ORIGINAL RESEARCH ARTICLE

Three Conics Determine a Cubic

Lorenz Halbeisen ${ }^{1}$ (D) Norbert Hungerbühler ${ }^{1}$ (D) Vera Stalder ${ }^{2}$

Received: 6 April 2023 / Revised: 2 October 2023 / Accepted: 6 February 2024
© The Author(s) 2024

Abstract

Given a cubic K in the real projective plane. Then for each point P there is a conic C_{P} associated to P. The conic C_{P} is called the polar conic of K with respect to the pole P. We investigate the situation when three conics C_{1}, C_{2}, and C_{3} are polar conics of K with respect to the poles P_{1}, P_{2}, and P_{3}, respectively. In particular, we give an elementary proof-without using any results from algebraic geometry-that any three conics C_{1}, C_{2}, C_{3} in general position, satisfying only a non-degeneracy condition, determine a unique cubic K and three points P_{1}, P_{2}, P_{3}, such that C_{1}, C_{2}, C_{3} are polar conics of K with respect to the three poles P_{1}, P_{2}, P_{3}. This can be seen as a higher degree variant of von Staudt's Theorem.

Keywords Pencils • Conics • Polars • Polar conics of cubics
Mathematics Subject Classification 51A05 • 51A20

1 Introduction

This work proceeds the article [3], in which it is shown that two given conics C_{0} and C_{1} can always be considered as polar conics of a cubic K curve with respect to corresponding poles P_{0} and P_{1}. However, even though P_{1} is determined by P_{0}, neither the cubic nor the point P_{0} is determined by the two conics C_{0} and C_{1}. This changes if we start with three conics C_{1}, C_{2}, C_{3} in general position. In this situation, there is a

[^0]unique cubic K and uniquely determined points P_{1}, P_{2}, P_{3} such that C_{1}, C_{2}, C_{3} are the polar conics of K with respect to the three poles P_{1}, P_{2}, P_{3}. Instead of formulating the result in the abstract language of algebraic geometry, we propose an elementary and explicit approach that shows a concrete method to calculate the resulting cubic curve K and the poles P_{1}, P_{2}, P_{3}, starting from the three given conic sections C_{1}, C_{2}, C_{3}. In particular, the condition for uniqueness and existence becomes visible in this way.

Our result can be seen as a higher degree variant of von Staudt's Theorem which says that given three lines $\ell_{1}, \ell_{2}, \ell_{3}$ and three points P_{1}, P_{2}, P_{3} in perspective position determine a unique conic C such that the points P_{i} are the poles of the lines ℓ_{i} with respect to C (see [7, p. 135, Sect. 241]).

The setting in which we work is the same as in [3], but for the sake of completeness we recall the notation and terminology. We will work in the real projective plane $\mathbb{R P}^{2}=\mathbb{R}^{3} \backslash\{0\} / \sim$, where $X \sim Y \in \mathbb{R}^{3} \backslash\{0\}$ are equivalent, if $X=\lambda Y$ for some $\lambda \in \mathbb{R}$. Points $X=\left(x_{1}, x_{2}, x_{3}\right)^{T} \in \mathbb{R}^{3} \backslash\{0\}$ will be denoted by capital letters, the components with the corresponding small letter, and the equivalence class by $[X]$. However, since we mostly work with representatives, we often omit the square brackets in the notation. A non-degenerate conic in this setting is then given by an equation of the form $\langle X, A X\rangle=0$, where A is a regular, real, symmetric 3×3-matrix with mixed signature, i.e., A has eigenvalues of both signs, and $\langle\cdot, \cdot\rangle$ denotes the standard inner product of \mathbb{R}^{3}.

Let f be a non-constant homogeneous polynomial in the variables x_{1}, x_{2}, x_{3} of degree n. Then f defines a projective algebraic curve

$$
C_{f}:=\left\{[X] \in \mathbb{R P}^{2}: f(X)=0\right\},
$$

of degree n. For a point $P \in \mathbb{R P}^{2}$,

$$
P f(X):=\langle P, \nabla f(X)\rangle,
$$

is also a homogeneous polynomial in the variables x_{1}, x_{2}, x_{3}. If the homogeneous polynomial f is of degree n, then $C_{P f}$ is an algebraic curve of degree $n-1$. The curve $C_{P f}$ is called the polar curve of C_{f} with respect to the pole P; sometimes we call it the polar curve of P with respect to C_{f}. In particular, when C_{f} is a cubic curve (i.e., f is a homogeneous polynomial of degree 3), then $C_{P f}$ is a conic, which we call the polar conic of C_{f} with respect to the pole P, and when C_{f} is a conic, then $C_{P f}$ is a line, which we call the polar line of C_{f} with respect to the pole P (see, for example, the classical book of Wieleitner [8] or Dolgachev [2, Chap. 3] for a modern view). Note that $C_{P f}$ is defined and can be a regular curve even if C_{f} is singular or reducible. For some historical background, for the geometric interpretation of poles and polar lines, for the iterated construction of polar curves, as well as for the analytical method used today, see Monge [5, Sect. 3], Bobillier [1], and Joachimsthal [4, p. 373], or [3].

2 Algebraic Curves and Multilinear Forms

Let C_{f} be a conic given by the non-constant homogeneous polynomial

$$
f\left(x_{1}, x_{2}, x_{3}\right):=\sum_{1 \leq i \leq j \leq 3} c_{i j} x_{i} x_{j}
$$

Then, the symmetric matrix

$$
T:=\left(\begin{array}{ccc}
c_{11} & c_{12} / 2 & c_{13} / 2 \\
c_{12} / 2 & c_{22} & c_{23} / 2 \\
c_{13} / 2 & c_{23} / 2 & c_{33}
\end{array}\right)
$$

has the property that a point X belongs to C_{f} (i.e., $f(X)=0$), if and only if $\langle X, T(X)\rangle=0$. Thus, the conic C_{f} is represented by the matrix T. Since the expression $\langle X, T(Y)\rangle$ defines a bilinear form $\mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R},(X, Y) \mapsto\langle X, T(Y)\rangle$, we can consider the matrix T also as a purely covariant tensor of rank 2 (i.e., a tensor whose rank of covariance is 2 and whose rank of contravariance is 0). More precisely, if we consider the matrix T as a (0,2)-tensor, where for $X=\left(x_{1}, x_{2}, x_{3}\right)$ and $Y=\left(y_{1}, y_{2}, y_{3}\right)$ we define

$$
T(X, Y):=\sum_{1 \leq i, j \leq 3} a_{i j} x_{i} y_{j},
$$

then the expression $\langle X, T(X)\rangle=0$ is equivalent to $T(X, X)=0$. In order to obtain the coefficients of the $(0,2)$-tensor $T=\left(a_{i j}\right)_{1 \leq i, j \leq 3}$ from a conic C_{f} defined by a non-constant homogeneous polynomial f, we just set

$$
a_{i j}:=\frac{1}{2!} \cdot \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \quad \text { for all } 1 \leq i, j \leq 3
$$

The next result shows that this relation between a conic C_{f} and the corresponding $(0,2)$-tensor $T_{f}=\left(a_{i j}\right)_{1 \leq i, j \leq 3}$ can be generalised to algebraic curves of arbitrary degree.

Lemma 2.1 Let Γ_{f} be an algebraic curve of degree d given by the non-constant homogeneous polynomial

$$
f\left(x_{1}, x_{2}, x_{3}\right):=\sum_{1 \leq i_{1} \leq \cdots \leq i_{d} \leq 3} c_{i_{1} \ldots i_{d}} \cdot x_{i_{1}} \cdot \ldots \cdot x_{i_{d}},
$$

and let $T_{f}=\left(a_{i_{1} \ldots i_{d}}\right)_{1 \leq i_{1}, \ldots, i_{d} \leq 3}$, where

$$
a_{i_{1} \ldots i_{d}}:=\frac{1}{d!} \cdot \frac{\partial^{d} f}{\partial x_{i_{1}} \ldots \partial x_{i_{d}}} \text { for all } 1 \leq i_{1}, \ldots, i_{d} \leq 3 .
$$

Then T_{f} is a symmetric $(0, d)$-tensor and a point X is on the curve Γ_{f} if and only if

$$
T_{f}(\underbrace{X, \ldots, X}_{d-\text { times }})=0 .
$$

Proof Since for every rearrangement π of the sequence $\left\langle i_{1}, \ldots, i_{d}\right\rangle$ we have

$$
\frac{\partial^{d} f}{\partial x_{i_{1}} \ldots \partial x_{i_{d}}}=\frac{\partial^{d} f}{\partial x_{\pi\left(i_{1}\right)} \ldots \partial x_{\pi\left(i_{d}\right)}} \quad \text { and therefore } \quad a_{i_{1} \ldots i_{d}}=a_{\pi\left(i_{1}\right) \ldots \pi\left(i_{d}\right)}
$$

we get that the tensor T_{f} is symmetric. Furthermore, assume that the monomial $c_{n_{1} n_{2} n_{3}}$. $x_{1}^{n_{1}} \cdot x_{2}^{n_{2}} \cdot x_{3}^{n_{3}}$ appears in f. Then $n_{1}+n_{2}+n_{3}=d$ and

$$
\frac{1}{d!} \cdot \frac{\partial^{d}\left(c_{n_{1} n_{2} n_{3}} \cdot x_{1}^{n_{1}} \cdot x_{2}^{n_{2}} \cdot x_{3}^{n_{3}}\right)}{\partial x_{1}^{n_{1}} \partial x_{2}^{n_{2}} \partial x_{3}^{n_{3}}}=\frac{n_{1}!\cdot n_{2}!\cdot n_{3}!}{d!} \cdot c_{n_{1} n_{2} n_{3}} .
$$

Now, it is easy to see that the number of coefficients $a_{i_{1} \ldots i_{d}}$ such that for $1 \leq i \leq 3$ the number i appears n_{i}-times in the sequence $\left\langle i_{1}, \ldots, i_{d}\right\rangle$ is given by the trinomial coefficient

$$
\binom{d}{n_{1}, n_{2}, n_{3}}=\frac{d!}{n_{1}!\cdot n_{2}!\cdot n_{3}!} .
$$

This shows that for any point X we have $T_{f}(X, \ldots, X)=0$ if and only if $f(X)=0$, or in other words, X is on the curve Γ.

Let us turn our attention now to polar curves. For this, we consider first polar curves of conics C_{f} with corresponding (0,2)-tensor $T_{f}=\left(a_{i j}\right)_{1 \leq i, j \leq 3}$. Above we have seen that for a given point $P \in \mathbb{R P}^{2}$, a point X is on the polar curve $C_{P f(X)}$ of C_{f} with respect to the pole P if and only if

$$
P f(X):=\langle P, \nabla f(X)\rangle=0 .
$$

Now, for $P, X \in \mathbb{R P}^{2}$, a short calculation shows that $P f(X)=2 \cdot T_{f}(P, X)$, and hence, we get

$$
P f(X)=0 \Longleftrightarrow T_{f}(P, X)=0 .
$$

Since T_{f} is symmetric, we have $T_{f}(P, X)=T_{f}(X, P)$, which shows that if X is a point on the polar curve of C_{f} with respect to the pole P, then P is a point on the polar curve of C_{f} with respect to the pole X. The next result shows that also this result can be generalised to algebraic curves of arbitrary degree.

Lemma 2.2 Let Γ_{f} be an algebraic curve of degree d given by the non-constant homogeneous polynomial f, let T_{f} be the corresponding symmetric $(0, d)$-tensor, and let $P \in \mathbb{R P}^{2}$ be a point. Then

$$
P f(X)=0 \Longleftrightarrow T_{f}(P, \underbrace{X, \ldots, X}_{(d-1) \text {-times }})=0 .
$$

In particular, a point $X \in \mathbb{R P}^{2}$ is on the polar curve of Γ_{f} with respect to the pole P if and only if $T_{f}(P, X, \ldots, X)=0$.

Proof Notice first that for $P=\left(p_{1}, p_{2}, p_{3}\right)$ and $X=\left(x_{1}, x_{2}, x_{3}\right)$ we have:

$$
\begin{aligned}
T_{f}(P, X, \ldots, X) & =\sum_{j=1}^{3} p_{j} \cdot\left(\sum_{1 \leq i_{2}, \ldots, i_{d} \leq 3} a_{j i_{2} \ldots i_{d}} \cdot x_{i_{2}} \cdot \ldots \cdot x_{i_{d}}\right) \\
& =\sum_{j=1}^{3} \sum_{1 \leq i_{2}, \ldots, i_{d} \leq 3} a_{j i_{2} \ldots i_{d}} \cdot p_{j} \cdot x_{i_{2}} \cdot \ldots \cdot x_{i_{d}} .
\end{aligned}
$$

Now, assume again that the monomial $c_{n_{1} n_{2} n_{3}} \cdot x_{1}^{n_{1}} \cdot x_{2}^{n_{2}} \cdot x_{3}^{n_{3}}$ appears in f. Then, for each $1 \leq j \leq 3$ we have

$$
\frac{\partial\left(c_{n_{1} n_{2} n_{3}} \cdot x_{1}^{n_{1}} \cdot x_{2}^{n_{2}} \cdot x_{3}^{n_{3}}\right)}{\partial x_{j}}=n_{j} \cdot c_{n_{1} n_{2} n_{3}} \cdot x_{1}^{n_{1}^{\prime}} \cdot x_{2}^{n_{2}^{\prime}} \cdot x_{3}^{n_{3}^{\prime}},
$$

where $n_{j}^{\prime}=n_{j}-1$ and $n_{i}^{\prime}=n_{i}$ for $i \neq j$. Without loss of generality we assume that $j=1$ and $n_{1} \geq 1$. Now, it is easy to see that the number of coefficients $a_{1 i_{2} \ldots i_{d}}$ such that for $1 \leq i \leq 3$, the number i appears n_{i}-times in the sequence $\left\langle 1, \ldots, i_{d}\right\rangle$ is given by the trinomial coefficient

$$
\binom{d-1}{n_{1}-1, n_{2}, n_{3}}=\frac{(d-1)!}{\left(n_{1}-1\right)!\cdot n_{2}!\cdot n_{3}!}=\frac{n_{1}}{d} \cdot \frac{d!}{n_{1}!\cdot n_{2}!\cdot n_{3}!} .
$$

This shows that for any points $P, X \in \mathbb{R P}^{2}$ we have

$$
d \cdot T_{f}(P, X, \ldots, X)=\langle P, \nabla f(X)\rangle,
$$

in particular, we get

$$
P f(X)=0 \Longleftrightarrow T_{f}(P, X, \ldots, X)=0
$$

It is obvious how the iterated construction of polar curves is carried out: If, for example, $P, Q, R \in \mathbb{R P}^{2}$ are given and Γ_{f} is an algebraic curve of degree $d \geq 3$, then the polar curve of the polar curve of the polar curve of Γ_{f} with respect to the points P, Q, R, respectively, is given by the zeros of the $(0, d-3)$-tensor $T_{f}(P, Q, R, X, \ldots, X)$. Notice that since T_{f} is symmetric, the order of P, Q, R is irrelevant. As a consequence, we obtain the following

Fact 2.3 Let K be a cubic curve, let $P_{1}, P_{2}, P_{3} \in \mathbb{R P}^{2}$, and for $1 \leq j \leq 3$ let T_{j} be the $(0,2)$-tensor of the polar conic of K with respect to the point P_{j}. Then for $1 \leq j_{1}, j_{2} \leq 3$ we have

$$
T_{j_{1}}\left(P_{j_{2}}, X\right)=0 \Longleftrightarrow T_{j_{2}}\left(P_{j_{1}}, X\right)=0,
$$

in particular, if we consider the tensors T_{j} as 3×3-matrices, we obtain that

$$
\left[P_{j_{1}}\right]=\left[\left(T_{j_{2}}^{-1} \cdot T_{j_{1}}\right) P_{j_{2}}\right]
$$

The question that we want to treat below, is embedded in a more general problem, namely the study of the relation of a hypersurface and its Hessian variety. In a recent work Sendra-Arranz [6] investigated the Hessian correspondence for the cases of hypersurfaces of degree 3 and 4 in an n-dimensional projective space. In particular, he showed that for degree 3 and dimension $n=1$, the Hessian correspondence is two to one, and that for degree 3 and $n \geq 2$, and for degree 4 , it is birational (see [6, Sects. 2.3, 2.4]). In particular, by introducing the variety of k-gradients as the variety of k-planes containing all the first order derivatives of a polynomial, he obtains algorithms which allow to reconstruct a hypersurface of degree 3 from its Hessian variety in the cases $n \geq 1$, and for degree 4 if n is even. More specifically, SendraArranz proves in his Proposition 2.18 that for $n \geq 2$ a cubic can be recovered by the pencil spanned by its polars. Our main result in Theorem 2.4 is less general, but provides more specific information about the special case of degree 3 in 2 dimensions. Namely, what we show is that three conics in general position (i.e., three points of the Hessian variety) determine a unique cubic. More precisely, given three different conics C_{1}, C_{2}, C_{3} which satisfy a non-degeneracy condition, we show how to construct the unique cubic K such that for three points $P_{1}, P_{2}, P_{3} \in \mathbb{R} \mathbb{P}^{2}$ determined by the three conics, the conic C_{j} (for $1 \leq j \leq 3$) is the polar conic of K with respect to the pole P_{j}. The construction we provide in the next section proves our main result, Theorem 2.4.

Theorem 2.4 Let C_{1}, C_{2}, C_{3} be three non-degenerate conics and let T_{1}, T_{2}, T_{3} be the corresponding (0,2)-tensors given by 3×3-matrices. Assume that the matrices T_{1}, T_{2}, T_{3} satisfy the following condition:
(C) For all $P \in \operatorname{ker}\left(T_{3} T_{1}^{-1} T_{2}-T_{2} T_{1}^{-1} T_{3}\right)$, we have $\operatorname{det}\left(T_{1} P, T_{2} P, T_{3} P\right) \neq 0$. Then there are exactly three points P_{1}, P_{2}, P_{3}, determined by the conics C_{1}, C_{2}, C_{3}, and a unique cubic curve K, such that for $1 \leq j \leq 3, C_{j}$ is the polar conic of K with respect to the pole P_{j}. The cubic K only depends on the two-dimensional pencil

$$
\mathcal{P}=\left\{\lambda_{1} C_{1}+\lambda_{2} C_{2}+\lambda_{3} C_{3}:\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{R}^{3} \backslash(0,0,0)\right\},
$$

generated by C_{1}, C_{2}, C_{3} : If C_{1}, C_{2}, C_{3} are replaced by any other conics $\tilde{C}_{1}, \tilde{C}_{2}, \tilde{C}_{3}$ in \mathcal{P} satisfying condition (C), then the same cubic K results.

Remark 1 With respect to condition (C), we would like to mention a few facts.
(a) First, condition (C) is symmetric in the three indices: To see this, notice that $P \in \operatorname{ker}\left(T_{3} T_{1}^{-1} T_{2}-T_{2} T_{1}^{-1} T_{3}\right)$ is equivalent to

$$
Q=T_{1}^{-1} T_{2} P \in \operatorname{ker}\left(T_{1} T_{2}^{-1} T_{3}-T_{3} T_{2}^{-1} T_{1}\right) .
$$

Replacing P in the determinant by the expression $T_{2}^{-1} T_{1} Q$ yields

$$
\begin{aligned}
0 \neq \operatorname{det}\left(T_{1} P, T_{2} P, T_{3} P\right) & =\operatorname{det}\left(T_{1} T_{2}^{-1} T_{1} Q, T_{1} Q, T_{3} T_{2}^{-1} T_{1} Q\right) \\
& =\operatorname{det}\left(T_{1} T_{2}^{-1} T_{1} Q, T_{1} Q, T_{1} T_{2}^{-1} T_{3} Q\right) \\
& =\operatorname{det}\left(T_{1} T_{2}^{-1}\right) \operatorname{det}\left(T_{1} Q, T_{2} Q, T_{3} Q\right) .
\end{aligned}
$$

(b) Observe also that (C) implies that $T_{3} T_{1}^{-1} T_{2} \neq T_{2} T_{1}^{-1} T_{3}$: Indeed, assume that $T_{3} T_{1}^{-1} T_{2}-T_{2} T_{1}^{-1} T_{3}=0$. Then the kernel of $T_{3} T_{1}^{-1} T_{2}-T_{2} T_{1}^{-1} T_{3}$ is \mathbb{R}^{3}. However, for $P=\left(x_{1}, x_{2}, x_{3}\right), \operatorname{det}\left(T_{1} P, T_{2} P, T_{3} P\right)=0$ is a homogeneous cubic polynomial in the three variables x_{1}, x_{2}, x_{3}, which always has non-trivial solutions.
(c) Consider the following example:

$$
T_{1}=\left(\begin{array}{ccc}
1 & 0 & 3 \\
0 & 2 & 0 \\
3 & 0 & -1
\end{array}\right) \quad T_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad T_{3}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & -1
\end{array}\right) .
$$

Notice that T_{1} does not belong to the pencil spanned by T_{2} and T_{3}. Here, we have that $T_{3} T_{1}^{-1} T_{2}-T_{2} T_{1}^{-1} T_{3}=0$ and hence the kernel of $T_{3} T_{1}^{-1} T_{2}-T_{2} T_{1}^{-1} T_{3}$ is \mathbb{R}^{3}. But $\operatorname{det}\left(T_{1} P, T_{2} P, T_{3} P\right)=0$ whenever the second coordinate of P is 0 . So, the example shows that condition (C) can be violated even in the case when the pencil of T_{1}, T_{2}, T_{3} is two-dimensional. On the other hand, it is easy to see that condition (C) implies that the pencil of T_{1}, T_{2}, T_{3} is two-dimensional.

3 Constructing a Cubic from Three Conics

Let C_{1}, C_{2}, C_{3} be three non-degenerate conics and let T_{1}, T_{2}, T_{3} be the corresponding $(0,2)$-tensors given by 3×3-matrices matrices T_{1}, T_{2}, T_{3} which satisfy condition (C) of Theorem 2.4.

Example Let C_{1}, C_{2}, C_{3} be given by the following three non-constant homogeneous polynomials f_{1}, f_{2}, f_{3}, respectively:

$$
\begin{aligned}
& f_{1}(X)=x_{1}^{2}+x_{2}^{2}+4 x_{1} x_{3}, \\
& f_{2}(X)=2 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}+6 x_{1} x_{3}+6 x_{2} x_{3}, \\
& f_{3}(X)=x_{1}^{2}+6 x_{1} x_{2}+x_{2}^{2}+2 x_{1} x_{3}-6 x_{2} x_{3} .
\end{aligned}
$$

Figure 1 shows these three conics. Notice that all three conics meet in the origin, which is not excluded by the condition (C), as we will see below. Notice also that one

Fig. 1 The three conics C_{1}, C_{2}, and C_{3} of the example
of the conics is a circle, which is not a restriction since we can transform any conic by a projective transformation into a circle.

Then the corresponding matrices are:

$$
T_{1}=\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
2 & 0 & 0
\end{array}\right) \quad T_{2}=\left(\begin{array}{lll}
2 & 1 & 3 \\
1 & 2 & 3 \\
3 & 3 & 0
\end{array}\right) \quad T_{3}=\left(\begin{array}{ccc}
1 & 3 & 1 \\
3 & 1 & -3 \\
1 & -3 & 0
\end{array}\right)
$$

It is easy to verify that the matrices T_{1}, T_{2}, T_{3} satisfy condition (C): Observe that $\operatorname{ker}\left(T_{3} T_{1}^{-1} T_{2}-T_{2} T_{1}^{-1} T_{3}\right)=[P]$ for $P=\left(\frac{6}{5},-\frac{24}{5}, 1\right)$.

Let us turn back to our general construction and construct the three points P_{1}, P_{2}, P_{3} : By Fact 2.3 , the points P_{1}, P_{2}, P_{3} satisfy the following three necessary conditions

$$
T_{2} P_{1}=T_{1} P_{2}, \quad T_{3} P_{2}=T_{2} P_{3}, \quad T_{1} P_{3}=T_{3} P_{1},
$$

which is equivalent to

$$
\left(T_{1}^{-1} T_{2}\right) P_{1}=P_{2}, \quad\left(T_{2}^{-1} T_{3}\right) P_{2}=P_{3}, \quad\left(T_{3}^{-1} T_{1}\right) P_{3}=P_{1}
$$

and implies that P_{1} satisfies

$$
\begin{equation*}
\left(T_{3}^{-1} T_{1}\right)\left(T_{2}^{-1} T_{3}\right)\left(T_{1}^{-1} T_{2}\right) P_{1}=P_{1} \tag{1}
\end{equation*}
$$

Since the matrices T_{j} are symmetric, for $M:=T_{3} T_{1}^{-1} T_{2}$ we have $M^{T}=$ $T_{2} T_{1}^{-1} T_{3}$. Therefore, Eq. (1) is equivalent to $M P_{1}=M^{T} P_{1}$, which is equivalent to $\left(M-M^{T}\right) P_{1}=0$. Now, condition (C) ensures that $M \neq M^{T}$ (see Remark 1(b)).

Fig. 2 The three conics C_{1}, C_{2}, C_{3} of the example with the three poles P_{1}, P_{2}, P_{3}

Since $\left(M-M^{T}\right)$ is a non-zero, real, anti-symmetric 3×3-matrix, it has exactly one eigenvalue equal to zero. In fact, if

$$
A=\left(\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right)
$$

is an anti-symmetric matrix, then the eigenvalues of A are 0 and $\pm i \sqrt{a^{2}+b^{2}+c^{2}}$ and an eigenvector to the eigenvalue 0 is $(c,-b, a)^{T}$.

Hence, the pole P_{1} is uniquely determined by Eq. (1), and we obtain $P_{2}=$ ($T_{1}^{-1} T_{2}$) P_{1} and $P_{3}=\left(T_{1}^{-1} T_{3}\right) P_{1}$. Before we proceed, let us compute the points P_{1}, P_{2}, P_{3} in our example.

Example With respect to T_{1}, T_{2}, T_{3} we get $P_{1}=\left(\frac{6}{5},-\frac{24}{5}, 1\right), P_{2}=\left(-\frac{27}{5},-\frac{27}{5}, 3\right)$, and $P_{3}=\left(\frac{39}{5},-\frac{21}{5},-10\right)$, which correspond to the affine points $\bar{P}_{1}=\left(\frac{6}{5},-\frac{24}{5}\right)$, $\bar{P}_{2}=\left(-\frac{27}{15},-\frac{27}{15}\right)$, and $\bar{P}_{3}=\left(-\frac{39}{50}, \frac{21}{50}\right)$, respectively. Figure 2 shows the conics with their poles.

The goal of our construction is to find a $(0,3)$-tensor T_{K} of a cubic K, such that we have

$$
T_{K}\left(P_{j}, X, X\right)=T_{j}(X, X) \text { for } 1 \leq j \leq 3
$$

Since by condition (C), the points P_{1}, P_{2}, P_{3} are not incident with a projective line, we may choose $\left\{P_{1}, P_{2}, P_{3}\right\}$ as a new basis. In other words, for $\tilde{P}_{1}=(1,0,0)$,
$\tilde{P}_{2}=(0,1,0)$, and $\tilde{P}_{3}=(0,0,1)$, we map $P_{i} \mapsto \tilde{P}_{i}$ (for $1 \leq i \leq 3$). For $1 \leq i \leq 3$, let $T_{i}=\left(a_{j k}^{i}\right)_{1 \leq j, k \leq 3}$ and let \tilde{T}_{i} be the (0,2)-tensors (i.e., the conics $\left.\tilde{C}_{i}\right)$ in this new basis. Since for any $1 \leq i, j, k \leq 3$ we have $T_{i}\left(P_{j}, P_{k}\right)=T_{i}\left(P_{k}, P_{j}\right)=T_{j}\left(P_{k}, P_{i}\right)$, we also have

$$
\begin{equation*}
\tilde{T}_{i}\left(\tilde{P}_{j}, \tilde{P}_{k}\right)=\tilde{T}_{i}\left(\tilde{P}_{k}, \tilde{P}_{j}\right)=\tilde{T}_{j}\left(\tilde{P}_{k}, \tilde{P}_{i}\right) \tag{2}
\end{equation*}
$$

Now, let $T_{\tilde{K}}=\left(\tilde{a}_{i j k}\right)_{1 \leq i, j, k \leq 3}$ be a $(0,3)$-tensor defined by stipulating

$$
\tilde{a}_{i j k}:=\tilde{T}_{i}\left(\tilde{P}_{j}, \tilde{P}_{k}\right) \text { for } 1 \leq i, j, k \leq 3 .
$$

Then, by Eq. (2), the tensor $T_{\tilde{K}}$ is symmetric and has the property that for $1 \leq i \leq 3$,

$$
T_{\tilde{K}}\left(\tilde{P}_{i}, X, X\right)=\tilde{T}_{i}(X, X)
$$

For the corresponding cubic \tilde{K} we therefore have that \tilde{C}_{i} is the polar conic of \tilde{K} with respect to the pole \tilde{P}_{i}.

Since every point $\tilde{Q}=\left(q_{1}, q_{2}, q_{3}\right) \in \mathbb{R P}^{2}$ can be written as $\tilde{Q}=q_{1} P_{1}+q_{2} P_{2}+$ $q_{3} P_{3}$, we have

$$
\begin{aligned}
T_{\tilde{K}}(\tilde{Q}, X, X) & =q_{1} T_{\tilde{K}}\left(\tilde{P}_{1}, X, X\right)+q_{2} T_{\tilde{K}}\left(\tilde{P}_{2}, X, X\right)+q_{3} T_{\tilde{K}}\left(\tilde{P}_{3}, X, X\right) \\
& =q_{1} \tilde{T}_{1}(X, X)+q_{2} \tilde{T}_{2}(X, X)+q_{3} \tilde{T}_{3}(X, X)
\end{aligned}
$$

which shows that the polar conic of \tilde{K} with respect to the point \tilde{Q} belongs to the pencil spanned by the conics $\tilde{T}_{1}, \tilde{T}_{2}$ and \tilde{T}_{3}.

Now, the re-transformed cubic K has the property that the conics C_{1}, C_{2}, C_{3} are the polar conics of K with respect to the poles P_{1}, P_{2}, P_{3}, respectively. Furthermore, by the observation above, if, for example, the conic C_{3} is replaced by a conic \tilde{C}_{3} in the two-dimensional pencil of C_{1}, C_{2}, C_{3} such that $C_{1}, C_{2}, \tilde{C}_{3}$ satisfy condition (C), then the conics C_{1}, C_{2} and \tilde{C}_{3} are the polar conics of K with respect to the poles P_{1}, P_{2} and some point Q, where the three points P_{1}, P_{2}, Q are not collinear.

Example In our example, \tilde{K} in the affine plane is given by

$$
\begin{aligned}
& -2192-2919 x+264 x^{2}+122 x^{3}-1557 y+3384 x y+198 x^{2} y+3726 y^{2} \\
& \quad-81 x y^{2}-81 y^{3}=0
\end{aligned}
$$

and finally, the sought cubic K is

$$
-13 x^{3}-66 x^{2} y-27 x^{2}-216 x y-39 x y^{2}-27 y^{2}-22 y^{3}=0
$$

Figure 3 shows the cubic K together with the three polar conics C_{i} with respect to their three poles P_{i}. Recall that the lines connecting P_{i} and the points of intersection of K with the polar curve C_{i} are tangent to K.

Fig. 3 The cubic K together with the three poles P_{1}, P_{2}, P_{3} and the three polar conics C_{1}, C_{2}, C_{3} of the example. The tangents from P_{1} to K are also displayed

Remark 2 We close this discussion by considering the situation when condition (C) is violated for three given conics C_{1}, C_{2}, C_{3}. Suppose that K is a cubic such that C_{j} is the polar conic with respect to some pole P_{j} for $j=1,2,3$. Then, $\operatorname{det}\left(T_{1} P_{1}, T_{2} P_{1}, T_{3} P_{1}\right)=0$ in condition (C) for $P_{1} \in \operatorname{ker}\left(T_{3} T_{1}^{-1} T_{2}-T_{2} T_{1}^{-1} T_{3}\right)$ means that the polar lines $g_{1}=T_{1} P_{1}, g_{2}=T_{2} P_{1}=T_{1} P_{2}, g_{3}=T_{3} P_{1}=T_{1} P_{3}$ of the conics C_{1}, C_{2}, C_{3} with respect to the poles P_{1}, P_{2}, P_{3} are concurrent, which in turn means that P_{1}, P_{2}, P_{3} are collinear. Hence, C_{1}, C_{2}, C_{3} are identical or span only a one-dimensional pencil. This shows that for the three conics in Remark 1(c), there is no cubic K with the property that C_{1}, C_{2}, C_{3} are conic sections with respect to three poles. This means that (C) is a necessary condition in Theorem 2.4. On the other hand, if condition (C) is violated and C_{1}, C_{2}, C_{3} span only a one-dimensional pencil, then a cubic K with the required properties exists, but this cubic is no longer unique: Just take an arbitrary conic \tilde{C}_{3} such that $C_{1}, C_{2}, \tilde{C}_{3}$ satisfy condition (C) and apply Theorem 2.4 in order to obtain a cubic \tilde{K} with respect to C_{1}, C_{2} and \tilde{C}_{3}. Then there is a point P_{3} on the line through P_{1}, P_{2} and such that the polar conic of \tilde{K} with respect to P_{3} is C_{3}.

Acknowledgements The authors would like to thank the referees for their comments and suggestions, which helped to improve the quality of the article.

Funding Open access funding provided by Swiss Federal Institute of Technology Zurich
Data Availability No data was generated or used in this publication.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bobillier, E.: Géométrie de situation Théorèmes sur les polaires successives. Ann. Math. Pures Appl. 19, 302-307 (1828)
2. Dolgachev, I.V.: Classical Algebraic Geometry: A Modern View. Cambridge University Press, Cambridge (2012)
3. Halbeisen, L., Hungerbühler, N.: Generalized pencils of conics derived from cubics. Beitr. Algebra Geom. 61(4), 681-693 (2020)
4. Joachimsthal, F.: Remarques sur la condition de l'egalité de deux racines d'une équation algébrique; et sur quelques théorèmes de Géometrie, qui en suivent. J. Reine Angew. Math. 33, 371-376 (1846)
5. Monge, G.: Application de l'analyse à la géométrie. Mad. Ve. Bernard, Libraire de l'Ecole Impériale Polytechnique, quatrième edition, Paris (1809)
6. Sendra-Arranz, J: The Hessian correspondence of hypersurfaces of degree 3 and 4. http://arxiv.org/abs/ 2307.10415 (2023)
7. von Staudt, K.G.C.: Geometrie der Lage. Bauer und Raspe (1847)
8. Wieleitner, H.: Algebraische Kurven. II. Allgemeine Eigenschaften. Sammlung Göschen, vol. 436. Walter de Gruyter, Berlin (1939)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Norbert Hungerbühler
 norbert.hungerbuehler@math.ethz.ch
 Lorenz Halbeisen
 lorenz.halbeisen@math.ethz.ch
 Vera Stalder
 vera.stalder@gmx.ch
 1 Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland
 2 Swiss National Science Foundation, Wildhainweg 3, P.O. Box, 3001 Bern, Switzerland

