (1.1) the definition of E(R, t).

Lemma 2.1 The map E : SO(3)×S
2 → R

3×3, (R, t) �→ E(R, t) is 2:1 and im(E) =
ES.
Proof Let (R, t) ∈ SO(3) × S

2. The matrix description of [t]× is

[t]× =
⎡

⎣

0 −t3 t2
t3 0 −t1

−t2 t1 0

⎤

⎦ .

In particular, this shows Tr
([t]×[t]T×

) = 2‖t‖2 = 2. Then, the norm squared of
E(R, t) is

‖E(R, t)‖2 = 1

2
Tr
(

E(R, t)E(R, t)T
)

= 1

2
Tr
(

[t]×RRT [t]T×
)

= 1

2
Tr
(

[t]×[t]T×
)

= 1.

Therefore, im(E) = ES. Let M ∈ SO(3) be a matrix such that Mt = t and Mx = −x
for all x orthogonal to t, then we have M[−t]× = [t]× and we can write the following

E(R, t) = [t]×R = [t]×MT MR = (M[−t]×)T MR = [−t]×MR = E(MR,−t).

(2.4)

This means that E is at least 2:1. To show it is at most 2 : 1, we consider the following

[t]×R = [λt]×MR,

for some rotation M and λ ∈ {±1}. We want to check how many different rotation
matrices M satisfy this equation. We have the following chain of implications

[t]×R = [λt]×MR �⇒ [t]× = [λt]×M �⇒ [t]×(13 − λM) = 0.

We see that the columns of 13 − λM are multiples of t, therefore we can write
13 − λM = c ttT for some c ∈ R. We make use of the fact that det(M) = 1. Firstly
we compute the determinant

det(M) = det(λ−1(13 − cttT )) = λ−3 det(13 − c ttT ) = λ−3(1 − c),
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where we have used that tT t = 1. This implies λ3 = 1 − c. If λ = 1, then c = 0. If
λ = −1, then we have c = 2. Thus, either M = 13 or M = 2ttT − 13.

This is Rodrigues’ formula for 180-degree rotation about the axis spanned by t.
Additionally, it is worth mentioning that this symmetry of the essential variety is
exactly the twisted pair, described in [8].

Next, we show the invariance properties of the map E . For U , V ∈ SO(3) we
denote

(U , V ).E := U E V T .

In particular, the next lemma shows that this defines a group action on ES.

Lemma 2.2 For orthogonal matrices U , V ∈ SO(3) and (R, t) ∈ SO(3) × S
2 we

have

E(URV T ,U t) = (U , V ).E(R, t).

Proof We have E(URV T ,U t) = [U t]×URV T = ([U t]×UR)V T . Moreover, the
cross product satisfies (U t) × (Ux) = U (t × x) for all x ∈ R

3.

With the above lemma, we deduce the following result on ES.

Corollary 2.3 ES is a homogeneous space for SO(3) × SO(3) acting by left and right
multiplication. In particular, ES, and hence also E , is smooth.

We now denote the following special matrix in E :

E0 := E(13, e1) =
⎡

⎣

0 0 0
0 0 −1
0 1 0

⎤

⎦ (2.5)

(recall that e1 denotes the first standard basis vector (1, 0, 0)T ).

Lemma 2.4 The stabilizer group of E ∈ ES under the SO(3) × SO(3) action has
volume equal to 2

√
2 · vol(SO(2)).

Proof The stabilizer groups of E ∈ ES all have the same volume. We compute the
stabilizer group of E0. By Lemma 2.1, E(R, t) is 2:1 and by (2.4) we have

E0 = E(13, e1) = E(M,−e1),

where M =
[ 1 0 0
0 −1 0
0 0 −1

]

. Therefore, (U , V ).E0 = E0 if and only if Ue1 = e1 and

UV T = 13, or Ue1 = −e1 and UV T = M ; i.e., MU = V . That is, stab(E0) is
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realized as the image of the map F : SO(2) × {−1, 1} → SO(3) × SO(3) such that

(Ũ , ε) �→
⎛

⎝

⎡

⎣

ε 0 0
0 u11 u12
0 u21 u22

⎤

⎦ ,

⎡

⎣

ε 0 0
0 εu11 εu12
0 εu21 εu22

⎤

⎦

⎞

⎠ ,

where Ũ =
[

u11 u12
u21 u22

]

∈ SO(2), ε ∈ {−1, 1}.

The normal Jacobian of F at every point is
√
2. For fixed ε, SO(2)×{ε} is a homoge-

neous space under the action of SO(2) acting on itself. This group action is transitive
and preserves the inner product, so the normal Jacobian is constant. Thus it suffices
to compute the normal Jacobian at (12, ε). To see this, the tangent space to SO(3) at
the identity is

T13SO(3) = span{F1,2, F1,3, F2,3}

for Fi, j = eieTj − e jeTi . Thus an orthogonal basis for the tangent space of SO(3) ×
SO(3) at (13, 13), is given by

{(03, F1,2), (03, F1,3), (03, F2,3), (F1,2, 03), (F1,3, 03), (F2,3, 03)}. (2.6)

Indeed, with respect to this basis and identifying the tangent space of SO(2)×{−1, 1}
with R, we have D(12,ε)F = [0 0 ε 0 0 1

]T and thus

N J (F, (12, 1)) =
∥

∥

∥

[

0 0 ε 0 0 1
]T
∥

∥

∥ = √
2.

We conclude by using the coarea formula (2.3) for M = SO(2) × {−1, 1}, N =
stab(E0), h ≡ √

2, and F−1(y) a single point by injectivity to obtain vol(stab(E0)) =
2
√
2 · vol(SO(2)).

Next, we compute an orthonormal basis of the tangent space TE0E at E0.

Lemma 2.5 An orthonormal basis of TE0E is given by the following five matrices

B1 =
⎡

⎣

0 0 0
0 0 0√
2 0 0

⎤

⎦ , B2 =
⎡

⎣

0 0 0√
2 0 0
0 0 0

⎤

⎦ , B3 =
⎡

⎣

0 0
√
2

0 0 0
0 0 0

⎤

⎦ ,

B4 =
⎡

⎣

0
√
2 0

0 0 0
0 0 0

⎤

⎦ , B5 =
⎡

⎣

0 0 0
0 1 0
0 0 1

⎤

⎦ .

Proof First, we observe that the five matrices above are pairwise orthogonal and all of
norm one. Since dim E = 5, it therefore suffices to show that B1, . . . , B5 ∈ TE0E =
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TE0ES. The derivatives of E evaluated in (13, ṫ) and (Ṙ, e1) respectively are

∂E

∂t
(13, ṫ) = E(13, ṫ),

∂E

∂R
(Ṙ, e1) = E(Ṙ, e1).

We have Te1S
2 = span{e2, e3} and T13SO(3) = span{F1,2, F1,3, F2,3}, where Fi, j =

eieTj − e jeTi as above. Therefore, the following five matrices are in TE0E :

E(13, e2) =
⎡

⎣

0 0 1
0 0 0

−1 0 0

⎤

⎦ , E(13, e3) =
⎡

⎣

0 −1 0
1 0 0
0 0 0

⎤

⎦ ,

E(F1,2, e1) =
⎡

⎣

0 0 0
0 0 0

−1 0 0

⎤

⎦ , E(F1,3, e1) =
⎡

⎣

0 0 0
1 0 0
0 0 0

⎤

⎦ , E(F2,3, e1) =
⎡

⎣

0 0 0
0 1 0
0 0 1

⎤

⎦ .

Each of the Bi above can be expressed as a linear combination of these five matrices,
which shows Bi ∈ TE0E .
Alternatively, to prove Proposition 2.5 we consider the derivative of the smooth sur-
jective map γ : SO(3) × SO(3) → ES, (U , V ) �→ (U , V ).E0. Since the basis for the
tangent space of SO(3)×SO(3) at (13, 13) is given as in (2.6), the tangent space TE0E
is also spanned by the following six matrices

E0F
T
1,2 =

⎡

⎣

0 0 0
0 0 0
1 0 0

⎤

⎦ , E0F
T
1,3 =

⎡

⎣

0 0 0
−1 0 0
0 0 0

⎤

⎦ , E0F
T
2,3 =

⎡

⎣

0 0 0
0 −1 0
0 0 −1

⎤

⎦ ,

F1,2E0 =
⎡

⎣

0 0 −1
0 0 0
0 0 0

⎤

⎦ , F1,3E0 =
⎡

⎣

0 1 0
0 0 0
0 0 0

⎤

⎦ , F2,3E0 =
⎡

⎣

0 0 0
0 1 0
0 0 1

⎤

⎦ . (2.7)

3 The Volume of the Essential Variety

In this section, we prove Theorem 1.1. The strategy is as follows. By Corollary 2.3,
E is a smooth submanifold of RP8. We can apply the integral geometry formula (2.2)
to get

E
L∼Unif(G)

vol(E ∩ L) = vol(E)

vol(RP5)
. (3.1)

Thus, to prove Theorem 1.1 we can compute the volume of E . We do this in the next
theorem. Notice that the result of the theorem, when plugged into (3.1) immediately,
proves Theorem 1.1.

Theorem 3.1 The volume of the essential variety is

vol(E) = 4 · vol(RP5).
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We give two different proofs of this theorem. Since vol(E) = 1
2 vol(ES), it is enough

to compute the latter volume.

Proof 1 By Lemma 2.1, we realize ES as the image of the smooth map (R, t) �→
E(R, t), and we now restrict the domain to the image. By Lemma 2.2, NJ(E, (R, t))
is invariant under the action by SO(3) × SO(3). Applying the coarea formula (2.3)
over the 2-element fibers of E , we get that

vol(ES) =
∫

ES
1 dE = 1

2

∫

SO(3)×S2
NJ(E, (R, t)) d(R, t).

This implies

vol(ES) =1

2
vol(SO(3)) · vol(S2) · NJ(E, (13, e1)) = 16π3 · NJ(E, (13, e1)).

Recall, Fi, j = eieTj − e jeTi . With respect to the orthonormal basis {Bi } computed in
Lemma2.5 and theorthonormal basis {(03, e2), (03, e3), (F1,2, 0), (F1,3, 0), (F2,3, 0)}
computed for T13SO(3)×Te1S

2, the columns of the matrix J associated to the deriva-
tive of E at (13, e1) are the basis elements of T13SO(3)×Te1S

2 written as a combination
of the basis given by Lemma 2.5:

J = 1√
2

⎡

⎢

⎢

⎢

⎢

⎣

−1 0 −1 0 0
0 1 0 1 0
1 0 0 0 0
0 −1 0 0 0
0 0 0 0

√
2

⎤

⎥

⎥

⎥

⎥

⎦

.

So, we have that NJ(E, (13, e1)) = √
det J J T = 1

4 , and consequently vol(ES) = 4π3.

Therefore, we have vol(E) = 2π3. By (2.1), vol(RP5) = 1
2 · vol(S5) = π3

2 , so
vol(E) = 4 · vol(RP5).
Proof 2 By Corollary 2.3, ES is a homogeneous space under the action of SO(3) ×
SO(3). We therefore have the surjective smooth map γ : SO(3) × SO(3) →
ES, (U , V ) �→ (U , V ).E0 with fibers that satisfy vol(γ −1(E)) = 2

√
2 · vol(SO(2))

for all E ∈ ES; see Lemma 2.4. The coarea formula from (2.3) implies

vol(ES) · 2√2 · vol(SO(2)) =
∫

SO(3)×SO(3)
NJ(γ, (U , V )) d(U , V ).

ByLemma 2.2, themap γ is equivariant with respect to the SO(3)×SO(3) action. This
implies, that the value of the normal Jacobian does not depend on (U , V ). Therefore,
we have vol(ES) · 2√2 · vol(SO(2)) = NJ(γ, (13, 13)) · vol(SO(3))2, and so

vol(ES) = vol(SO(3))2

2
√
2 · vol(SO(2))

· NJ(γ, (13, 13)) = 16π3

√
2

· NJ(γ, (13, 13)).
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We compute the normal Jacobian. Recall the notation Fi, j = eieTj − e jeTi .
With respect to the orthonormal basis computed in Lemma 2.5 and the orthonormal

basis as in (2.6) for the tangent space of SO(3)×SO(3) at (13, 13), the columns of the
matrix J associated to the derivative of γ at (13, 13) are given by writing the matrices
in (2.7) with respect to the basis in Lemma 2.5:

J = 1√
2

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 −√

2 0 0
√
2

⎤

⎥

⎥

⎥

⎥

⎦

.

Taking determinant we obtain NJ(γ, (13, 13)) = √
det J J T = 1√

8
. We get vol(ES) =

4π3. As above, this implies vol(E) = 4 · vol(RP5).
Another important notion in the context of relative pose problems in computer vision

is the so-called fundamental matrix; see, e.g., [8, Section 9]. While essential matrices
encode the relative pose of calibrated cameras, fundamental matrices encode the rel-
ative position between uncalibrated cameras. Fundamental matrices are precisely the
matrices of rank two. So, similar to Lemma 3.1, the average degree of fundamental
matrices is given by the normalized volume of the manifold of rank two matrices
F ⊂ RP8. The volume was computed by Beltrán in [1]: vol(F) = π4

6 = 2 ·vol(RP7).
Notice that dimF = 7. We get

E
L∼Unif(G)

vol(F ∩ L) = vol(F)

vol(RP7)
= 2.

(here, L = U · L0,U ∼ Unif(O(9)), is a random uniform line in RP8).
Thus, the average degree of the manifold of fundamental matrices is 2, while the

degree of its complexification is 3.

4 Average Number of Relative Poses

In this sectionweproveTheorem1.3.Let� : (RP2)×10 → Rbe ameasurable function
and denote p := (u1, v1, . . . ,u5, v5) ∈ (RP2)×10,where (RP2)×10, represents taking
the cartesian product of (RP2)with itself 10 times.We consider the following expected
value for the number of real solutions to the relative pose problem

μ := E
u1,v1,...,u5,v5∼Unif(RP2) i.i.d.

�(p) · #{E ∈ E | uT1 Ev1 = · · · = uT5 Ev5 = 0}.

For �(p) = 1, the constant one function, μ = EL∼ψ #(E ∩ L). In the general case, μ
is the expected value of #(E∩L) for a probability distribution with probability density
�(p).
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Example 4.1 We regardR2 as a subset ofRP2 by using the embedding φ : R2 → RP2

such that u := φ(y) = [y : 1]. Consider the case when y ∈ R
2 is chosen uniformly in

the box B := [a, b] × [c, d] ⊂ R
2. We compute the probability density of u relative

to the uniform measure on RP2. The probability density of y relative to the Lebesgue
measure in R

2 is 1
(b−a)(d−c) · δB(y), where δB(y) is the indicator function of the box

B. Let W ⊂ φ(B) be a measurable subset, then P(u ∈ W ) = P(y ∈ φ−1(W )) =
∫

φ−1(W )
1

(b−a)(d−c) dy. Using the coarea formula (2.3) we express the probability of
W as

P(u ∈ W ) =
∫

W

1

(b − a)(d − c)
· 1

NJ(φ, y)
du.

Therefore, the probability density of u is ((b − a)(d − c) · NJ(φ, y))−1. Let us com-
pute the normal Jacobian of the map φ. Since we can work locally, we compute the
derivative of the map y �→ s := 1

√

y21+y22+1
(y1, y2, 1) ∈ S

2. The derivative of this map

relative to the standard basis in R2 and R
3 is expressed by the matrix

1
√

y21 + y22 + 1

⎡

⎣

1 0
0 1
0 0

⎤

⎦+
⎛

⎝

∂

∂ y1

1
√

y21 + y22 + 1

⎞

⎠

⎡

⎣

y1 0
y2 0
1 0

⎤

⎦

+
⎛

⎝

∂

∂ y2

1
√

y21 + y22 + 1

⎞

⎠

⎡

⎣

0 y1
0 y2
0 1

⎤

⎦ .

The tangent space of the sphere is TsS2 = s⊥. Let Ps = 13−ssT be the projection onto
s⊥. To get the derivative relative to an orthonormal basis of s⊥, we have to multiply
the above matrix from the left with Ps. We get

NJ(φ, y) = 1

y21 + y22 + 1
·
√

det MT M, where M = Ps

⎡

⎣

1 0
0 1
0 0

⎤

⎦ .

We have
√
det MT M = |〈s, e3〉|. This implies that the probability density of u is given

by

1

(b − a)(d − c)
· 1

NJ(φ, y)
= 1

(b − a)(d − c)
· u

2
1 + u22 + u23

u23
· 1

cosα
,

where α is the angle between the lines through u and e3.

Let us write g(u) := u21+u22+u23
u23

· 1
cosα

. If for 1 ≤ i ≤ 5 we choose independently ui

from the box [ai , bi ] × [ci , di ] and vi from the box [a′
i , b

′
i ] × [c′

i , d
′
i ] we obtain the

density �(p) with
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�(p) = g(u1)
(b1 − a1)(d1 − c1)

· · · g(u5)
(b5 − a5)(d5 − c5)

· g(v1)
(b′

1 − a′
1)(d

′
1 − c′

1)

· · · g(v5)
(b′

5 − a′
5)(d

′
5 − c′

5)
,

when p is in the product of boxes, and �(p) = 0 otherwise.

We will also denote � : (R3 \ {0})×10 → R defined by �(u1, . . . , v5) :=
�(π(u1), . . . , π(v5)), where π : R3 \ {0} → RP2 is the projection. It will be conve-
nient to replace the uniform random variables in RP2 by Gaussian random variables
in R3, see [5, Remark 2.24]:

μ = E
u1,v1,...,u5,v5∼N (0,1) i.i.d.

�(p) · #{E ∈ E | uT1 Ev1 = · · · = uT5 Ev5 = 0}.
(4.1)

Again, EL∼ψ #(E ∩ L) is recovered by setting �(p) = 1 in (4.1). We denote the
Gaussian density by �(p) = (2π)−15 exp(− 1

2

∑5
i=1 ‖ui‖2 + ‖vi‖2).

The proof of Theorem 1.3 consists of three steps, separated into three subsections.
In the initial two subsections, our objective is to calculate the normal Jacobian and
apply the coarea formula. However, in this process, we do not arrive at an explicit or
practical form. Following that in the final subsection, we adopt an alternative approach
that involves a new parametrization. This transformation allows us to obtain a closed-
form expression for Theorem 1.3.

4.1 The Incidence Variety

The incidence variety is

I := {(p, E) ∈ (R3 \ {0})×10 × E | uT1 Ev1 = · · · = uT5 Ev5 = 0}.

This is a real algebraic subvariety of (R3\{0})×10 × E . Recall from Lemma 2.2 that
SO(3) × SO(3) acts transitively on E by left and right multiplication. This extends to
a group action on I via (U , V ).(p, E) := (Uu1, V v1, . . . ,Uu5, V v5, UEV T ). Let
E0 := E(13, e1) be as in (2.5) and let us denote the quadric

q(u, v) := uT E0v = uT

⎡

⎣

0 0 0
0 0 −1
0 1 0

⎤

⎦ v = − det

[

u2 u3
v2 v3

]

,

where u = (u1, u2, u3)T and v = (v1, v2, v3)
T . We denote its zero set by

Q = {(u, v) ∈ R
3 × R

3 | q(u, v) = 0}.
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SinceE is an orbit of the SO(3)×SO(3) action,I =⋃(U ,V )∈SO(3)×SO(3) (U , V ).(Q×5

× {E0}). Let us denote ˜Q := {(u, v) ∈ Q | u, v /∈ Re1}. This is a Zariski open subset
of Q. Let

˜I :=
⋃

(U ,V )∈SO(3)×SO(3)

(U , V ).(˜Q×5 × {E0}).

We prove that ˜I is smooth by showing that the Jacobian matrix of the system of
equations uTi Evi = 0, for i = 1, . . . , 5 has full rank at every point in˜I; see, e.g., [5,
Theorem A.9].

The Jacobian matrix of q is the 1 × 6 matrix J (u, v) := [0 −v3 v2 0 u3 −u2
]

.
Denote

A :=

⎡

⎢

⎢

⎢

⎢

⎣

J (u1, v1)
J (u2, v2)

J (u3, v3)
J (u4, v4)

J (u5, v5)

⎤

⎥

⎥

⎥

⎥

⎦

∈ R
5×30. (4.2)

For (p, E0) ∈ ˜I the matrix A has full rank. Since the image of A is contained in the
image of the Jacobian matrix of uTi Evi = 0, i = 1, . . . , 5, we see that the latter has
full rank. Therefore,˜I is smooth.

4.2 Computing the Normal Jacobian

On I we have the two coordinate projections π1 : I → (R3\{0})×10 and π2 : I → E .
The projection π2 is surjective, but π1 is not, since out of the 10 complex solutions
of the system of equations uTi Evi = 0, i = 1, . . . , 5, there can be 0 real solutions.
Notice that im(π1) is a full-dimensional semi-algebraic set. Let U be the interior of
im(π1). Then, U is an open set, hence measurable. Integrating over im(π1) is the same
as integrating over U . We therefore have, using (4.1),

μ =
∫

U
�(p) #π1

−1(p) �(p) dp. (4.3)

Let us also denote ˜U := π1(˜I). Consider a pointp ∈ U\˜U and suppose that (p, E) ∈ I.
Let (U , V ) ∈ SO(3) × SO(3) such that (U , V ).E = E0. Since ˜Q is Zariski open in
Q, every neighborhood of (U , V ).p intersects ˜Q. Consequently, every neighborhood
of p intersects ˜U . This means that U ′ is open dense in U in the Euclidean topology.
Hence, in (4.3) we can replace U by ˜U to get

μ =
∫

˜U
�(p) · �(p) · #π1

−1(p) dp.
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We have shown in the previous subsection that ˜I is a smooth manifold. We may
therefore apply the coarea formula from (2.3) twice, first to π1 and then to π2, to get

μ =
∫

˜I
�(p) · �(p) · NJ(π1, (p, E)) d(p, E)

=
∫

E

(

∫

π−1
2 (E)

�(p) · �(p) · NJ(π1, (p, E))

NJ(π2, (p, E))
dp

)

dE .

Let now (U , V ) ∈ SO(3) × SO(3) such that UEV T = E0. It follows from
Lemma 2.2 that π1, π2 are equivariant, which implies that NJ(πi , (p, E)) =
NJ(πi , (U , V ).(p, E)), i = 1, 2. Furthermore, the Gaussian density �(p) is also
invariant under the SO(3)×SO(3) action. Thefiber over E0 isπ−1

2 (E0) = ˜Q×5×{E0},
which is open dense in Q×5 × {E0}. So,

μ =
∫

E

(∫

Q×5
�(p) · �((U , V ).p) · NJ(π1, (p, E0))

NJ(π2, (p, E0))
dp
)

dE, (4.4)

where (U , V ) ∈ SO(3) × SO(3) is such that E = (U , V ).E0. The ratio of normal
Jacobians is computed next.

Recall from (4.2) the definition of the matrix A ∈ R
5×30. For B1, . . . , B5 the basis

from Proposition 2.5 we denote

B :=
⎡

⎢

⎣

uT1 B1v1 · · · uT1 B5v1
...

. . .
...

uT5 B1v5 · · · uT5 B5v5

⎤

⎥

⎦ ∈ R
5×5.

Then, the tangent space of ˜I at (p, E0) is defined by the linear equation Aṗ +
BĖ = 0. Therefore, when B is invertible, −B−1A is a matrix representation for
D(p,E0)π2D(p,E0)π

−1
1 with respect to orthonormal bases. So,

NJ(π1, (p, E0))

NJ(π2, (p, E0))
= 1

| det(B−1AAT B−T )| = | det(B)|
√

det(AAT )
. (4.5)

When B is not invertible, NJ(π1, (p, E0)) = 0 and the formula in (4.5) also holds.

4.3 Integration on the Quadric

We plug (4.5) into (4.4) and obtain

μ =
∫

E

(

∫

Q×5
�(p) · �((U , V ).p) · | det(B)|

√

det(AAT )
dp

)

dE .
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We denote f (u, v) := u22+u23+v22 +v23 for u = (u1, u2, u3), v = (v1, v2, v3). Then,

det(AAT ) =
5
∏

i=1

f (ui , vi ).

We have (u, v) ∈ Q if and only if (u2, u3) is a multiple of (v2, v3). Therefore, we
have the following 2 : 1 parametrization:

φ : R4 × [0, 2π) → Q, (a, b, r , s, θ) �→ (u, v),

where u = (a, r · w)T , v = (b, s · w)T , w = (cos θ, sin θ) ∈ S
1.

The Jacobian matrix of φ is

J =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0
0 0 cos θ 0 −r sin θ

0 0 sin θ 0 r cos θ

0 1 0 0 0
0 0 0 cos θ −t sin θ

0 0 0 sin θ t cos θ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R
6×5.

Then, NJ(φ, (a, b, r , s, θ)) = √det(J T J ) and

det(J T J ) = r2 + s2 = u22 + u23 + v22 + v23 = f (u, v).

Let us denote a := (ai , bi , ri , si , θi )5i=1. We get:

μ = 1

25

∫

E

(∫

(R4×[0,2π))×5
�(φ(a)) · �((U , V ).φ(a)) · | det(B)| da

)

dE .

(4.6)

Notice that�(φ(a)) = 1
(2π)5

1
(2π)10

exp(− 1
2

∑5
i=1(a

2
i +b2i +r2i +s2i )) is the probability

density, such that ai , bi , ri , si are all standard normal and θi is uniform in [0, 2π) for
every i , and all variables are independent. We can therefore rephrase (4.6) as

μ = 1

25

∫

E

(

E
ai ,bi ,ri ,si∼N (0,1)

E
θi∼Unif([0,2π)),i=1,...,5

�((U , V ).φ(a)) · | det(B)|
)

dE .

The rows of B are all of the form

⎡

⎢

⎢

⎢

⎢

⎣

uT B1v
uT B2v
uT B3v
uT B4v
uT B5v

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

√
2 u3v1√
2 u2v1√
2 u1v3√
2 u1v2

u2v2 + u3v3

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

√
2 · b · r · sin θ√
2 · b · r · cos θ√
2 · a · s · sin θ√
2 · a · s · cos θ

rs

⎤

⎥

⎥

⎥

⎥

⎦

.
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This shows that | det(B)| ∼ 4 · | det [z1 . . . z5
] |, where z1, . . . , z5 ∼ z i.i.d. for

z =

⎡

⎢

⎢

⎢

⎢

⎣

b · r · sin θ

b · r · cos θ

a · s · sin θ

a · s · cos θ

rs

⎤

⎥

⎥

⎥

⎥

⎦

, a, b, r , s ∼ N (0, 1), θ ∼ Unif([0, 2π)), all independent.

(4.7)

We state a general integral formula.

Theorem 4.2 With the notation above,we have that the expected valueμ = E #(E∩L),
where the distribution of L is defined by a nonnegative measurable function � :
(RP2)×10 → R, is given by

μ = vol(E)

23
E

E∈E
E
a

�((U , V ).φ(a)) · ∣∣det [z1 . . . z5
]∣

∣ ,

where (U , V ) ∈ SO(3) × SO(3) is such that E = (U , V ).E0, and the first expected
value is over the uniform distribution in E . The second expectedd value is for a =
(ai , bi , ri , si , θi )5i=1 with ai , bi , ri , si ∼ N (0, 1), θi ∼ Unif([0, 2π)) and all are
independent.

We continue Example 4.1 by computing the distribution and approximating the
mean value.

Example 4.3 As in Example 4.1 we consider the case when the xi and yi are sampled
i.i.d. from the box [−5, 5]×[−5, 5] ⊂ R

2. Figure 2 shows the empirical distribution of
the number of real zeros and an empiricalmean of≈ 3.788.We could also approximate
the average number of real zeros using Theorem 4.2.

We sample from the probability density �((U , V ).φ(a)) in Theorem 4.2 using
the basic version of Metropolis-Hastings algorithm (see, e.g., [14]). For this, we use
the proposal density for (E, a), such that a is as above and E ∈ E is uniform. We
computed a corresponding Markov-Chain with 106 states. The Metropolis-Hastings
algorithm rejected all but 796 of those states. The empirical mean computed from the
796 states is ≈ 3.5563.

Let us now work towards proving Theorem 1.3. In the setting of Theorem 1.3
we have �(p) = 1 and thus, by Theorem 4.2, EL∼ψ #(E ∩ L) = 2−3 · vol(E) ·
E
∣

∣det
[

z1 z2 z3 z4 z5
]∣

∣ . We have shown in Lemma 3.1 that vol(E) = 4 · vol(RP5) =
2π3. Consequently,

E
L∼ψ

#(E ∩ L) = π3

4
· E ∣∣det [z1 z2 z3 z4 z5

]∣

∣

as stated in Theorem 1.3.
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Fig. 2 The pie chart shows the outcome of the following experiment, similar to the experiments in Fig. 1.
We sampled N = 1000 pairs (xi , yi )5i=1, where the xi and yi are sampled i.i.d. from the box [−5, 5] ×
[−5, 5] ⊂ R

2. Then, we computed E ∩ L by solving the system of polynomial equations with the software
HomotopyContinuation.jl [4]. The chart shows the empirical distribution of real zeros and the
corresponding empirical means in these experiments

We close this section by giving a (extremely coarse) upper bound on the variance
of the random determinant. This bound is used for applying Chebychev’s inequality
in the introduction.

Proposition 4.4 Var
( ∣

∣det
[

z1 z2 z3 z4 z5
]∣

∣

) ≤ 360.

Proof Let D denote the random absolute determinant. We have Var(D) ≤ E D2.
Expanding the determinant with Laplace expansion, multiplying out the square, and
taking the expected value we see that all mixed terms (that is, all terms which are not
a square) average to 0 because the distributions of a, b, r , s are symmetric around 0.
This implies

E D2 = 5! · E
[

(br sin θ)2 + (br cos θ)2 + (as sin θ)2 + (as cos θ)2 + (rs)2
]

= 5! · 3 = 360,

where we have used that Eθ cos2 θ = Eθ sin2 θ = 1
2 .

5 The Essential Zonoid

Vitale [16] showed that the expected absolute determinant of a random matrix can be
expressed as the volume of a convex body. More specifically, of a zonoid. Zonoids are
limits of zonotopes in the Hausdorff topology on the space of all convex bodies, and
zonotopes are Minkowski sums of line segments; see [15] for more details.

Notice that the probability distribution of z from (4.7) is invariant under multiply-
ing by −1; i.e., z ∼ −z. In this case, based on Vitale’s result, it was shown in [2,
Theorem 5.4] that E

∣

∣det
[

z1 z2 z3 z4 z5
]∣

∣ = 5! ·vol(K ), where K ⊂ R
5 is the convex
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body with support function hK (x) = 1
2 E |〈x, z〉|. So

E
L∼ψ

#(E ∩ L) = 5! · π3

4
· vol(K ). (5.1)

We call K the essential zonoid.
In the remainder of this section, we bound hK (x) from below to find a convex body

whose volumes give a lower bound for vol(K ). This gives, using (5.1), the following
result.

Proposition 5.1 E
L∼ψ

#(E ∩ L) ≥ 0.93.

It is important to note that thementioned lower bound involves numerical computations
in its calculation.

Remark 5.2 The value of 0.93 is not close to the experimental value of 3.95 from the
introduction. To get a lower bound closer to 3.95 one would need to understand the
support function of K at points x = (x1, . . . , x5) ∈ R

5, where all entries are nonzero.
In the computation below we always either have x1 = x2 = 0 or x3 = x4 = 0. For
such points we can work with the function that maps x to the vector of norms ρ =
(ρ1, ρ2, ρ3), where ρ1 =

√

x21 + x22 , ρ2 =
√

x23 + x24 and ρ3 = |x5|. However, if all
entries of x are nonzero, also the angle between the two points (x1, x2), (x3, x4) ∈ R

2

will play a role, not just their norms. We were not able to find a lower bound for hK (x)
in this case. We nevertheless prove Theorem 5.1 for completeness.

We will need the following lemma.

Lemma 5.3 We have

(1) E
ξ∼N (0,σ 2)

|ξ | = σ

√

2
π
;

(2) E
θ∼Unif([0,2π))

| cos θ | = 2
π
.

Proof The first formula is proved by using Eξ∼N (0,1) |ξ | = 2
∫∞
0 x · 1√

2π
e− 1

2 x
2
dx =

√

2
π
, and then Eξ∼N (0,σ 2) |ξ | = σ Eξ∼N (0,1) |ξ |. The second is E | cos θ | =

4
∫

π
2
0 cos θ · 1

2π dθ = 2
π
.

Let us have a closer look at the support function.

hK (x) = 1

2
E |〈x, z〉|

= 1

2
E |br(x1 sin θ + x2 cos θ) + as(x3 sin θ + x4 cos θ) + x5rs|

= 1

2
E

∣

∣

∣

∣

[

a r
]

C

[

b
s

]∣

∣

∣

∣

,
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where C is the 2 × 2 matrix

C :=
[

0 x3 sin θ + x4 cos θ

x1 sin θ + x2 cos θ x5

]

.

Let σ1 ≥ σ2 ≥ 0 denote the two singular values of C . The Gaussian vectors (a, r) and
(b, s) are invariant under rotations. Therefore, hK (x) = 1

2 E |σ1ab+σ2rs|. The law of
adding Gaussians implies that for fixed a, r and random b, s we have σ1ab + σ2rs ∼
N (0, σ 2

1 a
2 + σ 2

2 r
2). We now keep a, r fixed and take the expectation with respect

to b, s. This gives, using the first formula from Lemma 5.3,

hK (x) = 1√
2π

E
a,r ,θ

√

σ 2
1 a

2 + σ 2
2 r

2. (5.2)

For x ∈ R
5 let us write

ρ1 :=
√

x21 + x22 , ρ2 :=
√

x23 + x24 and ρ3 := |x5|.

From (5.2) we have hK (x) ≥ 1√
2π

Ea,θ |σ1a| as σ 2
2 r

2 ≥ 0. Since σ1 does not depend

on a and a, θ are independent, this gives hK (x) ≥ 1√
2π

Ea |a|Eθ |σ1|. Using Lemma

5.3 we get

hK (x) ≥ 1

π
E
θ

σ1.

The larger singular value σ1 can be expressed as

σ1 = max
a,b∈R2:‖a‖=‖b‖=1

aT C b.

Therefore,

hK (x) ≥ 1

π
E
θ

|eT2 C e1| = 1

π
E
θ

|x1 sin θ + x2 cos θ | = 2

π2 · ρ1;

the last equality by rotational invariance and Lemma 5.3. Similarly, hK (x) ≥ 2
π2 ρ2,

and also hK (x) ≥ 1
π
ρ3.

We recall the definition of the elliptic integral of the second kind

E(m) :=
∫ π

2

0

√

1 − m sin2 θ dθ,

and define

F(x, y) := 2
π2 ·
√

x2 + y2 · E
(

x2

x2+y2

)

.
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Then, we have

hK (x) ≥ 1

π
E
θ

‖CT e2‖ = 1

π
E
θ

√

(x1 sin θ + x2 cos θ)2 + x25

= 1

π
E
θ

√

ρ2
1 cos

2 θ + ρ2
3

= 1

2π2

∫ 2π

0

√

ρ2
1 cos

2 θ + ρ2
3 dθ

= 2

π2 ·
∫ π

2

0

√

ρ2
1 cos

2 θ + ρ2
3 dθ = F(ρ1, ρ3).

Similarly, we have hK (x) ≥ F(ρ2, ρ3).

Let L ′ ⊂ R
3 be the convex body whose support function is

hL ′(ρ) = max
{

0, 2
π2 ρ1,

2
π2 ρ2,

1
π
ρ3, F(ρ1, ρ3), F(ρ2, ρ3)

}

,

and define ϕ : R5 → R
3≥0, x �→ ρ, and

L := L ′ ∩ R
3≥0.

We have thus shown that hK (x) ≥ hϕ−1(L)(x). Since

K =
⋂

x∈R5\{0}
{y ∈ R

5 | 〈x, y〉 ≤ hK (x)}, (5.3)

this means ϕ−1(L) ⊂ K .
For every point x ∈ R

5 we have NJ(ϕ, x) = ρ1 · ρ2. For a fixed ρ ∈ R
3 the fiber

ϕ−1(ρ) consists of the product of two circles (all points x with
√

x21 + x22 = ρ1 and
√

x23 + x24 = ρ1) and two points (−x5 and x5). Therefore, the fibers of ϕ have volume

2vol(S1)2 = 2(2π)2. Then, by the coarea formula (2.3),

vol(K ) ≥ vol(ϕ−1(L)) =
∫

R5
δϕ−1(L)(x) dx = 2(2π)2 ·

∫

L
ρ1 · ρ2 dρ, (5.4)

where δϕ−1(L) is the indicator function of the interior of ϕ−1(L).

We have 0 ∈ L . Since 〈 2
π2 e1, ρ〉 = 2

π2 ρ1 ≤ hL(ρ) for all ρ �= 0, we also have, by
(5.3),

p1 := 2
π2 e1 ∈ L and, similarly, p2 := 2

π2 e2 ∈ L, p3 := 1
π
e3 ∈ L.
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Fig. 3 The polytope P from
(5.5)

Using Mathematica [17] we prove that

λ1(pi + p3), λ2(pi + 2
3p3), λ3(

2
3pi + p3), λ4(pi + 1

3p3),

λ5(
1
3pi + p3) ∈ L, i = 1, 2,

where λ1 = 0.73, λ2 = 0.86, λ3 = 0.85, λ4 = 0.966, λ5 = 0.957.
By convexity, L contains the convex hull of all these points. We define

P := conv
({0, e1, e2, e3, λ1(e1 + e3)} (5.5)

∪ {λ2(ei + 2
3e3), λ3(

2
3ei + e3), λ4(ei + 1

3e3), λ5(
1
3ei + e3) | i = 1, 2})

(see Fig. 3). Then, using the coarea formula (2.3) we have

∫

L
ρ1 · ρ2 dρ ≥

(

2

π2

)4

· 1

π
·
∫

P
ρ1 · ρ2 dρ. (5.6)

We evaluate this integral using Mathematica [17] and get
∫

P ρ1 · ρ2 dρ ≥
0.0236165.

Proof of Theorem 5.1 By (5.1), we have EL∼ψ #(E ∩ L) = 5! · π3

4 · vol(K ). Above we
have shown

vol(K )
(5.4)≥ 2(2π)2 ·

∫

L
ρ1 · ρ2 dρ

(5.6)≥ 27

π7 ·
∫

P
ρ1 · ρ2 dρ ≥ 27

π7 · 0.0236165.

So, EL∼ψ #(E ∩ L) ≥ 5! · 25

π4 · 0.0236165 ≥ 0.93.

Funding OpenAccess funding enabled and organized by Projekt DEAL. The implementations of all numer-
ical computations made in this contribution can be found: https://mathrepo.mis.mpg.de/average_degree/
index.html
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Data availability We do not have any data.
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