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Abstract
The theory of finite simple groups is a (rather unexplored) area likely to provide
interesting computational problems and modeling tools useful in a cryptographic con-
text. In this note, we review some applications of finite non-abelian simple groups to
cryptography and discuss different scenarios in which this theory is clearly central,
providing the relevant definitions to make the material accessible to both cryptog-
raphers and group theorists, in the hope of stimulating further interaction between
these two (non-disjoint) communities. In particular, we look at constructions based on
various group-theoretic factorization problems, review group theoretical hash func-
tions, and discuss fully homomorphic encryption using simple groups. The Hidden
Subgroup Problem is also briefly discussed in this context.
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1 Introduction

Cryptography is built upon the computational hardness of certain mathematical prob-
lems. One of themain toolswithin this area is one-way functions (informally, functions
that can be efficiently evaluated while there are no efficient methods to compute
preimages, possibly unless there is a secret key giving additional information). Com-
putational tasks like factoring large integers or decoding with respect to random codes
are flagship examples ofmathematical problems naturally defining one-way functions.
Of course, considering different computational models has a large impact in how such
cryptographic-amenable problems can be selected; in particular, since the 1980s the
appearance of quantum computing has necessitated the search for problems that will
remain hard even if a quantum computer is available. The field of post-quantum cryp-
tography revolves around cryptographic designs whose security relies on these kind
of problems.

There have been many cryptographic proposals based on problems in group theory,
see the recent book and survey by Kahrobaei et al [1, 2]. While it is not easy to
classify problems as quantum resistant in a reasonable way, we do know of some
problems that quantum computers can tackle with a significant advantage. The main
menace is Shor’s [3] quantum algorithm, which gives an exponential gain for solving
problems that fit a certain “period-finding” description. Factoring large integers or
solving discrete logarithms in finite cyclic groups fall into this category. Remarkably,
it seems that the ideas behind Shor’s algorithm can be extended to exploit normal
subgroup structure in other groups. Simple groups are those with no non-trivial normal
subgroups, so it is natural to ask whether finite simple groups may be harder than other
groups for quantum computers to deal with. This leads us to suggest that the finite
simple groups may be a good setting for post-quantum cryptographic schemes.

In the literature, there are proposals using finite non-abelian simple groups for
constructing many different tools: encryption and digital signature schemes, fully
homomorphic encryption designs, and hash functions. In this survey, we will take a
closer look at the status of some proposed applications of the theory of finite simple
groups to the design of hash functions, public-key encryption, and fully homomorphic
encryption. Our aim is not to be exhaustive but simply to give the reader a glimpse
of the vast amount of unexplored avenues within this area, with a focus on some
challenging group-theoretic and computational problems relevant to building sound
cryptographic constructions.
Paper Roadmap. We start with a brief introduction to the finite simple groups and
their classification in Sect. 2. In Sect. 3, we introduce Cayley hash functions and
give an example of a cryptographic construction. We then discuss the difficulty of a
certain factorization problem in groups that is linked to their security, and a related
group-theoretic conjecture. In Sect. 4, we define logarithmic signatures and another
factorization problem in groups which has been used as justification for several public
key cryptosystems. We give an example of a cryptographic construction and discuss
a related group-theoretic conjecture. Sect. 5 discusses fully homomorphic encryption
schemes and a method of building them from homomorphic encryption on groups,
while in Sect. 6wediscuss theHiddenSubgroupProblem for cryptanalysis of proposed
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schemes using finite non-abelian simple groups against possible quantum attacks. Sec-
tion 7 concludes the paperwith a summary of the exciting open problemswe discussed.

2 Preliminaries: Finite Simple Groups

A simple group is a non-trivial group whose only normal subgroups are itself and the
trivial group. We are also interested in some quasisimple groups: G is quasisimple if
it is perfect (i.e., equal to its own commutator subgroup G = [G,G]) and its group
of inner automorphisms Inn(G) is simple. We focus here on finite groups since our
cryptographic applications require finite data structures.

There is a classification of all finite simple groups whose proof was completed in
the 2000s after many years of work by a large number of mathematicians. For a brief
historical overview, see [4]. The list of finite simple groups is as follows:

Theorem 1 If G is a finite simple group then either G is abelian, in which case it is a
cyclic group of prime order, or G is non-abelian, in which case one of the following
holds:

– G ∼= An is an alternating group on n ≥ 5 letters
– G is a group of Lie type
– G is one of 26 sporadic groups.

The proof takes upmany books, see for example the series [5]. For amore introductory
textbook describing all the groups in detail, see [6].

The groups of Lie type are the classical groups and the exceptional groups over
finite fields. We describe these groups briefly here, and refer the reader to a standard
textbook by Carter [7] for more details. These groups are defined over finite fields.
We use p to denote the characteristic of the field, which is a prime, and q to denote
the order of the field, which is a power of p. Each finite group of Lie type has an
underlying root system which determines an integer known as the rank of the group.

The classical groups are those which are natural matrix groups, and there are four
types for every integer n ≥ 2 and prime power q. For example, the projective special
linear group of n × n matrices over a field of order q, denoted PSLn(q), has rank
n − 1 and is simple except when n = 2 and q = 2, 3. The other classical groups are
the groups of unitary, orthogonal, and symplectic matrices over finite fields. We are
also interested in finite quasisimple classical groups, for example, the special linear
group SLn(q). In characteristic 2,proposed we have that SLn(2k) = PSLn(2k)which
is simple for k > 1.

The exceptional groups do not have such natural representations as groups of matri-
ces, and all have rank at most 8. There are 10 infinite families indexed by prime powers
q. One such family is the Suzuki groups which are defined over fields of order 22n+1

which we denote by Sz(22n+1).

123



La Matematica

3 Geodesic Problem and Cayley Hash Functions

A hash function is a function whose input is an arbitrarily large message and whose
output is a fixed-length hash. Hash functions are a cryptographic primitive with a
variety of cryptographic applications, each requiring different security properties (see
any cryptography textbook, for example [8, Chapter 6]). Desirable properties of a
hash function h : M → N include preimage resistance – given n ∈ N it should
be computationally infeasible to find m ∈ M such that h(m) = n – and collision
resistance – it should be computationally infeasible to find m �= m′ ∈ M such that
h(m) = h(m′).

Zémor [9] defined group-theoretic hash functions based onCayley graphs of finitely
generated groups, following work of Bosset and Camion [10].

Definition 3.1 Let G be a finitely generated group with a generating set S =
{g1, . . . , gk} which is closed under taking inverses.

– The Cayley graph �(G, S) is a graph with vertex set G and an edge from g to h
if and only if g = gih for some i .

– The Cayley hash function hG,S : {1, . . . , k}∗ → G is defined by
hG,S(m1,m2, ...,mr ) = gm1gm2 · · · gmr .We refer to (m1,m2, ...,mr ) ∈ {1, ..., k}∗
as a word of length r .

Note that evaluation of hG,S at (m1,m2, . . . ,mr ) corresponds to traversing the path
(1, gm1 , gm1gm2 , · · · , gm1gm2 · · · gmr ) in the Cayley graph �(G, S).

Preimage resistance for Cayley hash functions is equivalent to the difficulty of
writing a given element of G as a product of elements of S, or finding a path from 1
to the given element in the Cayley graph. This is called the Geodesic Problem.
Geodesic ProblemGiven h ∈ G find a “short” word (mi )i such that

∏
i gmi = h.

Equivalently, given h ∈ G find a “short” path from 1 to h in �(G, S).
It should be noted that findingminimal suchwords or paths is theNP-hardMinimum

Generator Sequence Problem [11]. (This problem is also called the Unary Length
Problem, and was shown to be �P

2 -complete [12]).

3.1 Cryptographic Constructions

There have been several choices of generating sets proposed for Cayley hash functions
over SL2(q) [9, 13–18], but there are known attacks in each case [19–23]. Recently,
Le Coz, Battarbee, Flores, Koberda, and Kahrobaei [24] proposed a generating set for
the quasisimple group SLn(p) for prime p. The Geodesic Problem in this case can
be reduced to solving a system of n2 multivariate polynomial equations in O(log p)
unknowns over Fp [24, Section 3.2] which is known to be NP-hard in the worst case.

As an example, we describe a particularly simple scheme proposed by Zémor [9].
Let p be a prime and SL2(p) the special linear group of 2 × 2 matrices over the

finite field of p elements with determinant 1. Further, associate to the bit 0 the matrix

A =
(
1 1
0 1

)

∈ SL2(p) and to the bit 1 the matrix B =
(
1 0
1 1

)

∈ SL2(p). Then, the

hash function hSL2(p),{A,B} sends a binary number of arbitrary length to the appropriate
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product of As and Bs. For example, if p = 3 the hash for the bitstring 010110 would
be the matrix

ABABBA =
(
2 2
2 1

)

These parameters were chosen to allow efficient evaluation of the hash function,
but the resulting hash function is not collision resistant: Tillich and Zémor [13, 25]
show it is possible to find many factorizations of the group identity. Inserting any such
factorization into any word gives a collision.

3.2 Progress Toward Solving the Geodesic Problem

Babai and Seress conjectured [26] that short paths exist in the Cayley graphs of finite
simple groups:
Babai’s conjecture. There exists a constant c > 0 such that, for any h in a finite
simple non-abelian group G, and any generating set S, there is a path from 1 to h in
�(G, S) of length at most (log |G|)c. That is, every element of G may be written as a
word of length at most (log |G|)c in the elements of S.

For groups of Lie type of bounded rank, Babai’s conjecture has been proved by
Helfgott, Pyber, Szabó, Breuillard, Green and Tao [27–29]. For sporadic groups, there
is certainly some c large enough to give the conjectured result, since there are finitely
many such groups. The remaining cases are the alternating groups (for which Helfgott
andSeress [30] have the best bound) andgroups ofLie typeof unbounded rank. Inmany
cases, there are partial results proving Babai’s conjecture for certain generating sets.
For example, Babai and Hayes [31] prove Babai’s conjecture for almost all generating
sets of alternating groups, and Eberhard and Jezernik recently showed [32] that Babai’s
conjecture holds for large rank groups of Lie type for almost all large enough sets S.
See [32, Section 1] for more details on the current status of Babai’s conjecture.

Babai’s conjecture would imply that for every h ∈ G there is a path of length
(log |G|)O(1) from 1 to h in the Cayley graph, and the goal of cryptanalysts is to
explicitly construct such short paths, while the goal of cryptographers is to find gen-
erating sets that make this as difficult as possible. There has been much activity in
this area: Minkwitz [33] provided an optimization for the Schreier-Sims algorithm
[34, 35] for solving the Geodesic Problem in permutation groups. Babai and Hayes
[31] (see also [36]) give a Las Vegas algorithm based on a random walk which is able
to factorize elements of An for almost all generating sets, and Kalka, Teicher, and
Tsaban [37, Section 5] provide an algorithm which conjecturally and experimentally
gives even shorter words. Babai, Kantor, and Lubotzky [38] showed that every finite
simple non-abelian group G has a set of generators S of size at most 7 for which
there is an algorithm that finds words of length O(log |G|) in O(log |G|) time. Of the
groups of Lie type, PSLn(q) and SLn(q) have beenmost closely studied and there are
a handful of specially chosen generating sets for which there are efficient algorithms
[19, 39–41]. Another approach of Kantor and Seress and Dietrich, Leedham-Green,
and O’Brien is to represent classical groups as so-called black-box groups and use
a Las Vegas algorithm to attempt to construct standard generating sets in which to
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solve the Geodesic Problem [42, 43]. For all generating sets of SL2(2k), there is a
subexponential-time algorithm giving subexponential-length words [44]. However,
there is no efficient algorithm which works for all groups and generating sets.

4 Public-Key Constructions from Logarithmic Signatures

Since the 1980s, there have been several attempts to exploit the computational prop-
erties of the so-called factorization sequences of finite groups to derive one-way
functions, including trapdoor functions – one-way functions for which it becomes
easy to compute preimages given some extra information (see for instance [45]).

Definition 4.1 Let G be a finite group. We may identify G with a permutation group
acting on n points where n ≤ |G|. Call this n the degree of G. Fix s ∈ N and for each
i = 1, ..., s let αi j ∈ G and consider α = (α1, . . . , αs) where αi = (αi1, . . . , αini ).
We denote by �(α) = ∑s

i=1 ni the length of α. We say that (i1, . . . , is) ∈ N
s is a

factorization sequence for g ∈ G w.r.t. α if g = α1i1 · · ·αsis . Indeed, for a given
g ∈ G, the number of such factorization sequences may vary – it could be that there
are many ways of writing g as an ordered product of elements in the blocks of α, or
none at all. Denote by n[α, g] the number of different factorization sequences for g
induced by α. We say that α is a

– cover if n[α, g] > 0 for any g ∈ G.
– logarithmic signature if n[α, g] = 1 for any g ∈ G. A logarithmic signature α is
called tame if factorization sequences may be computed in polynomial time in the
degree of G for every g w.r.t. α, and wild otherwise.

Note that by definition α is a logarithmic signature if and only if α is a cover and∏s
i=1 ni = |G|.
If the group law can be computed efficiently, it is “easy” to construct group elements

by simply selecting one element from each αi ; the reverse process may, however, be
rather involved computationally. The next section reviews several proposals exploiting
this dichotomy to define useful one-way functions.

4.1 Cryptographic Constructions

The first private-key cryptographic construction using factorization sequences was
PGM (Permutation Group Mappings) which was proposed by Magliveras [46] and
uses logarithmic signatures for permutation groups to create one-way functions. Later,
Magliveras et al. [47] proposed MST1, a public-key cryptosystem built upon the same
idea with an additional trapdoor for the one-way function of PGM. They also proposed
a variant called MST2 based on a special kind of cover called a mesh. Later, Lempken
et al. [48] proposed MST3 based on the difficulty of factoring group elements with
respect to random covers for large subsets of finite non-abelian groups with large
center.

We now give a description of MST1, the simplest of these constructions. For a
natural number m, we denote by Zm = {0, 1, . . . ,m − 1} the ring of integers modulo
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Fig. 1 MST1 encryption scheme

m. Fix a finite permutation group G and a tame logarithmic signature η for G, both
publicly known. For any logarithmic signature α = (α1, . . . , αs), we construct the
mappings

λ : Zn1 × · · · × Zns −→ Z|G|
(r1, . . . , rs) 
−→ ∑s

i=1

(
ri · ∏i−1

j=1 n j

)

and

�α : Zn1 × · · · × Zns −→ G
(r1, . . . , rs) 
−→ α1r1 · · · αsrs

,

which one may check are bijective. Thus, the functional composition of �α and λ−1

yields a bijection

ᾰ : Z|G| −→ G
n 
−→ (�αλ−1)(n) = �α

(
λ−1(n)

)
.

We will use η̆−1 to identify G with Z|G|, allowing us to associate to each logarithmic
signature α a permutation α̂ := η̆−1ᾰ ∈ S|G|.

For MST1, the public key is a wild logarithmic signature α = (α1, . . . , αs) and a
tame logarithmic signature β = (β1, . . . , βs) for the same group G. The private key
consists of a sequence [θ1, . . . , θk] of tame logarithmic signatures such that β̂−1α̂ =
θ̂1 · · · θ̂k , which opens the trapdoor to efficient computation of factorization sequences
w.r.t. α. As discussed in [46], it is not known how to efficiently compute an appropriate
sequence [θ1, . . . , θk]. The encryption scheme is depicted in Fig. 1.

4.2 Producing Hard Factorizations

All the above constructions base their security on the claimed hardness of computing
factorizations of group elements with respect to some public cover. To support such a
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claim, the problem of factoring w.r.t a cover should be reduced as closely as possible
to another computational problem that we can “safely" assume to be hard enough.

In the construction of MST1, a critical point is the choice of the public wild loga-
rithmic signature α along with a trapdoor (the factorization into the tame logarithmic
signatures θi (1 ≤ i ≤ k)). Magliveras et al. [47] suggested picking α to be a totally-
non-transversal logarithmic signature, meaning that none of the αi is a coset of a
non-trivial subgroup of G. This was later proven in [49] to be insufficient since for
n ≥ 5 there are tame totally non-transversal logarithmic signatures for all alternating
groups An and symmetric groups Sn .

Similarly, the security of MST3 was questioned in [50] and further cryptanalyzed
in [51], where it was proven that factoringwith respect to the random covers used is not
always a hard problem.While further schemes have been proposed in recent years (see,
for instance, [52, 53]) at the writing of this survey, we are unfortunately not aware
of a secure method for inducing hard group factorizations suited for cryptographic
purposes.

4.3 In search of Minimal Length Logarithmic Signatures

Cryptographic applications motivate nice group-theoretic questions. For example,
since the length of covers is a relevant parameter in real-life implementations, one
may ask what the minimal length of a logarithmic signature can be, and try to con-
struct logarithmic signatures of this length.

Let G be a finite group of order |G| = ∏k
j=1 p

a j
j with p1, . . . , pk distinct primes.

González Vasco and Steinwandt [54] showed that for each logarithmic signature α for
G, we have

�(α) ≥
k∑

j=1

a j p j , (1)

and defined a minimal length logarithmic signature α to be a logarithmic signature
for which equality in (1) holds. Then, they constructed minimal length logarithmic
sequences for symmetric and solvable groups. It is not yet known if minimal length
logarithmic signatures exist for each finite group, although Magliveras [55] reduced
the problem to simple groups, showing that a minimal counterexample of a group
without a minimal length logarithmic signature must be simple. He also constructed
minimal length logarithmic signatures for the alternating groups. The work in [54, 55]
leads to the following conjecture for which a constructive proof is desired.
MLS Conjecture. Every finite simple group has a minimal length logarithmic signa-
ture.

This conjecture remains open in general, but has been proved in several cases.
The constructive proofs for symmetric and alternating groups are in essence obtained
by the same technique: given a permutation representation of a group G, identify a
point P so that its stabilizer GP can be factored through a minimal length logarithmic
signature and such that there exists a complete set of representatives of G modulo GP

which moves P cyclically. The underlying idea is to factor the group into a ‘product
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of disjoint pieces’ for which a minimal length logarithmic signature exists. In the case
that these ‘disjoint pieces’ are two subgroups, this is a rewriting of the group as a knit
(or Zappa-Szép) product [56, 57].

Lempken and vanTrung [58] use double coset decomposition to findminimal length
logarithmic signatures for a number of special linear groups and projective special
linear groups. Constructions of minimal length logarithmic sequences for all of the
simple linear and symplectic groups, as well as some orthogonal groups, are found
in [59, 60]. These papers consider the action of the groupon the naturalmodule, looking
at point stabilizers and geometric objects called spreads. Furthermore, Holmes [61]
produced minimal logarithmic signatures for the sporadic groups J1, J2, HS, McL ,
He, andCo3. Rahimipour,Ashrafi, andGholami [62–64] treat the cases of the sporadic
groups J3, Fi22, Ru, and Suz, as well as the Tits group 2F4(2)′, the Ree groups
2G2(32n+1), and some unitary and exceptional groups.

5 Fully Homomorphic Encryption Schemes

Broadly, homomorphic encryption enables computation over encrypted data. A fully
homomorphic encryption (FHE) procedure is an encryption algorithm E taking as
input an element from a ring (R,+, ·) and producing an output in another ring
(S,+, ·) such that E(r + s) = E(r) + E(s) and E(r · s) = E(r) · E(s). Such
an encryption mechanism allows a third party to do any computations involving +
and · without ever decrypting the data. For example, one can take the boolean circuit
({0, 1}, XOR, AND) as the ring, so that a fully homomorphic encryption function
respects both AND and XOR.

There are several known encryption schemes on rings (Zn,+, ·)which allow homo-
morphic computation of only one of the two operations, for example, textbook RSA,
ElGamal, and Goldwasser-Micali, but it appears far more difficult to construct a fully
homomorphic scheme. For a detailed survey, see [65].

The most widely known existing fully homomorphic encryption scheme appeared
originally in the thesis of Craig Gentry [66]. The security of this solution relies on
variants of the so-called bounded-distance decoding problem. This problem enjoys a
very relevant property for cryptographic purpose, namely, it is random self reducible,
which basicallymeans that it is about as hard on average as it is in theworst case.While
this property allows for (practically meaningful) security proofs, it is unfortunately
the case that the resulting homomorphic encryption algorithm is too inefficient to be
practical. Very informally, the reason is that, to provide semantic security, encryption
has to be randomized, but on the other hand, a homomorphism should map zero to
zero. To resolve this conflict, the ciphertext zero is “masked by noise." The problem
now is that during any computation on encrypted data, this “noise” tends to accumulate
and has to be occasionally reduced by re-encryption (also known as bootstrapping), a
process that produces the equivalent ciphertext but with less noise. This is an expensive
procedure, and its results in real-life computation being prohibitively slow.

The quest formore efficient techniques to overcome this issue has resulted in a num-
ber of rather efficient schemes. For instance, in [67, 68], a much slower growth of the
noise during homomorphic computations was achieved, providing enough efficiency

123



La Matematica

for practical applications. Later, in 2013, Gentry, Sahai, and Waters [69] put forward
the GSW scheme, a new method to derive more efficient FHE schemes. These tech-
niques were further improved to develop efficient ring variants of the GSW scheme
[70]. New efficient constructions are constantly being proposed (see [71]), and fully
homomorphic encryption is indeed a reality in many practical applications.

5.1 Simple Groups and Fully Homomorphic Encryption

The relevance of finite non-abelian simple groups to fully homomorphic encryption
is that they open a door to designing new noise-free fully homomorphic encryption
schemes, thus with the potential of beingmuchmore efficient than those needing some
sort of bootstrapping.

This idea is quantified by the following theorem of Werner [72].

Theorem 2 [72, 73] There is a fully homomorphic encryption scheme (over a non-zero
ring) if and only if there is a finite non-abelian simple group over which there is a
homomorphic encryption scheme.

Ostrovsky and Skeith gave a constructive proof of this theorem [73, Corollary 4.26],
see [74, Section 6] for more discussion. To construct a noise-free fully homomorphic
encryption scheme from a group homomorphism φ : G → H , Ostrovsky and Skeith
pick an element g ∈ G of order 2 and identify the bit 0 with the identity of G, and the
bit 1 with the element g. Since any binary function can be written as compositions of
the N AND function, it is enough to construct N AND in the group. Recall that the
N AND function can be defined as a Boolean operator which takes the value zero if
and only if all the involved statements it is applied to have a value of one, and has a
value of one otherwise (it is thus a negation of a conjunction of logical statements, or a
NOT AND). Ostrovsky and Skeith’s proof gives a general formula, and they display
an example for the group A5. The details for An for n ≥ 6 are especially short, so we
describe them here.

Let g = (1 2)(3 4) and e be the identity permutation. For a, b ∈ {e, g}. We will
give a formula for N AND(a, b). We follow Ostrovsky and Skeith’s proof, noting that

g = [(1 2)(5 6), (1 4)(2 3)] = [g(3 5)(4 6), g(2 4)(5 6)].
Therefore,

N AND(a, b) = g[a(3 5)(4 6), b(2 4)(5 6)]
= (1 2)(3 6 4 5)a(3 6 2 4 5)b(2 6 3 5 4)a(3 6 2 4 5)b(2 4)(5 6).

Armknecht, Gagliardoni, Katzenbeisser, and Peter [75] give an attack using quan-
tum computers that undermines the security of any homomorphic encryption scheme
whose plaintext and ciphertext spaces are abelian groups, thereby showing that it is
impossible to have a quantum secure group homomorphic encryption scheme in this
scenario. We are not aware of any literature proposing homomorphic encryption over
non-abelian groups, but this is a research avenue worth exploring (see [76] for more
discussion).
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6 Hidden Subgroup Problem: Post-QuantumAnalysis

The search for quantum-resistant alternatives to today’s common public-key con-
structions is extremely active. As we mentioned in the introduction, it is of paramount
importance to identify and understand which mathematical problems are hard enough
in a “post-quantum” sense. The Hidden Subgroup Problem (HSP) is a generic for-
mulation englobing many such potentially hard problems. HSP can be seen as a way
to understand the power of quantum algorithms and the limits of Shor’s algorithm in
group theoretical language.
Hidden Subgroup Problem (HSP).Given a finitely generated group G, a finite set S
and an efficiently computable function f : G → S such that f is constant and distinct
on left cosets of a subgroup H ≤ G of finite index, find a generating set for H .

Famously, Shor’s [3] polynomial-time quantum algorithms for the Integer Factor-
ization Problem and Discrete Logarithm Problem rely on a polynomial-time quantum
algorithm for HSP in finite cyclic groups and groups of the form Zp × Zp for prime
p. There are efficient quantum algorithms for HSP for all finite abelian groups and for
a few classes of finite non-abelian groups. We describe some relevant cases here. See
[77] for a full survey.

Hallgren, Russell, and Ta-Shma [78, Theorem 2] gave a quantum algorithm for
finding hidden normal subgroups. This result says nothing about finite simple groups
since they have no non-trivial normal subgroups. Kuperberg in [79], and Regev in [80]
give subexponential-timequantumalgorithms forHSP in dihedral groups.Kuperberg’s
algorithm requires quantum space 2O(log r), while a generalized version of Regev’s in
[81, Theorem 5.2] is slower but less space-expensive. In [82], the authors extend these
algorithms to construct a subexponential quantum algorithm for solving the Discrete
Logarithm Problem in semi-direct products.

While we have efficient algorithms in some cases, providing solutions for HSP for
all finite groups is considered one of the most important challenges in post-quantum
cryptography. A solution to HSP in a finite group implies a solution in all subgroups.
Since every finite group is a subgroup of a symmetric group, a solution to HSP for all
finite groups is equivalent to a solution to HSP for symmetric groups. Note, however,
that the representation of our group G as a subgroup of a symmetric group is relevant
here, since if the dimension is large (for example if we consider the group G to be in
S|G|) we will see exponential blow-up in size and parameters.

Many of the techniques that have been successfully employed in the above-
mentioned cases have been shown to fail for symmetric groups [79, 83–85]. See
[86, Section 3.2] for more discussion. Often the obstructions are large subgroups and
high-dimensional irreducible representations. Therefore, many of the difficulties in
the symmetric case also affect the classical group case [84, 87].

Understanding the complexity of HSP in finite non-abelian groups is a significant
open question with strong connections to many well-known hard problems. This sug-
gests study in this area could unearth one-way functions for the design of post-quantum
cryptosystems.
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7 The Road Ahead: Some Open Problems

We have presented different problems related to non-abelian finite simple groups.
We hope we have helped the readers in grasping their potential for cryptographic
applications. While it is hard to predict how the field will evolve, we can for sure
identify a number of interesting problems on the frontier between cryptography and
group theory:

– Babai’s conjecture that short paths exist in Cayley graphs of finite simple groups is
a widely studied open problem in group theory. The Geodesic Problem, equivalent
to finding preimages for Cayley hash functions, requires constructing such short
paths in Cayley graphs. For cryptographic applications, it is desirable to either
find a situation in which the Geodesic Problem is computationally infeasible, or to
show that it is always feasible, as discussed in Section 3.2. Progress in constructing
short enough paths would imply progress on Babai’s conjecture.

– Logarithmic signatures are a possible source of useful trapdoor functions for
public-key cryptography, but there is more work to be done on understanding
and constructing them. One direction, discussed in Section 4.2, is to find an algo-
rithm that can produce wild logarithmic signatures, especially one which can also
provide a rewriting in terms of tame ones. Another, discussed in Section 4.3, is to
determine whether all finite groups have minimal length logarithmic signatures.
This question has been reduced to simple groups, and the MLS Conjecture that
minimal length logarithmic signatures exist for all simple groups remains open in
some cases.

– Ostrovsky and Skeith [88] show how to convert a homomorphic encryption pro-
cedure on any finite simple group to a fully homomorphic encryption procedure
on a ring by constructing N AND in the finite simple groups. As discussed in
Section 5.1, this opens up the question of finding secure homomorphic encryption
on a finite simple group.

– The Hidden Subgroup Problem is central to post-quantum cryptography. As dis-
cussed inSection 6, understanding the hardness ofHSP for symmetric groups could
be useful in the analysis of post-quantum group-based cryptographic primitives.
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