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Abstract
We investigate the transport coefficients for a dilute reactive mixture of four con-
stituents undergoing a chemical reaction of type A+ B � C + D, which is described
by the Simple Reacting Spheres (SRS) kinetic model. The dynamics of the SRSmodel
is very interesting and relatively simple. Both reactive and inert collisions obey to the
hard spheres potential and the collisional operator incorporates a “correction” term
that singles out those pre-collisional pairs of particles having enough energy to react
chemically. Starting from this setting, we consider themixture in a chemical regime for
which both elastic and reactive collisions occur with comparable characteristic times
and use the Chapman–Enskog method to determine the first-order approximation of
the non-equilibrium solution to the SRS system. In a preceding paper (part I), the
focus was on the coefficients associated to reaction rate and shear viscosity and in the
present work we are interested on the coefficients associated to thermal conductivity,
diffusion, and thermal-diffusion ratio. These coefficients are analysed numerically for
both exothermic and endothermic reactions. The analysis allows to investigate the
influence of the chemical reaction and the impact of the “correction” term proper of
the SRS model on the transport coefficients.
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1 Introduction

Transport properties of multicomponent reactive mixtures have several applications
in chemical engineering, combustion technology and many industrial processes. The
description of the chemical kinetics involved in the reactionmechanism is an important
part of the process, which can be obtained with the contributions coming from the
mathematical models, and computational simulations. When the models are based on
the kinetic theory, many explicit results can be obtained instead of resorting to some
empirical laws [13, 17, 19, 24, 26].

The main objective in this paper is precisely the application of the kinetic theory
tools to investigate the transport properties of a chemically reactive mixture.

This work is a continuation of the previous paper [6], and both are devoted to
the determination of the transport coefficients for a dilute reactive mixture of four
constituents undergoing a chemical reaction of type A + B � C + D, described by
the Simple Reacting Spheres (SRS) kinetic model. The focus of the present work is
on the coefficients associated to thermal conductivity, diffusion and thermal-diffusion
ratio, whereas that of the previous paper was on the coefficients associated to reaction
rate and shear viscosity.

Besides the study of the transport properties of the mixture, another aim of the
present paper is connected with a particular term proper of the SRS model. We study
here the impact of this term on the transport coefficients which means, in practice,
to evaluate the transport coefficients when this term is considered in the dynamics
and when it is not taken into account. This choice leads to the question of studying a
variant of the original SRS model, that allows for this turning on and turning off the
referred term.

Having these aims in mind, we have organized our work as follows. In Sect. 2,
we revisit the SRS kinetic system and briefly describe its properties focusing on the
molecular and chemical properties of the mixture and on the kinetic system with the
correction term proper of the SRS model. Then, in Sect. 3, we develop one “variant”
of the SRS kinetic model by expanding the system to encompass a broader range of
scenarios. The new model allows to turn off the chemical reaction and establish a
coherent model for non-reactive mixtures. Furthermore, it enables to explore different
situations, in which the chemical reaction exhibits varying degrees of significance in
the evolution of the system. The main properties of the extended system are stated. In
Sect. 4,we study the transport properties of the SRS system in its extended formulation.
We determine the asymptotic solution of the kinetic system and use this approximate
solution to deduce the constitutive equations and obtain the transport coefficients of
diffusion, thermal conductivity and thermal diffusion ratio. In Sect. 5, we develop a
comparative analysis between the transport coefficients for the SRS model of Sect. 2
and those of the extended model of Sect. 3. We perform some numerical simulations
in order to investigate the influence of some key parameters on the behaviour of the
transport coefficients, and to investigate the impact of the correction term incorporated
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in our SRS model on the transport coefficients. Finally, in Sect. 6, we summarise and
comment our results. We also discuss possible scenarios for future work.

2 The SRS Kinetic Model Revisited

In this section we introduce the SRS kinetic model for a dilute reactive mixture and
briefly describe its main aspects and properties. For a detailed description, see, for
example, [5, 21, 22] and the references cited therein. Our exposition of the SRSmodel
is limited to the characterization of the equilibrium states, presentation of the linearized
kinetic equations, introduction of themacroscopic field equations and brief description
of both the zero-order and first-order approximations of the non-equilibrium solution
to the SRS kinetic system.

2.1 The Reactive Mixture

We consider a mixture of four constituents, A, B, C and D, whose particles behave
as if they were single mass points. Internal degrees of freedom for the gas particles,
such as vibrational and rotational energies, are not taken into account. We use the
indices 1, 2, 3, 4 for the constituents A, B, C , D, respectively. For each constituent
i = 1, . . . , 4, we denote by mi , di and Ei the molecular mass, the molecular diameter
and the chemical binding energy of each i-constituent.

Besides elastic collisions, particles of the mixture undergo reactive encounters
according to the reversible chemical reaction

A + B � C + D. (1)

Reactive collisions occur when the particles are separated by a distance σ12 = 1
2 (d1 +

d2) or σ34 = 1
2 (d3+d4), and result in a redistribution ofmasses and in a rearrangement

of energies among the colliding particles. In particular, conservation of mass implies
that

m1 + m2 = m3 + m4 = M (2)

and conservation of the total energy, kinetic and binding, leads to the definition of
the reaction heat as Eabs = E3 + E4 − E1 − E2. Thus, Eabs > 0 means that the
forward reaction A + B → C + D is endothermic and Eabs represents the absorbed
heat energy, whereas Eabs < 0 means that the forward reaction is exothermic and
Eabs represents the energy released in the form of heat. We also introduce γ1 = γ2
and γ3 = γ4 representing the activation energy of the forward and backward reactions,
respectively, and we have Eabs = γ1 − γ3.
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2.2 The SRS Kinetic System

The time–space evolution of the one-particle distribution functions fi (t, x, v), for
i = 1, . . . , 4, is given by the kinetic equations

∂ fi
∂t

+ v · ∇x fi = J E
i + J E∗

i + J R
i , i = 1, . . . , 4, (3)

where J E
i is the elastic collision term, J E∗

i is the correction term, proper of the SRS
model [22] and J R

i is the reactive collision term, given by

J Ei =
4∑

j=1

{
σ 2
i j

∫∫

R3×S
2+

[
fi (t, x, v

′) f j (t, x, w′) − fi (t, x, v) f j (t, x, w)

]
〈ε, v − w〉 dεdw

}

(4)

J E∗
i = −βi jσ

2
i j

∫∫

R3×S
2+

[
fi (t, x, v

′) f j (t, x, w′) − fi (t, x, v) f j (t, x, w)

]

(5)

× �
(〈ε, v − w〉 − �i j

) 〈ε, v − w〉dεdw,

J Ri = βi jσ
2
i j

∫∫

R3×S
2+

[(
μi j

μkl

)2
fk(t, x, v

�
i j ) fl (t, x, w

�
i j ) − fi (t, x, v) f j (t, x, w)

]

× �
(〈ε, v − w〉 − �i j

) 〈ε, v − w〉dεdw. (6)

In the above expressions of operators J E∗
i and J R

i , the indexes i, j, k, l are asso-
ciated to the reactive species, in agreement with the chemical law (1), and are such
that

(i, j, k, l) ∈ {(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)} .

Here, v,w are pre-collisional velocities of particles from species i and j , and v′, w′
are elastic post-collisional velocities given by

v′ = v − 2
μi j

mi
ε〈ε, v − w〉, w′ = w + 2

μi j

m j
ε〈ε, v − w〉, (7)

where 〈·, ·〉 is the inner product in R
3, ε is a vector along the line passing through

the centers of the spheres at the moment of impact, i.e., ε ∈ S
2+, with S

2+ = {ε ∈
R
3 : |ε| = 1, 〈ε, v − w〉 ≥ 0}, and μi j = mim j/(mi + m j ) is the reduced mass of

the colliding pair, � is the Heaviside step function, and �i j = √
2γi/μi j represents a

threshold velocity of the colliding pair.
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Moreover, the pairs of post-reactive velocities associated to the endothermic for-
ward reaction are (v�

i j , w
�
i j ) = (v‡, w‡) for i, j = 1, 2, given by

v‡ = 1

M

[
m1v + m2w + m4

√
μ12

μ34

{
(v − w) − ε〈ε, v − w〉 + εα−

}]
, (8a)

w‡ = 1

M

[
m1v + m2w − m3

√
μ12

μ34

{
(v − w) − ε〈ε, v − w〉 + εα−

}]
, (8b)

with α− =
√(〈ε, v − w〉)2 − 2Eabs/μ12. The post-reactive velocities associated to

the exothermic backward reaction are (v�
i j , w

�
i j ) = (v†, w†) for i, j = 3, 4, given by

v† = 1

M

[
m3v + m4w + m2

√
μ34

μ12

{
(v − w) − ε〈ε, v − w〉 + εα+

}]
, (9a)

w† = 1

M

[
m3v + m4w − m1

√
μ34

μ12

{
(v − w) − ε〈ε, v − w〉 + εα+

}]
, (9b)

with α+ =
√(〈ε, v − w〉)2 + 2Eabs/μ34.

Post and pre-collisional velocities of the reactive pairs satisfy momentum conser-
vation and total energy conservation, that is

m1v + m2w = m3v
‡ + m4w

‡, m3v + m4w = m1v
† + m2w

†, (10)

m1v
2 + m2w

2 = m3v
‡2 + m4w

‡2 + 2Eabs,

m3v
2 + m4w

2 = m1v
†2 + m2w

†2 − 2Eabs . (11)

A relevant property of the SRS model is the inclusion of the correction term (5),
which removes, from the elastic operator (4), the contributions that correspond to reac-
tive encounters and are considered in the reactive operator (6). In fact, the encounters
between particles A and B or between particlesC and D that are sufficiently energetic,
in the sense that 〈ε, v − w〉 ≥ �i j , are counted twice, since they are considered both
as reactive and appear in J R

i and as elastic and appear in J E
i . The double counting is

corrected precisely because J E∗
i is part of the collision operator.

In Eq. (5), the coefficients βi j , with 0 ≤ βi j ≤ 1, appearing in the expression of
J E∗
i , indicate that only a fraction βi j of collisions with high energy result in a chemical

reaction. It is important to mention that the SRS system (3) reduces to the Boltzmann
system for an inert mixture with hard-spheres potential, when the chemical reaction is
turned off and coefficients βi j are taken equal to zero, for all i, j = 1, . . . , 4. On the
other hand, if the coefficients βi j are taken equal to one, for all i, j = 1, . . . , 4, the
resulting SRS kinetic system (3) corresponds to the situation in which all collisions
with sufficient amount of energy result in the chemical reactions.

The model introduced in this section has been studied by the authors and different
problems have been investigated in some previous papers, see for example [5, 6, 21,
22].
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In the present work, when studying the transport coefficients, we put the emphasis
on the role of the correction term J E∗

i given in (5), and therefore we will refer to the
model that results from the SRSmodel by removing the correction term. Thismotivates
the introduction of a generalized SRS model, as described in the next section.

3 Generalized SRS Kinetic Model

In this section, we study one “variant” of the SRS kinetic system described in Sect. 2.
In simple terms, this variant provides an interesting kinetic model for the reactive
mixture introduced in Subsection 2.1, that is obtained from the SRS equations (3) by
introducing a scalar parameter that allows to turn off or to turn on the correction term
J E∗
i given in (5). We call this variant as the generalized SRS model.

3.1 Generalized SRS System

Starting from the SRS system (3), let us consider the following kinetic system

∂ fi
∂t

+ v · ∇x fi = J E
i + α J E∗

i + J R
i , i = 1, . . . , 4, (12)

where the collision operators J E
i , J E∗

i and J R
i are given in (4), (5) and (6), respectively,

and α ∈ {0, 1} is a scalar parameter. In other words, if α = 1, then Eq. (12) coincide
with the SRS system (3), whereas if α = 0 Eq. (12) reduce to the standard hard-sphere
kinetic system without correction term. Equations (12) constitute the generalized SRS
system.

3.2 Properties of the Generalized Collision Operators

The weak form of the collision operators is characterized in the following properties.

Proposition 3.1 If we assume that βi j = β j i then, for ψi measurable functions on R3

and fi ∈ C0(R
3), for i = 1, . . . , 4, we have that

∫

R3
ψi J

E
i dv = 1

4

4∑

j=1

{
σ 2
i j

∫∫∫

R3×R3×S
2+

×
(
ψi + ψ j − ψ ′

i − ψ ′
j

)(
f ′
i f

′
j − fi f j

)
〈ε, v − w〉dεdwdv

}
,

∫

R3
ψi J

E∗
i dv = −1

4
αβi jσ

2
i j

∫∫∫

R3×R3×S
2+

(
ψi + ψ j − ψ ′

i − ψ ′
j

) (
f ′
i f

′
j − fi f j

)

×�(〈ε, v − w〉 − �i j )〈ε, v − w〉 dεdwdv.
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Proposition 3.2 If we assume that βi j = β j i and β12σ
2
12 = β34σ

2
34, then, for ψi

measurable functions on R
3 and fi ∈ C0(R

3), for i = 1, . . . , 4, we have that

4∑

i=1

∫

R3
ψi J

R
i dv = β12σ

2
12

∫∫∫

R3×R3×S
2+

(
ψ1 + ψ2 − ψ�

3 − ψ�
4

)

×
[(

μ12

μ34

)2

f �
3 f �

4 − f1 f2

]
�(〈ε, v − w〉 − �12)

〈ε, v − w〉dεdwdv

= β34σ
2
34

∫∫∫

R3×R3×S
2+

(
ψ3 + ψ4 − ψ�

1 − ψ�
2

)

×
[(

μ34

μ12

)2

f �
1 f �

2 − f3 f4

]
�(〈ε, v − w〉 − �34)

〈ε, v − w〉dwdv.

Propositions 3.1 and 3.2 can be proven by considering the symmetry properties of
the collisional operators, see [3], and are essential to derive the conservation laws and
to prove the H-Theorem.

Definition 3.1 A measurable function ψ = (ψ1, ψ2, ψ3, ψ4), defined almost every-
where in R3, is a collisional invariant for the SRS model if

4∑

i=1

∫

R3
ψi

(
J E
i + α J E∗

i + J R
i

)
dv = 0. (13)

The following proposition presents the collisional invariants of model and estab-
lishes the consistency of the model from the physical point of view.

Proposition 3.3 Functions ψ = (1, 0, 1, 0), ψ = (1, 0, 0, 1), ψ = (0, 1, 1, 0), and
functions ψ = (ψ1, ψ2, ψ3, ψ4) defined by their components ψi = mivx1 , ψi =
mivx2 , ψi = mivx3 and ψi = Ei + 1

2v
2mi are collisional invariants for the SRS

model.

The first three invariants considered in Proposition 3.3 assure the conservation of
the partial number density of a pair of one reactant and one product of the chemical
reaction, namely A1 and A3, A1 and A4, and A2 and A3, respectively. As a conse-
quence, they also assure the conservation of the total number density of the mixture.
The following three invariants assure the conservation of the momentum components
of the mixture. Finally, the last invariant assures the conservation of the total energy
of the mixture.
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3.3 Equilibrium of the Generalized SRS System

The thermodynamical equilibrium solutions for the generalized SRS kinetic system
(12) are characterized by the vanishing of the collision operators, as usual, namely

J E
i = 0, J E∗

i = 0 and J R
i = 0, for i = 1, . . . , 4. (14)

The first two conditions above lead toMaxwellian distributions centered at themixture
rest frame [4], characterizing the so called mechanical equilibrium, given by

fi = ni
( mi

2πkT

)3/2
exp

[
−mi (v − u)2

2kT

]
, i = 1, . . . , 4, (15)

where k is the Boltzmann constant, ni the number density of the i-constituent, T
and u the temperature and mean velocity of the mixture. The mechanical equilibrium
corresponds to a state in which all constituents share a common temperature and mean
velocity, which are those of the whole mixture.

If the mixture is in mechanical equilibrium, the last condition in (14) establishes an
additional constraint to be imposed to the Maxwellian distributions given in (15). This
constraint will result in the chemical equilibrium condition for the reactive mixture.
The main result is stated in the following proposition.

Proposition 3.4 The thermodynamical equilibrium is determined by distribution func-
tions given by (15) constrained to the mass action law

n1n2
n3n4

=
(

μ12

μ34

)1/2

exp

(
Eabs

kT

)
. (16)

We adopt the notation FM
i to indicate thermodynamical equilibrium distributions

defined as in (15) with ni and T constrained to (16). Similarly, the notation f Mi is
adopted for mechanical equilibrium distributions defined as in (15) with ni and T not
constrained by (16). Distributions FM

i and f Mi satisfy the following properties that
will be useful in the sequel.

Proposition 3.5 Conservation of the kinetic energy during elastic collisions implies
that Maxwellians f Mi satisfy the relation

f Mi (v′) f Mj (w′) = f Mi (v) f Mj (w), for i, j = 1, . . . , 4, (17)

and equilibrium distributions FM
i satisfy the relation

(
μi j

μkl

)2

FM
k (v�

i j )F
M
l (w�

i j ) − FM
i (v)FM

j (w)

= FM
i (v)FM

j (w)

[(
μi j

μkl

)2 FM
k (v�

i j )F
M
l (w�

i j )

FM
i (v)FM

j (w)
− 1

]
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= FM
i (v)FM

j (w)

[(
μi j

μkl

)1/2

exp

(
Eabs

kT

)
nknl
ni n j

− 1

]
, (18)

The stability of the equilibrium in the specific case of spatial domain � = R
3, is

stated in the following proposition.

Proposition 3.6 If the steric factors βi j and cross sections σi j are such that βi j = β j i

and β12σ
2
12 = β34σ

2
34, the convex function H(t), defined by

H(t) =
4∑

i=1

∫

�

∫

R3
fi log

(
fi

μi j

)
dvdx, (19)

where (i, j) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)} and fi ∈ L1(�×R
3) for all i = 1, . . . , 4,

is a Liapunov functional for the SRS system (3), that is

dH
dt

(t) ≤ 0, for all t ≥ 0, and

dH
dt

(t) = 0, if and only if fi = FM
i , for all i = 1, . . . , 4.

Proposition 3.6 states that the reactive mixture, when evolving according to the
SRS system (3), approaches the thermodynamical equilibrium state. In particular,
in the proof of this proposition one shows that both elastic and reactive collisions
contribute, independently, to this tendency to equilibrium.

The deviation of the reactive mixture from thermodynamical equilibrium can be
measured by a chemical force, see Ref. [17], defined as follows.

Definition 3.2 The affinity of the forward chemical reaction is defined by

A = kT ln

(
n1n2 n

eq
3 neq4

n3n4 n
eq
1 neq2

)
, (20)

where neqi denotes the number density of each constituent in thermodynamical equi-
librium conditions, i.e. verifying the mass action law (16).

Observe that the affinity vanishes at thermodynamical equilibrium conditions and
tends to −∞ in the exceptional conditions that the mixture reduces to the products of
the forward reaction i.e., n1 = n2 = 0.

Moreover, the affinity A represents the main thermodynamical force of the reac-
tive mixture and will be crucial for the evaluation of the transport coefficients. The
non-equilibrium distribution obtained with the Chapman–Enskog method will be
expressed, besides other thermodynamical forces, in terms of the affinity, and the
following expression, that follows from the mass action law (16), will be used in the
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sequel,

exp

(
− A
kT

)
=

(
μ12

μ34

)1/2

exp

(
Eabs

kT

)
n3n4
n1n2

. (21)

3.4 Linearized Form of the Generalized SRS Equations

We consider a first-order expansion of the distribution functions fi around the ther-
modynamical equilibrium of the form

fi (t, x, v) = FM
i (t, x, v)

[
1 + hi (t, x, v)

]
, i = 1, . . . , 4, (22)

where FM
i (t, x, v) are equilibrium distributions given as in (15) and (16). Introducing

expansions (22) into the kinetic equations (3) and neglecting quadratic terms on the
deviations hi , we obtain

∂hi
∂t

+ v
∂hi
∂x

=
4∑

j=1

L E
i j (h) + L E∗

i (h) + L R
i (h), i = 1, . . . , 4, (23)

where

L E
i j (h) = σ 2

i j

∫∫

R3×S
2+

FM
j (w)

[
hi (v

′) + h j (w
′) − hi (v) − h j (w)

]〈ε, v − w〉 dεdw (24)

L E∗
i (h) = −αβi jσ

2
i j

∫∫

R3×S
2+

FM
j (w)

[
hi (v

′) + h j (w
′) − hi (v) − h j (w)

]
(25)

×�(〈ε, v − w〉 − �i j )〈ε, v − w〉 dεdw,

L R
i (h) = βi jσ

2
i j

∫∫

R3×S
2+

FM
j (w)

[
hk(v

�
i j ) + hl (w

�
i j ) − hi (v) − h j (w)

]

×�(〈ε, v − w〉 − �i j )〈ε, v − w〉 dεdw. (26)

The linearized operators given in (24), (25) and (26) are crucial for the determination
of the transport coefficients by the Chapman–Enskog expansion method.

3.5 Macroscopic Equations

Formally, we can derive macroscopic field equations from the SRS kinetic system (3),
definingfirstmeasurablemacroscopic quantities in termsof averages of the distribution
functions, and then deriving evolution equations for the macroscopic observables.

If we consider ni , for i = 1, . . . , 4, u, and T as the hydrodynamic fields describing
the reactive mixture, the evolution equations for such fields can be formally derived
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from Eq. (3) in the form, see [22] for details,

∂ni
∂t

+
3∑

s=1

∂

∂xs

(
niu

(s)
i + niu

(s)
)

= τi , with τi =
∫

R3

J R
i dv, for i = 1, . . . , 4,

(27)

∂

∂t

(
�u(r)) +

3∑

s=1

∂

∂xs

[
p(rs) + �u(r)u(s)

]
= 0, for r = 1, 2, 3, (28)

∂

∂t

(
3nkT

2
+

4∑

i=1

ni Ei + �u2

2

)
+

3∑

r=1

∂

∂xr

[
q(r) +

3∑

s=1

p(rs)u(s)

+
(
3nkT

2
+

4∑

i=1

ni Ei + �u2

2

)
u(r)

]
= 0. (29)

Equation (27) is the chemical rate equation of both the generalized SRS model
and the SRS model. This equation specifies the balance of the number density of
each i-th component of the mixture and emphasizes that the changes on ni result
exclusively from the chemical reaction, as expected, since elastic collisions do not
change the concentration of each constituent. Furthermore, Eqs. (28) and (29) are the
conservation laws for the momentum components and total energy of the mixture,
respectively.

In the above equations, the production term τi on the right-hand side of (27) repre-
sents the reaction rate for the i-th component of the mixture. Moreover, ui denotes the
diffusion velocity of the i-th component of the mixture, whereas n, �, u, p(rs), T and
q represent, respectively, the number density, mass density, mean velocity, pressure
tensor components, temperature and heat flux of the mixture. The upper indices r and
s indicate spatial directions in a given orthogonal reference system.

In particular, the reaction rate τi is given by

τi (t, x) = −νiβ12σ
2
12

∫∫∫

R3×R3×S
2+

×
[(

μ12

μ34

)2

f3(t, x, v
�
12) f4(t, x, w

�
12) − f1(t, x, v) f2(t, x, w)

]

× �(〈ε, v − w〉 − �12) 〈 ε, v − w〉dεdwdv, i = 1, . . . , 4, (30)

where the coefficients νi are the stoichiometric coefficients associated to the chemical
reaction (1), with ν1 = ν2 = −1, ν3 = ν4 = 1. The diffusion velocities ui , are given
by

ui (t, x) = 1

�i (t, x)

∫

R3

mi
(
v − u(t, x)

)
fi (t, x, v)dv, with

4∑

i=1

�i (t, x)ui (t, x) = 0,

(31)
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whereas the components of the pressure tensor, p(rs), and heat flux q are given as
follows

p(rs)(t, x) =
4∑

i=1

∫

R3

mi

(
vr − ur (t, x)

)(
vs − us(t, x)

)
fi (t, x, v)dv, r , s = 1, 2, 3,

(32)

and

q(t, x) =
4∑

i=1

(
qi (t, x) + Eini (t, x)ui (t, x)

)
, (33)

with

qi (t, x) = 1

2

∫

R3

mi |v − u(t, x)|2(v − u(t, x)
)
fi (t, x, v)dv. (34)

We do not give here the explicit expressions of the other quantities, see the paper [22].
As usual, Eqs. (27), (28) and (29) do not constitute a closed set, because they

involve the above unknown fields. The system can be closed at the first-order level
of the asymptotic Chapman–Enskog method and this will be the object of the next
section.

4 Transport Properties of the SRS Kinetic Systems

In this section we study the transport properties of the SRS system in its formulation
expressed by Eq. (12) with α = 1, corresponding to the full SRS system (3), and
α = 0, corresponding to the SRS system without the correction term J E∗

i .
The analysis developed here is a continuation of our previous paper [6], where we

have focused on both the reaction rate coefficients and shear viscosity, for the full
SRS system (3). Here, the focus will be the analysis of the transport coefficients of
thermal conductivity, diffusion and thermal-diffusion ratio, and also on the comparison
of those coefficients when evaluated for both full system (3) and the corresponding
reduced system (3) with α = 0.

The details about the Chapman–Enskog procedure, for what concerns the trans-
port algorithm, the zero-order approximation and the evaluation of the reaction rate
coefficients and shear viscosity, can be seen in paper [6].

4.1 Asymptotic Solution of the Generalized SRS System

We assume that both elastic and reactive collisions occur with comparable character-
istic times and start with the scaled full SRS system written as, see [6],
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∂ fi
∂t

+ v · ∇x fi = 1

δ

(
J E
i + J E∗

i + J R
i

)
, i = 1, . . . , 4, (35)

where δ is a formal expansion parameter. We consider a first-order expansion of
functions fi of the form

fi = f (0)
i

(
1 + δφi

)
, i = 1, . . . , 4, (36)

where φi = φi (t, x, v) represents a small perturbation function.
Since the Chapman–Enskog method requires that fi and f (0)

i yield the same
moments associated to the collision invariants of the reactive mixture, we conclude
that the perturbations φi satisfy the following orthogonality conditions that will be
essential in the sequel,

4∑

i=1

∫

R3

f (0)
i φi dv = 0,

4∑

i=1

∫

R3

miv f
(0)
i φi dv = 0,

4∑

i=1

∫

R3

(
mi

v2

2
+ Ei

)
f (0)
i φi dv = 0. (37)

Introducing expansions (36) into Eq. (35) and equating the terms of the same order in
δ, we easily obtain that the zero-order approximation f (0)

i is such that

J E
i ({ f (0)

i }) + J E∗
i ({ f (0)

i }) + J R
i ({ f (0)

i }) = 0, i = 1, . . . , 4, (38)

where the notation used signifies that the collision operators only depend on
f (0)
1 , f (0)

2 , f (0)
3 , f (0)

4 . As a consequence of condition (38), the zero-order approxi-

mations f (0)
i are the equilibrium Maxwellian (15) constrained to the mass action law

(16), i.e.

f (0)
i = FM

i , i = 1, . . . , 4. (39)

Equating the terms of the order O(1) in Eq. (35), we obtain, as in [6], the following
linear integral equations for the perturbation terms φi ,

f (0)
i

{
mi

kT

3∑

r ,s

(vr − ur )(vs − us)

(
∂us
∂xr

− 1

3

( 3∑

�

∂u�

∂x�

)
δrs

)

+
3∑

r=1

1

T
(vr − ur )

(
mi

2kT
(v − u)2 − 5

2

)
∂T

∂xr
+ n

ni

3∑

r=1

(vr − ur )d
i
r

+ νi

ni
τ

(0)
f

A
kT

−2νi
3n

τ
(0)
f

Eabs

kT

(
3

2
− mi

2kT
(v − u)2

) A
kT
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+βi jσ
2
i j

( ∫∫

R3×S
2+

f (0)
j (w)�

(〈ε, v − w〉 − �i j
) 〈ε, v − w〉dεdw

) A
kT

}

=
4∑

j=1

L E
i j ({φi }) + L E∗

i ({φi }) + L R
i ({φi }), for i = 1, . . . , 4, (40)

where τ
(0)
f represents the forward reaction rate at the zero-order level, given by

τ
(0)
f = β12σ

2
12

√
8πkT

μ12
exp

(
− γ1

kT

)
n(0)
1 n(0)

2 , (41)

with n(0)
i being the zero-order approximation of the constituent number density, and

dir represents spatial r -components of generalized diffusion forces of the i-constituent,
given by

dir = 1

p

∂ pi
∂xr

− ρi

ρ p

∂ p

∂xr
, i = 1, . . . , 4, r = 1, 2, 3, (42)

such that

4∑

i=1

dir = 0, r = 1, 2, 3.

In Eq. (42), pi represents the pressure of the i-constituent and p the pressure of the
mixture. Moreover, L E

i j , L
E∗
i and L R

i are the linearized operators defined in (24),
(25) and (26), respectively

As explained in paper [6], we assume a trial form for the perturbation φi which is
a linear combination of the thermodynamic forces appearing on the left-hand side of
(40),

φi = −Ai

3∑

r=1

(vr − ur )
∂T

∂xr
− Bi

3∑

r ,s

(vr − ur )(vs − us)

(
∂us
∂xr

− 1

3

( 3∑

�

∂u�

∂x�

)
δrs

)

−
4∑

j=1

Hi j

3∑

r=1

(vr − ur )d
j
r − Gi

A
kT

, i = 1, . . . , 4, (43)

where the coefficients Ai , Bi , Hi j and Gi are scalar quantities depending on the
number densities ni , scalar velocity |v − u|2, and mixture temperature T . Therefore,
the problem of determining the perturbations φi becomes the one of determining such
coefficients. Since these thermodynamic forces are linearly independent, system (40)
decouples into four subsystems, and for our convenience, we introduce the following
components of φi ,
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φ
(A)
i = Ai

3∑

r=1

(vr − ur )
∂T

∂xr
,

φ
(B)
i = Bi

3∑

r ,s

(vr − ur )(vs −us)

(
∂us
∂xr

− 1

3

( 3∑

�

∂u�

∂x�

)
δrs

)
,

φ
(H)
i =

4∑

j=1

Hi j

3∑

r=1

(vr − ur )d
j
r , φ

(G)
i = Gi

A
kT

, i = 1, . . . , 4. (44)

Each subsystem involves one component of φi and determines the corresponding
coefficients. The resulting subsystems are solved separately assuming appropriate
expansions for the coefficients Ai , Bi , Hi j andGi . A standard assumption is to consider
that such coefficients are expanded in terms of specific Sonine polynomials of the
dimensionless quantity,

C2
i = mi

(v − u)2

2kT
.

The reaction rate coefficients and the shear viscosity have been determined in paper
[6] solving the subsystems for φ

(G)
i and φ

(B)
i , respectively. In the present paper, we

solve the subsystems for φ
(H)
i and φ

(A)
i and determine the diffusion coefficients as

well as the thermal conductivity and the thermal diffusion ratio.

4.2 Transport Coefficients

We use now the procedure briefly explained above to determine the components φ
(A)
i

and φ
(H)
i of the perturbation of the equilibrium distribution functions.Wewill omit the

computational details that are explained in paper [6] and in references quoted therein,
in particular in papers [8, 12, 17, 19].

4.2.1 Fick Law and Diffusion Coefficients

The diffusion coefficients are obtained through several steps that will be explained in
the sequel.

(i) Subsystem for φ
(H)
i We start with the subsystem for the perturbation component

φ
(H)
i , namely

f (0)
i

{ 3∑

r=1

1

T
(vr − ur )

(
mi

2kT
(v − u)2 − 5

2

)
∂T

∂xr
+ n

ni

3∑

r=1

(vr − ur )d
i
r

}

=
4∑

j=1

L E
i j ({φ(H)

i }) + L E∗
i ({φ(H)

i }) + L R
i ({φ(H)

i }), for i = 1, . . . , 4,

(45)
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where φ
(H)
i is given in (44) in terms of the coefficients Hi j .

(ii) Coefficients Hi j Following the Chapman–Enskog method, we assume that each
coefficient Hi j is expanded in terms of Sonine polynomials of index 3/2, and
we take the first two terms of the expansion. Thus we start with

Hi j = h(0)
i j S(0)

3/2

(
C2
i

) + h(1)
i j S

(1)
3/2

(
C2
i

)
,

that is

Hi j = h(0)
i j + h(1)

i j

(
5

2
− mi

2kT
(v − u)2

)
, i = 1, 2, 3, 4, (46)

where h(0)
i j and h(1)

i j are scalar constants to be determined. We multiply Eq. (45)

by S(1)
3/2

(
C2
i

)∑3
r=1(vr − ur ), integrate first over v ∈ R

3 and then over S2+ by
using spherical coordinates, and finally we compute the sixfold integral over
R
3 × R

3 by transforming to the center of mass reference frame.
The resulting equations for the scalars h(0)

i j and h(1)
i j constitute an algebraic sys-

tem that can be solved using any computer algebra system. We have used the
computational software Maple system, version 2018.
Then the solution obtained for h(0)

i j and h(1)
i j determines the perturbation compo-

nent φ(H)
i through Eqs. (44) and (46).

(iii) Generalized Fick law The Fick law is associated to the first-order correction to
the diffusion velocities ui .
The Fick law is derived by inserting the distribution function corrected by its
H -component, f (0)

i

(
1 + φ

(H)
i

)
, into expression (31) of the diffusion velocities.

Performing the integration over the velocity v and neglecting the non-linear terms
in the perturbations, we obtain the generalized Fick law, formally written as

u i
r = −

4∑

j=1

�i j d
j
r − Di

T
∂

∂xr
ln T , i = 1, . . . , 4, r = 1, 2, 3, (47)

where �i j is a generalized diffusion coefficient and Di
T is the thermal diffusion

coefficient. The Fick law (47) can be equivalently written as

u i
r = −

4∑

j=1

�i j

(
d j
r + RTj

∂

∂xr
ln T

)
, i = 1, . . . , 4, r = 1, 2, 3, (48)

where RTi are thermal-diffusion ratios such that

Di
T =

4∑

j=1

�i j RTj , for i = 1, . . . , 4, with
4∑

j=1

RTj = 0. (49)
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Note that the above constraint on RTj results from condition (31) and from
the fact that the thermodynamical forces dir and ∂T

∂xr
are linearly independent.

Therefore,

4∑

i=1

(
dir + RTi

∂

∂xr
ln T

)
= 0, r = 1, 2, 3. (50)

Using Eq. (50) together with (48), we can express the diffusion forces in terms
of the diffusion velocities in the form

dir = −RTi
∂

∂xr
ln T − 1

n2

4∑

j=1

nin j

Di j
(u i

r − u j
r ), i = 1, . . . , 4, r = 1, 2, 3,

(51)

where Di j are the diffusion coefficients depending implicitly on h(0)
i j , h(1)

i j . For
more details, see the book by Chapman and Cowling [8].
Equation (51) expresses the fact that the diffusion forces are supported by tem-
perature gradients and diffusion velocities.

(iv) Diffusion coefficients We have to solve system (51) in order to determine the
twelve independent diffusion coefficients Di j . This is a cumbersome computa-
tion because the equations are rather intricate. We have used the computational
software Maple system, version 2018.

4.2.2 Fourier Law, Thermal Conductivity and Thermal-Diffusion Ratio

The coefficients of thermal conductivity and thermal-diffusion ratio are obtained with
a similar algorithm as the one utilized before for the diffusion coefficients.

(i) Subsystem for φ
(A)
i

The subsystem for the perturbation component φ(A)
i is given by

f (0)
i

{ 3∑

r=1

1

T
(vr − ur )

(
mi

2kT
(v − u)2 − 5

2

)
∂T

∂xr
+ n

ni

3∑

r=1

(vr − ur )d
i
r

}

=
4∑

j=1

L E
i j ({φ(A)

i }) + L E∗
i ({φ(A)

i }) + L R
i ({φ(A)

i }), for i = 1, . . . , 4,

(52)

where φ
(A)
i is given in (44) in terms of the coefficients Ai .

(ii) Coefficients Ai

We assume that each coefficient Ai is expanded in terms of Sonine polynomials
of index 3/2 and we take once more the first two terms of the expansion.

Ai = a(0)
i S(0)

3/2

(
C2
i

) + a(1)
i S(1)

3/2

(
C2
i

)
, i = 1, . . . , 4,
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that is

Ai = a(0)
i + a(1)

i

(
5

2
− mi

2kT
(v − u)2

)
, i = 1, . . . , 4, (53)

where a(0)
i and a(1)

i are scalar constants to be determined. We then multiply

Eq. (52) by S(1)
3/2

(
C2
i

) ∑3
r=1(vr − ur ), and perform the integration as explained

before.
Then, we have used the software Maple to solve the resulting equations and
determine a(0)

i and a(1)
i . Finally, in turn, we have determined the perturbation

component φ(A)
i through Eqs. (44) and (53).

(iii) Generalized Fourier law
The Fourier law is associated to the first-order correction to the heat flux vector
q. This law is derived by inserting the distribution function corrected by its A-
component, f (0)

i

(
1 + φ

(A)
i

)
, into expression (33) of the heat flux vector, and it

is formally given by

qr = −̃λ
∂T

∂xr
−

4∑

j=1

D̃ j d
j
r , r = 1, 2, 3, (54)

where λ̃ and D̃ j are associated with thermal conductivity and diffusion thermal
effects, respectively. They are given by

λ̃ =
4∑

j=1

[
1

6

∫

R3

Aimi f
(0)
i (v − u)4dv + ni Ei

T
Di
T

]
, (55)

D̃ j =
4∑

j=1

[
1

6

∫

R3

Hi jmi f
(0)
i (v − u)4dv + ni Ei�i j

]
. (56)

(iv) The thermal conductivity and thermal diffusion ratio
The thermal conductivity is the coefficient of proportionality of the heat flux
vector q with respect to the temperature gradient, when the diffusion is absent,
that is when the diffusion velocities are equal to zero. Therefore, we substitute
expression (51) with u i = 0 into Eq. (54), obtaining thermal conductivity given
by

λ = λ̃ −
4∑

i=1

D̃i RTi (57)

where λ̃ is given in (55) and RTi is the thermal diffusion ratio appearing in
(51), where λ̃, D̃i and RTi depend implicitly on the coefficients Ai and Hi j .
The computations result to be rather cumbersome, and, again, we have used the
Maple system.
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Table 1 Different reactive mixtures considered in our computations

Mixtures m1 m2 m3 m4 μ12 μ34 x1 x2 x3 x4 Eabs/(kT )

M1 2.2 1.8 3 1 0.99 0.75 0.10 0.10 0.40 0.40 −2.911 EXO

M2 2.2 1.8 3 1 0.99 0.75 0.40 0.40 0.10 0.10 2.634 ENDO

M3 2.2 1.8 3.8 0.2 0.99 0.19 0.10 0.10 0.40 0.40 −3.598 EXO

M4 2.2 1.8 3.8 0.2 0.99 0.19 0.40 0.40 0.10 0.10 1.947 ENDO

5 Comparative Study and Numerical Results

In this section we develop a comparative analysis between the transport coefficients
for the full SRS model of Sect. 2, for α = 1, and those of the variant version of the
SRS model of Sect. 3, for α = 0.

Thenumerical results refer to the transport coefficients of diffusion, thermal conduc-
tivity and thermal-diffusion ratio, and are obtained following the procedure described
in Subsection 4.2.

Our aim is to analyse the influence of the chemical reaction in the behaviour of
the above mentioned coefficients and to investigate the role of the elastic correction
term proper of the SRS model in order to appreciate how it can affect the transport
coefficients.

5.1 Parameters and Input Data

We consider four different reactive mixtures, M1,M2,M3,M4, characterized in
terms of themolecularmassesmi and equilibriumconcentrations xi of the constituents,
where xi = ni/n, for i = 1, . . . , 4. See Table 1, where the last column indicates the
values of the reaction heat in units of kT . Therefore, when Eabs < 0, the forward
reaction is exothermic, and when Eabs > 0, it is endothermic.

The choice of the parameters and the equilibrium compositions of the reactive
systems are presented below.

• We choose the molecular masses mi varying in such a way that all constituents
have disparate masses, more specifically the reduced mass of the products can be
75.8% or 19.2% of that of the reactants. Moreover, the mass conservation law
imposes that m1 + m2 = m3 + m4.

• Among the four concentrations xi , only two are independent, in general, since∑4
i=1 xi = 1 and the mass action law furnishes another constraint. Here, in agree-

ment with our first paper [6], and other studies in [25, 26], we assume x2 = x1
and x4 = x3, and disregard the law of mass action for the determination of the
concentrations. We obtain x3 = (1 − 2x1)/2

• The reaction heat Eabs is an important parameter when dealing with chemical
reactions. Its sign determines when the forward reaction is endothermic, Eabs >

0, and when it is exothermic, Eabs < 0. In our simulations, this parameter is
computed at equilibrium conditions from the mass action law (16), and thus from
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the molecular masses and equilibrium concentrations, as

Eabs

kT
= ln

(√
m3m4

m1m2

x1x2
x3x4

)
. (58)

• The molecular diameters are not relevant for chemical reactions in the dilute gas
regime. For simplicity, we assume di = 1, i = 1, . . . , 4, for all computations.

• The activation energies γ1 and γ3 are other important parameters when dealing
with chemical reactions, since they represent the energy barriers that should be
exceeded in order for the forward and backward chemical reactions to occur. They
satisfy the relation γ3 = γ1 − Eabs , and therefore only one of the activation
energies is an independent parameter. In our simulations, we choose γ1 to be the
independent one.We investigate the behaviour of the transport coefficients in terms
of γ1.

• Concerning the coefficients βi j , i, j = 1, . . . , 4, we choose βi j = βkl = β,
consistently with the choice on the molecular diameters di . In our simulations,
we consider β = 1 when investigating the impact of the correction term on the
transport coefficients, whereas we take β = 0.5, 0.75, 1 when investigating the
effects of such parameter on the behaviour of the transport coefficients.

5.2 Numerical Results

In this section we provide the results of our numerical simulations for different con-
figurations of the SRS model described by different choices of the molecular masses
mi , equilibrium concentrations xi , and parameter β.

Our aim is to analyse twoproblems. First,wewant to understand how the parameters
mi , xi , and also the corresponding exothermicity or endothermicity character of the
chemical reaction, influence the behaviour of the transport coefficients. Second, we
want to investigate the impact of the correction term incorporated in our SRS model
on the transport coefficients.

5.2.1 Results for the Diffusion Coefficients

Figures1 and 2 illustrate the behaviour of the diffusion coefficients DAB and DCD for
mixturesM1 andM2, and how the coefficients vary depending on the dimensionless
forward activation energy ε = γ1/(kT ).

The left frames of Figs. 1 and 2 show the behaviour of the coefficients DAB, DCD

for β = 1, when we consider the full SRS model with its correction terms (dashed
lines), and when we remove the correction term from the SRS model (solid lines).

The right frames of the same figures show the impact of the parameter β on the
coefficients DAB, DCD . All curves refer to the full SRS model with its correction
term. In particular, the dotted lines correspond to β = 1 and is exactly the same one
considered in left frames. Besides such curve, we also consider the curves forβ = 0.75
(middle dashed lines) and β = 0.5 (solid lines).

We see that the non-equilibrium effects induced by the chemical reaction are more
noticeable for small values of the activation energy, say ε, and start to be imperceptible
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Fig. 1 Mixture M1 (exothermic forward reaction, Eabs = −2.911, μ34/μ12 = 0.758). Diffusion coeffi-
cients DAB and DCD versus the forward activation energy ε. Left frame: Impact of the correction terms.
Full SRS model, and SRS model without correction terms. Right frame: Effects of the parameter β. Full
SRS model with β = 1, and with β = 0.75 and β = 0.5

Fig. 2 Mixture M2 (endothermic forward reaction, Eabs = 2.634, μ34/μ12 = 0.758). Diffusion coeffi-
cients DAB and DCD versus the forward activation energy ε. Left frame: Impact of the correction terms.
Full SRS model, and SRS model without correction terms. Right frame: Effects of the parameter β. Full
SRS model with β = 1, and with β = 0.75 and β = 0.5
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Fig. 3 MixturesM1 in the top frames (exothermic forward reaction, Eabs = −2.911, μ34/μ12 = 0.758)
andM3 in the bottom frames (exothermic forward reaction, Eabs = −3.598,μ34/μ12 = 0.192). Thermal
conductivity λ versus the forward activation energy ε. Left frames: Impact of the correction terms. Full SRS
model, and SRS model without correction terms. Right frames: Effects of the parameter β. Full SRS model
with β = 1, and with β = 0.75 and β = 0.5

when γ1 approaches the value 10. This is a consequence of the fact that a high value
of the activation energy indicates that the threshold of the chemical reaction is so high
that reactive collisions become very rare.

We also see that the correction terms contribute to the increase of the diffusion coef-
ficients, meaning that the diffusion of the constituents is hidden when the correction
terms are not included in the model. In other words, the presence of correction terms
have the effect of restoring the diffusion among the constituents.

In both Figures, we can see that the effect on the diffusion coefficients is larger for
the constituents that have a small concentration xi .

Another interesting result highlighted in these figures is that, as expected, the effects
of the correction terms aremore pronounced in the diffusion coefficients of the products
CD when the forward reaction is endothermic. Conversely, they are more pronounced
for the reactants AB when the forward reaction is exothermic.

5.2.2 Results for the Thermal Conductivity

Figures3 and 4 illustrate the behaviour of the thermal conductivity coefficient λ for
mixtures M1, M3 and M2, M4 and how the coefficient varies depending on the
dimensionless forward activation energy ε.
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Fig. 4 Mixtures M2 in the top frames (endothermic forward reaction, Eabs = 2.634, μ34/μ12 = 0.758)
andM4 in the bottom frames (endothermic forward reaction, Eabs = 1.947, μ34/μ12 = 0.192). Thermal
conductivity λ versus the forward activation energy ε. Left frames: Impact of the correction terms. Full SRS
model, and SRS model without correction terms. Right frames: Effects of the parameter β. Full SRS model
with β = 1, and with β = 0.75 and β = 0.5

As before, the left frames of Figs. 3 and 4 show the behaviour of the thermal con-
ductivity λ for β = 1, when we consider the full SRS model with its correction term
(dotted lines), and when we remove the correction term from the SRS model (solid
lines).

The right frames show how the coefficient λ is affected when we vary the parameter
β and consider different proportions of reactive collisions. All curves refer to the full
SRS model with its correction terms, with the dotted lines for β = 1, dashed lines for
β = 0.75 and solid lines for β = 0.5.

The top andbottom frames ofFig. 3 are obtained for different values of themolecular
masses m3 and m4, implying that bottom frames correspond to a chemical reaction
with higher exothermicity character. The results of this figure show that the effect of
increasing the absolute value of the reaction heat is not so relevant even if we can say
that the thermal conductivity increases. Analogously, the top and bottom frames of
Fig. 4 correspond to different values ofm3 andm4, implying that top frames correspond
to a chemical reaction with higher endothermicity character. Again, the results show
that the impact of the reaction heat on the thermal conductivity is almost insignificant.

The coefficient of thermal conductivity is much affected by the chemical reaction,
and therefore is also very much affected by the parameter β. From the analytical
point of view, this is a direct consequence of the influence of the binding energies and
reaction heat on the energy transport, as predicted by Eqs. (54)–(57).
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Fig. 5 MixtureM1 (exothermic forward reaction, Eabs = −2.911,μ34/μ12 = 0.758). Thermal-diffusion
ratio RTA, RTB , RTC , RTD versus the forward activation energy ε. Left frames: Impact of the correction
terms. Full SRS model, and SRS model without correction terms. Right frames: Effects of the parameter
β. Full SRS model with β = 1, and with β = 0.75 and β = 0.5

From the qualitative point of view, the results obtained for the thermal conductivity
are similar to those obtained for the diffusion. It is clear that the correction terms
contribute to increase the thermal conductivity λ, and, again, the effects are more
noticeable for small values of the forward activation energy.
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Fig. 6 MixtureM2 (endothermic forward reaction, Eabs = 2.634, μ34/μ12 = 0.758). Thermal-diffusion
ratio RTA, RTB , RTC , RTD versus the forward activation energy ε. Left frames: Impact of the correction
terms. Full SRS model, and SRS model without correction terms. Right frames: Effects of the parameter
β. Full SRS model with β = 1, and with β = 0.75 and β = 0.5

5.2.3 Results for the Thermal Diffusion Ratios

Figures5 and 6 illustrate the behaviour of the thermal diffusion ratios RTA, RTB ,

RTC , RTD for mixtures M1 and M2 and how these coefficients vary in dependence
of the dimensionless forward activation energy ε.
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Once again, the left frames of Figs. 5 and 6 show the behaviour of the thermal
diffusion ratio RTi for β = 1, corresponding to the full SRS model with its correction
term (dotted lines), and to the full SRSmodel without the correction term (solid lines).
Moreover, the right frames show the impact of the parameter β on the coefficients RTi

The thermal diffusion ratios are also very much affected by the chemical reaction,
and therefore by the parameter β. This can be seen in Figs. 5 and 6 and also in Eqs.
(54)–(57).

In Fig. 5, we can see that thermal diffusion ratio is positive for the reactants of
the forward reaction, which are those with smaller concentrations, whereas it takes
negative values for the products which have a great concentration. This seems to
indicate that particles with smaller concentration tend to diffuse into cooler regions,
whereas those with higher concentration diffuse to hot regions. A similar qualitative
behaviour is observed in Fig. 6, exchanging the role among the reactants and products
of the chemical reaction.

From the qualitative point of view, the results obtained for the thermal diffusion
ratio are similar to those obtained for the thermal conductivity. It is clear that the
correction terms contribute to increase the thermal diffusion ratio RTi , and, again, the
effects are more noticeable for small values of the forward activation energy.

6 Final Comments and FutureWork

For all plots represented in the previous subsection, we can see that the transport
coefficients studied here tend to their corresponding inert values when the forward
activation energy increases, since the threshold of the chemical reaction becomes so
high that reactive collisions become very rare.

Moreover, we also see that the influence of the chemical reaction is more evi-
dent in the coefficients of thermal conductivity and thermal-diffusion ratio. This can
be explained by the fact that the impact of the reaction heat is grater on these last
coefficients.

As an application of our study to be developed in the future, we plan to compute
the transport coefficients with reference to the real reactive mixtures of Hydrogen-
Chlorine and Hydrogen-Deuterium. Our objective is to compare our results with those
obtained in paper [25] when real gases are considered.
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