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Abstract
We study the size of the automorphism group of two different types of random trees:
Galton–Watson trees and rooted Pólya trees. In both cases, we prove that it asymptoti-
cally follows a log-normal distribution and provide asymptotic formulas for the mean
and variance of the logarithm of the size of the automorphism group. While the proof
for Galton–Watson trees mainly relies on probabilistic arguments and a general result
on additive tree functionals, generating functions are used in the case of rooted Pólya
trees. We also show how to extend the results to some classes of unrooted trees.

Keywords Random tree · Galton–Watson tree · Pólya tree · Unrooted tree ·
Automorphism group · Moments · Central limit theorem

1 Introduction

The automorphism group is a fundamental object associated with a graph as it encodes
information about its symmetries. Furthermore, counting mathematical objects up to
symmetry is a classical subject in combinatoricswhich naturally relates to the automor-
phism group.An example is the case of graphs, where the number of different labelings
of a graph G of size n is given by n!

|Aut G| . In this paper we study properties of the auto-
morphism groups associated with random trees, in particular Galton–Watson trees and
Pólya trees. We show that the size of the automorphism group follows a log-normal
distribution with parameters depending on tree type. The size of the automorphism
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group has previously been studied in special cases of Galton–Watson trees: binary
trees (expected values and limiting distribution: [4]), labeled trees (limiting distribu-
tion: [8] and expected value: [23]), binary and ternary trees (expected values: [15] and
[16]). It has also been studied for some other types of trees than those considered here:
specifically, random recursive trees (expected value: [14]), and d-ary increasing trees
(limiting distribution and moments: [19]). We are primarily studying rooted trees but
for some classes of trees we can extend the results to the unrooted case. The book
[5] is a general reference to this introduction and the different types of random trees
discussed in this paper.

Recall now that a Galton–Watson tree is a growth model where we start with one
vertex, the root, and the number of children it has is given by a (discrete) random
variable ξ , supported on some subset of the non-negative integers that includes at
least 0 and some number greater than 1. The tree grows by letting each of the vertices
have children of their own according to the offspring distribution ξ , independently of
all other vertices. Different distributions for ξ give rise to different types of Galton–
Watson trees. We are especially interested in the case of critical Galton–Watson trees,
for which Eξ = 1, as well as conditioned Galton–Watson trees where we condition
on the size of the tree, i.e., we pick one of all possible Galton–Watson trees on n
vertices at random. A related notion is that of the size-biased Galton–Watson tree,
which has two different types of vertices. The normal vertices have the same offspring
distribution ξ as before, while the special vertices get offspring according to the size-
biased distribution ξ̂ defined by P(ξ̂ = k) = kP(ξ = k). We start the growth process
with the root being special, and for each special vertex we choose exactly one of
its children, uniformly at random, to be special as well. This means that the size-
biased Galton–Watson tree has an infinite spine of special vertices, with non-biased
unconditioned Galton–Watson trees attached to it.

Conditioned Galton–Watson trees are closely connected to, and a special case of,
simply generated families of trees (or simple trees) which are defined in terms of
generating functions. For a sequence of non-negative numbers {wk} define

�(x) =
∑

k≥0

wk xk

to be its weight generating function. Then the generating function for the class of trees
associated with {wk},

T (x) =
∑

T ∈T
w(T )x |T |

is defined by the functional equation

T (x) = x�(T (x)). (1)
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The number w(T ) is called the weight of the tree T . Under the (mild) assumption that
there exists a positive τ within the radius of convergence of �(z) such that

�(τ) = τ�′(τ ) < ∞,

we can find ρ = τ
�(τ)

such that T (x) has the singular expansion

T (x) = τ − c1

√
1 − x

ρ
+

∑

k≥2

(−1)kck

(
1 − x

ρ

) k
2

, (2)

for constants ck that can be calculated. Through the process of singularity analysis,
this implies that the total weight of all trees of size n is asymptotic to

Cn−3/2ρ−n .

We take the probability of picking a given tree S of size n to be

w(S)∑
|T |=n w(T )

. (3)

We can see Galton–Watson trees and simple trees as two sides of the same coin,
one being probabilistic and the other being combinatorial, where Galton–Watson trees
correspond to simply generated trees with weights wk adding up to 1. In this context,
the numberswk correspond to the probability of a vertex having k children,w(T ) is the
probability of obtaining T through the Galton–Watson growth process and (3) is the
probabilitywhenwe condition on the size of the tree. In fact, if we can find a τ as above,
we can always assume that our trees, whether they are conditioned Galton–Watson or
simply generated ones, are critical Galton–Watson trees as long as we can perform
slight modifications (which will not affect the probabilities of individual trees) to the
offspring distribution. Then, the critical Galton–Watson trees are those simple trees
having their dominant singularity at ρ = 1, so that the discussion above indicates that
the probability of an (unconditional) Galton–Watson tree having size n decays like
Cn−3/2. Examples of Galton–Watson (and simply generated) trees are plane trees,
labeled trees, d-ary trees, etc.

Pólya trees are unordered, unlabeled trees which can be either rooted or unrooted.
Rooted Pólya trees have many properties similar to Galton–Watson trees, but they do
not satisfy the definition so we will need other methods to deal with them. They can
be characterized by their generating function P(x) = ∑

T ∈P x |T |, which satisfies

P(x) = x exp

( ∞∑

k=1

P(xk)

k

)
. (4)

The number of such trees of size n is asymptotic to An−3/2ρ−n
p , where ρp =

0.33832 . . . is the dominant singularity of P(x) and A is a constant. For this sin-
gularity, we have P(ρp) = 1.
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A classical result gives a bijection between Pólya trees and the union of unrooted
unlabeled trees together with pairs of distinct Pólya trees. The bijection translates into
the functional equation

U (x) = P(x) − 1

2
P(x)2 + 1

2
P(x2) (5)

that describes the generating function for unrooted trees U (x) in terms of P(x). The
number of unrooted Pólya trees of size n is asymptotic to Bn−5/2ρ−n

p for a constant
B.

We use T to denote Galton–Watson trees, Tn to denote conditioned Galton–Watson
trees on n vertices and T̂ to denote size-biased trees. Similarly, we use T , Tn and T̂
to denote specific realizations of the respective trees. Furthermore, we will use P and
Pn to denote rooted Pólya trees as well as Pólya trees of size n, respectively and,
sometimes, U and Un in the case of unrooted trees. We let deg(T ) denote the degree
of the root of T and mult(B) be the number of occurrences of a particular tree B as
root branches of some other tree (the root branches of a rooted tree are the subtrees
obtained as components when the root is removed). Note that the isomorphism classes
of Galton–Waton trees are rooted Pólya trees. In addition to usingw(T ) for the weight
of a simple tree, we will use W (B) to denote the weight of the entire isomorphism
class B.

1.1 Results

In this paper, we will show asymptotic normality of log |Aut Tn|, for various classes
of random trees. This implies asymptotic log-normality of |Aut Tn|. We prove the
following theorem on the automorphism group of Galton–Watson trees.

Theorem 1 Let Tn be a conditioned Galton–Watson tree of size n with offspring dis-
tribution ξ , where Eξ = 1, 0 < Var ξ < ∞ and Eξ5 < ∞. Then there exist constants
μ and σ 2 ≥ 0, depending on T , such that

log |Aut Tn| − μn√
n

d−→ N(0, σ 2).

The condition on Eξ5 is needed for technical purposes and is valid for combina-
torially significant examples such as labeled trees, plane trees and d-ary trees. The
exponent 5 is probably not best possible, but required to apply the general result on
additive functionals that our proof is based on.

The mean constant μ and even more so the variance constant σ 2 do not seem easy
to compute numerically in general. We show how to derive the numerical values for
some classes of trees, namely labeled trees as well as general Galton–Watson trees
with bounded degrees. Numerical estimates for some types of trees can be found in
Table 1.

Note that it is unclear what an unrooted version of a Galton–Watson tree is in
general so we cannot expect an unrooted version of Theorem 1, but in the case of
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Table 1 Numerical estimates of
the mean and variance constants
for some types of trees

Class of tree μ σ 2

Labeled trees 0.0522901 0.0394984

Full binary trees 0.0939359 0.0252103

Pruned binary trees 0.0145850 0.0084835

Pólya trees 0.1373423 0.1967696

labeled trees, the result for rooted trees translates to the case of unrooted trees as well.

Theorem 2 Let Tn be a uniformly random unrooted labeled tree of size n. Then,
E(log |Aut Tn|) = μn + O(1) and Var(log |Aut Tn|) = σ 2n + O(1), with μ =
0.0522901 . . . and σ 2 = 0.0394984 . . .. Furthermore, we have

log |Aut Tn| − μn√
n

d−→ N(0, σ 2).

We can also prove asymptotic log-normality for the size of the automorphism group
of Pólya trees.

Theorem 3 Let Pn be a uniformly random Pólya tree of size n, rooted or unrooted.
Then, E(log |AutPn|) = μn + O(1) and Var(log |AutPn|) = σ 2n + O(1), with
μ = 0.1373423 . . . and σ 2 = 0.1967696 . . .. Furthermore, we have

log |AutPn| − μn√
n

d−→ N(0, σ 2).

The proofs of Theorem 1 and Theorem 3 rely at their cores on the same idea of
approximating the additive functionals by simpler ones, but they are fairly different
at a glance. We give some preliminary results in Sect. 2. We then prove Theorem 1 in
Sect. 3 and Theorem 3 for rooted trees in Sect. 4. The results for unrooted trees are
proved in Sect. 5.

2 Preliminaries

For any rooted tree T , we have a recursive formula for the size of its automorphism
group. Let T1, T2, . . . , Tk be its root branches up to isomorphism, havingmultiplicities
m1, m2, . . . , mk , respectively. Then we have

|Aut T | =
k∏

i=1

mi !|Aut Ti |mi , (6)

derived from the fact that the automorphism group of a rooted tree is obtained from
symmetric groups by iterated direct and wreath products (see [3], Proposition 1.15). In
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other words, the tree is invariant under the automorphisms of each of the root branches
as well as under permutation of isomorphic branches. By taking logarithms, we find
that

log |Aut T | =
k∑

i=1

log(mi !) +
k∑

i=1

mi log |Aut Ti |.

This means that log |Aut T | is an additive functional of the tree (see [5, Sect. 3.2] or
any of the references below) with toll function f (T ) = ∑k

i=1 log(mi !).
Limit theorems for additive functionals have been proven for various classes of

random trees under different conditions, see [6, 7, 10, 19, 20, 22]. In the case of
Galton–Watson trees, we will specifically make use of a general result on almost local
additive functionals due to Ralaivaosaona, Šileikis and the second author [20], which
is in turn based on earlier work by Janson [10]. Intuitively, “almost local” means
that looking at the first M levels of the tree gives us substantial (albeit not perfect)
information about the value of the toll function at the root. We will let T (M) denote
the restriction of a Galton–Watson tree to its first M levels, where the root is at level
0, with similar definitions for the other classes of trees. The theorem we will use is
the following.

Theorem 4 ([20]) Let Tn be a conditioned Galton–Watson tree of size n with offspring
distribution ξ , with Eξ = 1 and 0 < σ 2 := Var ξ < ∞. Assume further that
Eξ2α+1 < ∞ for some integer α ≥ 0. Consider a functional F of finite rooted
ordered trees with the property that

f (T ) = O(deg(T )α),

where f is the toll function associated with the functional.
Furthermore, assume that there exists a sequence (pM )M≥1 of positive numbers

with pM → 0 as M → ∞, such that

• for every integer M ≥ 1,

E

∣∣∣ f (T̂ (M)) − E

(
f (T̂ (N ))|T̂ (M)

)∣∣∣ ≤ pM ,

for all N ≥ M,
• there is a sequence of positive integers (Mn)n≥1 such that for large enough n,

E| f (Tn) − f (T (Mn)
n )| ≤ pMn .

If an = n−1/2(nmax{α,1} pMn + M2
n ) satisfies

lim
n→∞ an = 0, and

∞∑

n=1

an

n
< ∞,
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then

F(Tn) − μn√
n

d−→ N (0, γ 2),

where μ = E f (T ) and 0 ≤ γ 2 < ∞.

The proof shows that the result still holds if we replace (F(Tn)−μn)/
√

n by (F(Tn)−
EF(Tn))/

√
n. We remark that γ = 0 means that F(Tn)−μn√

n
converges in distribution

(thus also in probability) to 0. However, this case does not occur in any of the examples
considered here.

To prove the result for Pólya trees we will instead rely on generating functions. We
can define the generating function of F(Pn) = log |AutPn| to be

P(x, t) =
∑

T ∈P
et log |Aut T |x |T | =

∑

T ∈P
|Aut T |t x |T |. (7)

Note that P(x, 0) = P(x). We can now derive a functional equation analogous to (4)
as follows. We have the symbolic decomposition

P = • ×
⊗

T ∈P
(∅ 
 {T } 
 {T , T } 
 · · · ),

reflecting the fact that a Pólya tree consists of a tree and a multiset of branches. Taking
automorphisms into account, this translates to

P(x, t) = x
∏

T ∈P

( ∞∑

n=0

xn|T |n!t |Aut T |nt

)
,

by general principles for generating functions. We can manipulate this as follows:

P(x, t) = x exp

(
∑

T ∈P
log

( ∞∑

n=0

xn|T |n!t |Aut T |nt

))

= x exp

⎛

⎝
∑

T ∈P

∞∑

k=1

(−1)k−1

k

( ∞∑

n=1

xn|T |n!t |Aut T |nt

)k
⎞

⎠ .

The sum in the exponent can be rewritten as

∑

T ∈P

∞∑

k=1

(−1)k−1

k

∑

λ1+λ2+···=k

(
k

λ1, λ2, . . .

) ∞∏

n=1

(
xn|T |n!t |Aut T |nt)λn .

Wenowwrite integer partitions as sequences λ = (λ1, λ2, . . .), where λi is the number
of i’s in the partition. The total number of summands is denoted by |λ| = λ1+λ2+· · · ,
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and we write λ � j to denote that λ is a partition of j , i.e. j = λ1 + 2λ2 + 3λ3 + · · · .
Further manipulations give

∑

T ∈P

∞∑

k=1

(−1)k−1

k

∞∑

j=1

∑

λ1+λ2+···=k
λ1+2λ2+···= j

(
k

λ1, λ2, . . .

)
x j |T ||Aut T | j t

∞∏

n=1

n!λn t

=
∞∑

j=1

∑

λ� j

(−1)|λ|−1

|λ|
( |λ|

λ1, λ2, . . .

) ( ∞∏

n=1

n!λn t

)
∑

T ∈P
x j |T ||Aut T | j t

=
∞∑

j=1

∑

λ� j

(−1)|λ|−1

|λ|
( |λ|

λ1, λ2, . . .

) ( ∞∏

n=1

n!λn t

)
P(x j , j t).

For convenience, we can define

c( j, t) = j
∑

λ� j

(−1)|λ|−1

|λ|
( |λ|

λ1, λ2, . . .

) ( ∞∏

n=1

n!λn t

)
,

and arrive at the functional equation

P(x, t) = x exp

⎛

⎝P(x, t) +
∞∑

j=2

c( j, t)

j
P(x j , j t)

⎞

⎠ . (8)

Note that c( j, 0) = 1, so that we recover the functional equation (4) if we set t = 0.

3 The Automorphism Group of Galton–Watson Trees

As indicated in the previous section, we will show that log |Aut Tn| is in fact an almost
local additive functional. This will let us apply Theorem 4 to prove that it converges
in distribution to a normal random variable.

3.1 Galton–Watson Trees Isomorphic Up to a Certain Level

In applying Theorem 4, we are led to consider the probability that two Galton–Watson
trees are of height ≥ M and isomorphic. We use C to denote the set of isomorphism
classes of Galton–Watson trees as well as CM to denote the set of isomorphism classes
of trees of height M (i.e., trees that have M + 1 generations). The definitions extend
to conditioned Galton–Watson trees as Cn and CM

n , respectively. We start with the
following lemma.
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Lemma 1 There exists some constant 0 < c < 1 such that

P(T (M) belongs to C) ≤ cM ,

uniformly for all isomorphism classes C ∈ CM .

Proof We say that a level L of a tree T agrees with C if it has the correct number of
vertices and the offsprings ξ1, ξ2, . . . , ξl agree with the offsprings of the same level in
C , up to permutation. Let L1, L2, . . . denote the levels of the Galton–Watson tree T .
Then the probability is bounded by

P(T (M) belongs to C) ≤
M−1∏

i=0

P(Li agrees with C |L1, L2, . . . , Li−1), (9)

where we note that, by truncation, the M-th level will always agree with C , as long as
the previous ones do. We can bound each factor in (9) by the probability of the level
having the correct number of leaves, conditioned on the previous levels. This random
variable follows a binomial distribution with probability p = P(ξ = 0). It is therefore
sufficient to prove a bound 0 < c < 1 (uniform in both l and k) on the probability that
a binomial variable Xl ∼ Bin(l, p) takes a specific value k.

We can in fact bound Xl in terms of p, since if we write Xl as a sum of Bernoulli
variables, Xl = Y1 + Y2 + · · · + Yl , we have

P(Y1 + Y2 + · · · + Yl = k) =
1∑

r=0

P(Y1 + Y2 + · · · + Yl−1 = k − r)P(Yl = r)

≤
1∑

r=0

P(Y1 + Y2 + · · · + Yl−1 = k − r) max
y∈{0,1}P(Yl = y) ≤ max{p, 1 − p}.

We can thus take c = max{p, 1 − p} as a uniform bound for all levels, and now (9)
gives the result. 
�

We now see that for two independent trees T1, T2 we have

P(T (M)
1 , T (M)

2 iso. and of height ≥ M) =
∑

C∈CM

P(T (M) belongs to C)2

≤ max
C∈CM

{
P(T (M) belongs to C)

} ∑

C∈CM

P(T (M) belongs to C)

= max
C∈CM

{P(T (M) belongs to C)}. (10)

Combining this with Lemma 1, we get the following corollary.
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Corollary 1 Let T1, T2 be two independent Galton–Watson trees. There exists some
constant 0 < c < 1 such that

P(T (M)
1 , T (M)

2 isomorphic and of height ≥ M) ≤ cM .

In fact, the argument in (10) also works when one of the trees is the size-biased
tree T̂ , which lets us bound the probability that a Galton–Watson tree and the size-
biased tree are isomorphic up to level M in terms of the maximum probability that
the Galton–Watson tree belongs to a specific isomorphism class. This gives another
corollary, which we will need later on.

Corollary 2 Let T be a Galton–Watson tree and T̂ be the size-biased tree, assumed to
be independent of T . There exists some constant 0 < c < 1 such that

P(T (M), T̂ (M) isomorphic and of height ≥ M) ≤ cM .

We can obtain similar bounds on the probability that two conditioned Galton–
Watson trees are isomorphic up to level M . We start by extending Lemma 1 to the
conditioned case.

Lemma 2 Let Tn be a conditioned Galton–Watson tree of size n. There exists some
constant 0 < c < 1 such that

P(T (M)
n belongs to C) = O

(
n

5
2 cM

)
,

uniformly for all isomorphism classes C ∈ CM
n .

Proof Order the offsprings ξ1, ξ2, . . . of Tn in breadth-first order and consider the
sums

Sm =
m∑

i=1

(ξi − 1) for 1 ≤ m ≤ n,

where we also define S0 = 0. In each step, 1 ≤ i ≤ m, we are deleting 1 for the current
vertex while adding the number of children it has. For a conditioned Galton–Watson
tree of size n, we necessarily have Sm > −1 for 1 ≤ m < n, and Sn = −1, since we
are adding 1 for all vertices except the root, but deleting 1 for all vertices including
the root. This is a well-known construction, see e.g. [2]. Using it, we can formulate
the probability we seek to bound in the following way.

P(T (M)
n belongs to C) = P({T ′ belongs to C} ∩ {S1, S2, . . . , Sn−1 > −1, Sn = −1})

P(S1, S2, . . . , Sn−1 > −1, Sn = −1)
,

where T ′ is a Galton–Watson tree with offsprings ξ1, ξ2, . . . , ξk , and k is the number
of vertices of each tree in C excluding the last level (since we truncate at level M , the
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number of children the vertices on this level have is of no interest to us). Since the
trees in C are isomorphic, they will all have the same number of vertices.

Let lM be the number of vertices at the last level of each tree in C (again, equal due
to isomorphism). Then we have

n∑

i=1

(ξi − 1) =
k∑

i=1

(ξi − 1) +
n∑

i=k+1

(ξi − 1) = lM − 1 +
n∑

i=k+1

(ξi − 1).

By the conditions set on Sm , we draw the conclusion that

S′
m :=

k+m∑

i=k+1

(ξi − 1) > −lM for 1 ≤ m < n − k,

S′
n−k :=

n∑

i=k+1

(ξi − 1) = −lM .

By independence, we now have

P({T ′ belongs to C} ∩ {S1, S2, . . . , Sn−1 > −1, Sn = −1})
P(S1, S2, . . . , Sn−1 > −1, Sn = −1)

= P(T ′ belongs to C)P(S′
1, S′

2, . . . , S′
n−k−1 > −lM , S′

n−k = −lM )

P(S1, S2, . . . , Sn−1 > −1, Sn = −1)
,

and using the cycle lemma we find that this equals

lM
n−kP(S′

n−k = −lM )

1
nP(Sn = −1)

P(T ′ belongs to C).

The probabilityP(S′
n−k = −lM ) is bounded by 1, and Sn satisfies a local limit theorem.

If we also bound lM ≤ n as well as n − k ≥ 1 (k is the number of vertices up to level
M − 1, and by definition there must be at least one vertex at level M) and use Lemma
1 (note that Cn,M is a subset of CM ), we arrive at

P(T (M)
n belongs to C) = O

(
n

5
2 cM

)
,

which is what we wanted to prove. 
�
Furthermore, using calculations similar to (10), we obtain the following corollary.

Corollary 3 Let Tn1, Tn2 be two independent conditioned Galton–Watson trees. There
exists some constant 0 < c < 1 such that

P(T (M)
n1 , T (M)

n2 isomorphic and of height ≥ M) = O
(

n
5
2 cM

)
,

where we can take n = min{n1, n2}.
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We are now ready to apply the central limit theorem for additive functionals.

3.2 Applying the CLT for Almost Local Additive Functionals

By Stirling’s approximation, we can bound f (T ) ≤ log deg(T )! = O(deg(T )1+ε)

for any ε > 0, so that the functional satisfies the degree condition of Theorem 4 with
α = 2. For the expectations, there are two conditions to check, one for the size-biased
Galton–Watson tree and one for the conditioned Galton–Watson tree, and in each case
the difference inside the expectation can only be non-zero if (at least) two branches
are isomorphic up to level M but non-isomorphic when we take all levels into account.
We can therefore reduce the problem to studying trees that are isomorphic up to the
M-th level.

We note that if l root branches are isomorphic up to level M , this contributes at
most log(l!) ≤ (l

2

)
to the difference inside the expectation. Therefore, the contribution

of a random tree can be bounded by the sum of indicators

∑

Ti ,Tj root branches

I (T (M)
i , T (M)

j isomorphic and of height ≥ M),

where we sum over distinct branches. We can thus bound the expectation E| f (Tn) −
f (T (M)

n )| for the conditioned Galton–Watson tree by

E

⎛

⎜⎜⎝
∑

Ti ,T j
root branches

I (T (M)
i , T (M)

j are iso. with height ≥ M)

⎞

⎟⎟⎠ .

This can, in turn, be bounded by

∑

k≥2

P(deg(Tn) = k)
∑

n1,n2

P(|Ti | = n1|deg(Tn) = k)P(|T j | = n2|deg(Tn) = k)

·
(

k

2

)
E

(
I (T (M)

i , T (M)
j iso. with height ≥ M)

∣∣∣∣|Ti | = n1, |T j | = n2

)

= O

⎛

⎝
∑

k≥2

P(deg(Tn) = k)

(
k

2

)
n

5
2 cM

⎞

⎠ = O

⎛

⎝n
5
2 cM

∑

k≥2

kP(ξ = k)

(
k

2

)⎞

⎠

whereweuse the lawof total expectation and the fact thatP(deg(Tn) = k) ≤ c0kP(ξ =
k) for all k and n, where c0 is constant [9, (2.7)]. By assumptions on the moments of

the offspring distribution, this expression is O(n
5
2 cM ).

The difference | f (T̂ (M)) − E( f (T̂ (N ))|T̂ (M))| must also be zero unless some
branches are isomorphic up to level M , and reasoning similar to above lets us rewrite
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its expectation in the following way.

∑

k≥2

k P(ξ = k)

(
E

( ∑

Ti ,T j non-special
root branches

I (T (M)
i , T (M)

j iso. with height ≥ M)
)

+E

( ∑

T non-special root branch
T̂ special root branch

I (T (M), T̂ (M) iso. with height ≥ M)
))

,

which is equal to

∑

k≥3

k P(ξ = k)

(
k − 1

2

)
P(T (M)

1 , T (M)
2 iso. and of height ≥ M)

+
∑

k≥2

k P(ξ = k)(k − 1)P(T (M), T̂ (M) iso. and of height ≥ M) = O(cM )

by Corollaries 1 and 2 (the constant c is the same for both of these corollaries since
they both rely on Lemma 1) as well as assumptions on moments of the offspring
distribution.

We now set pM = K cM
1 , for c < c1 < 1 and some suitable constant K , as

well as Mn = A log n, for some positive constant A that is large enough to make
n5/2cMn ≤ cMn

1 for all n and A log c1 < −3/2. Then, the expectations mentioned in
Theorem 4 are bounded by pM and pMn , respectively. Furthermore, the sequence an

goes to 0 and satisfies
∑

an/n < ∞. Thus, we can apply Theorem 4 to show that
log |Aut Tn| is asymptotically normal, which completes the proof of Theorem 1.

3.3 Mean andVariance for Some Classes of Trees

In general, calculating themean and variance constants for Galton–Watson trees seems
to be a difficult feat, but we show how to do it in the special cases of labeled trees as
well as Galton–Watson trees with bounded degrees. In both cases we view the trees
as simply generated and rely on generating functions but otherwise the methods for
the two cases are different. We stress that the calculations do not rely on Theorem 4
so we do not need to assume that the trees are critical.

3.3.1 Galton–Watson Trees with Bounded Degrees

Wenow restrict our attention to the case ofGalton–Watson treeswith degrees restricted
to lie in a finite set D. In other words, the degrees are bounded above by some constant.
By general principles of generating functions, we know that we can calculate the mean
by studying the first derivative of

T (x, t) =
∑

T ∈T
|Aut T |t x |T |
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with respect to t . Likewise, we can find the variance by studying the second derivative.
Using the fact that log |Aut T | is an additive functional, we start with the following
expression, which was derived for general additive functionals in [22]

Tt (x, 0) = xTx (x, 0)

T (x, 0)
H(x). (11)

Here H(x) = ∑
w(T ) f (T )x |T |, with f (T ) being the toll function of the additive

functional. We already know the singular expansion for T (x) = T (x, 0) from (2) and
we can differentiate it termwise to obtain a singular expansion for Tx (x). Thus, it is
enough to study H(x). We manipulate the function in the following way.

H(x) =
∑

T

w(T )x |T |
(

k∑

i=1

log(mi !)
)

=
∑

T

w(T )x |T |
⎛

⎝
∑

B∈BI (T )

log(mult(B)!)
⎞

⎠

=
∑

B

∞∑

m=1

log(m!)
∑

T :B m-fold branch
of T up to iso.

w(T )x |T |.

Note here that
∑

B is a sum over isomorphism classes B (i.e., rooted Pólya trees).
Using the fact that B occurs exactly m times in T , we can rewrite the innermost

sum as

x
∞∑

k=m

wk

(
k

m

)
(W (B)x |B|)m

⎛

⎝
∑

T �=B

w(T )x |T |
⎞

⎠
k−m

= x
∞∑

k=m

wk(W (B)x |B|)m
(

k

m

) (
T (x, 0) − W (B)x |B|)k−m

.

This gives that H(x) is equal to

x
∑

B

∞∑

m=1

log(m!)
m! (W (B)x |B|)m

∞∑

k=m

wk
k!

(k − m)!
(

T (x, 0) − W (B)x |B|)k−m

= x
∑

B

∞∑

m=1

log(m!)
m! (W (B)x |B|)m�(m)(T (x, 0) − W (B)x |B|),

due to Taylor’s theorem.As the degrees are bounded, there is some k0 such thatwk = 0
for k ≥ k0. Thus, � is a polynomial, and the inner sum (which is actually finite, as
�(m)(t) is eventually 0) is a polynomial in W (B)x |B| and T (x, 0). It follows that H(x)
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can be expressed in the form

H(x) = x
M∑

m=2

∑

B

(
W (B)x |B|)m

Pm(T (x, 0)),

for some polynomial Pm . Note here that the sum starts at m = 2 because log(1!) = 0.
Let us now consider the sum over B:

∑

B

(
W (B)x |B|)m

.

In [17] it was shown that the probability

pn =
∑

|B|=n W (B)2

(∑
|B|=n W (B)

)2 ,

that two Galton–Watson trees with bounded degrees are isomorphic decays exponen-
tially in n. Let tn = [xn]T (x, 0) = ∑

|B|=n W (B) be the total weight of all trees with
n vertices. We have, for every m ≥ 2,

∑

B

(
W (B)|x ||B|)m =

∑

n≥1

∑

|B|=n

W (B)m |x |nm

≤
∑

n≥1

⎛

⎝
∑

|B|=n

W (B)

⎞

⎠
m−2

∑

|B|=n

W (B)2|x |nm

=
∑

n≥1

pn(tn|x |n)m .

As pn decays exponentially, this shows that the sum
∑

B

(
W (B)|x ||B|)m

has greater
radius of convergence than T (x, 0), so it represents an analytic function in a disk
around 0 that contains the dominant singularity ρ of T (x, 0) in its interior.

Thus, we can write H(x) = G(x, T (x, 0)), where G(x, t) is a polynomial in t
whose coefficients are functions of x that are analytic in a larger region than T (x, 0).
Furthermore, the singular expansion for T (x, 0) carries over to a singular expansion
for H(x) around the dominant singularity ρ. Applying this to (11), we obtain a singular
expansion for Tt . By the method of singularity analysis we find that the mean has the
form μn + O(1) for a constant μ given by

μ = G(ρ, τ )

τ
.
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For given classes of Galton–Watson trees with bounded degrees, we can estimate the
constant μ numerically by truncating the series

G(x, t) = x
∑

B

∞∑

m=1

log(m!)
m! (W (B)x |B|)m�(m)(t − W (B)x |B|)

and approximating its value at (x, t) = (ρ, τ ).
To find the variance we need to study Ttt (x, 0), and, again by [22], we have (slightly

modified to account for the change of variables u → et )

Ttt (x, 0) = �′′(T (x, 0))

�(T (x, 0))
xTx (x, 0)Tt (x, 0)2

+ xTx (x, 0)

T (x, 0)

∑

T ∈T
f (T )(2F(T ) − f (T ))w(T )x |T |,

It is enough to show that the final sum is well behaved. We note that

2F(T ) − f (T ) = 2
∑

B∈BI (T )

mult(B)F(B) + f (T ),

so that we need to study the sums

∑

T ∈T
w(T )x |T | f (T )2,

and

∑

T ∈T
w(T )x |T | f (T )

∑

B∈BI (T )

mult(B)F(B).

These expressions can be shown to have a larger region of convergence than Ttt (x, 0)
by arguments akin to those we used for H(x). This means that we can get a singular
expansion of Ttt (x, 0), and an application of singularity analysis together with division
by [xn]T (x, 0) gives us the asymptotic behavior of E(log(|Aut T |)2). The variance is
then obtained by subtractingE(log(|Aut T |))2.Wefind that it has the form σ 2n+O(1)
for someconstantσ 2 that canbe calculated.Note, in particular, that there is cancellation
of terms of order n2, a common feature for these types of additive functionals due to
Theorem 4 where both the mean and variance is of order n.

We can, for example, estimate the moments for full binary trees (where every
internal vertex has two children) and pruned binary trees (where every internal vertex
has a left child, a right child, or both). Full binary trees have mean constant μ ≈
0.0939359 and variance constant σ 2 ≈ 0.0252103, and in the case of pruned binary
trees we get μ ≈ 0.0145850 and σ 2 ≈ 0.0084835. Both of these classes are closely
related to the phylogenetic trees studied in [4], and the mean constants above agree
with the one for phylogenetic trees after translating between the models.
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3.3.2 Labeled Trees

We now show how the constants μ and σ 2 in Theorem 1 can be computed for labeled
trees with fairly good accuracy. To this end, we use the functional equation (8). Note
that we can rewrite it in terms of an analogously defined exponential generating func-
tion for rooted labeled trees. Set

R(x, t) =
∑

T ∈R
|Aut T |t x |T |

|T |! ,

the sum now being over the set R of all rooted labeled trees. Since the number of
distinct ways to label a Pólya tree T is |T |!/|Aut T |, we have the relation

R(x, t) = P(x, t − 1),

so the functional equation for Pólya trees immediately translates to a functional equa-
tion for labeled trees:

R(x, t) = x exp

⎛

⎝
∞∑

j=1

c( j, t − 1)

j
R(x j , j t − j + 1)

⎞

⎠ . (12)

When t = 0, one verifies easily (compare the calculations below for the derivative
with respect to t) that c( j,−1) = 0 for j > 1 and c(1,−1) = 1, so the functional
equation reduces to R(x, 0) = x exp(R(x, 0)) as expected.

In order to determine the desired moments, we need to consider the derivatives with
respect to t . To this end, let x1, x2, . . . be auxiliary variables, and note first that

∑

j≥0

y j
∑

λ� j

∏

k≥1

xλk
k

λk !k!λk
=

∏

k≥1

∑

λk≥0

xλk
k ykλk

λk !k!λk

=
∏

k≥1

exp
( xk yk

k!
)

= exp
(∑

k≥1

xk yk

k!
)
.

Differentiating with respect to xm and plugging in x1 = x2 = · · · = x yields

∑

j≥0

y j
∑

λ� j

x |λ|−1λm

∏

k≥1

1

λk !k!λk
= ym

m! exp
(∑

k≥1

xyk

k!
)

= ym

m! exp(x(ey − 1)).

Consequently,

∑

λ� j
|λ|=r

λm

∏

k≥1

1

λk !k!λk
= [xr−1y j ] ym

m! exp(x(ey − 1)) = [y j−m] (e
y − 1)r−1

(r − 1)!m! .
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By definition, we have

d

dt

c( j, t)

j
=

∑

λ� j

(−1)|λ|−1

|λ|
( |λ|

λ1, λ2, . . .

) ( ∞∏

n=1

n!λn t

) ∞∑

m=1

λm log(m!),

which therefore becomes

d

dt

c( j, t)

j

∣∣∣
t=−1

=
∞∑

r=1

∞∑

m=1

(−1)r−1(r − 1)!
∑

λ� j
|λ|=r

λm log(m!)
∏

k≥1

1

λk !k!λk

=
∞∑

r=1

∞∑

m=1

(−1)r−1(r − 1)! log(m!)[y j−m] (e
y − 1)r−1

(r − 1)!m!

=
∞∑

m=1

log(m!)
m! [y j−m]e−y =

j∑

m=1

log(m!)
m!

(−1) j−m

( j − m)!

= 1

j !
j∑

m=1

(−1) j−m
(

j

m

)
log(m!) = 1

j !
j∑

m=1

(−1) j−m
(

j − 1

m − 1

)
log(m).

Let us write d( j) for this expression. Differentiating (12) with respect to t and
setting t = 0, we get

Rt (x, 0) = x exp

⎛

⎝
∞∑

j=1

c( j,−1)

j
R(x j , 1 − j)

⎞

⎠

×
∞∑

j=1

(
c( j,−1)Rt (x j , 1 − j) + d

dt

c( j, t)

j

∣∣∣
t=−1

R(x j , 1 − j)
)

= R(x, 0)
(

Rt (x, 0) +
∞∑

j=1

d( j)R(x j , 1 − j)
)
.

This can be solved for Rt (x, 0):

Rt (x, 0) = R(x, 0)

1 − R(x, 0)

∞∑

j=2

d( j)R(x j , 1 − j).

Here, we are using the fact that d(1) = 0. Now note that d( j) rapidly goes to 0 due
to the factor j ! in the denominator and that the functions R(x j , 1− j) are all analytic
in a larger region than R(x, 0). Therefore, we can directly apply singularity analysis,
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based on the well-known singular expansion

R(x, 0) = 1 − √
2(1 − ex) + · · ·

of R(x, 0) at its singularity 1
e , which yields

Rt (x, 0) ∼ 1√
2(1 − ex)

∞∑

j=2

d( j)R(e− j , 1 − j).

The infinite series converges rapidly, allowing for a fairly accurate numerical compu-
tation. The mean constant μ in this special case is found to be μ = 0.0522901 . . .,
and similar calculations for the second derivative yield the variance constant σ 2 =
0.0394984 . . ..

4 The Automorphism Group of Pólya Trees

SinceTheorem4 is not available for Pólya trees,wewant to prove asymptotic normality
by using generating functions and singularity analysis. Recall that we defined the
bivariate generating function P(x, t) = ∑

T ∈P et log |Aut T |x |T |. We now let B(T )

denote the set of root branches of a particular tree, and BI (T ) denote the set of unique
root branches up to isomorphism. Observe that for Pólya trees there is exactly one tree
in every isomorphism class so it will not be necessary to introduce separate notation
for such classes.

By considering only the terms corresponding to the star on n vertices, for each n,
we obtain

∑

n

(n − 1)!t xn .

This is not analytic for any choice of t > 0 and, thus, neither is the original generating
function. This is themain obstacle in proving asymptotic normality. To circumvent this
problem, we will introduce a cut-off, ignoring the contribution of highly symmetric
vertices. This is similar to the proof of Theorem 4 in [20], but there the cut-off is
in terms of the size of the tree instead of symmetric vertices. We can then use the
following approximation result to extend the result from the cut-off random variables
to the full additive functional.

Lemma 3 Let (Xn)n≥1 and (Wn,N )n,N≥1 be sequences of centered random variables.
If we have

1. Wn,N
d−→
n

WN and WN
d−→ W for some random variables W , W1, W2, . . ., and

2. Var(Xn − Wn,N ) −→
N

0 uniformly in n,

then Xn
d−→ W .
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This result follows e.g. from [12, Theorem 4.28]. We will apply Lemma 3 to variables
Xn defined by

log |AutPn| − E(log |AutPn|)√
n

,

and Wn,N being the, similarly normalized, random variable for the additive functional
F≤N (T ), defined by having the toll function:

f ≤N (T ) =
∑

B∈BI (T )

I (mult(B) ≤ N ) log(mult(B)!).

We note that F(T ) − F≤N (T ) = F>N (T ) for an additive functional defined by

f >N (T ) =
∑

B∈BI (T )

I (mult(B) > N ) log(mult(B)!),

so that we will, in fact, be interested in Var(F>N (Tn)) for the second condition of
Lemma 3. By straightforward modifications of (7), we can define the generating func-
tions

P≤N (x, t) =
∑

T ∈P
et F≤N (T )x |T |

and

P>N (x, t) =
∑

T ∈P
et F>N (T )x |T |

for the corresponding cut-off functionals.

4.1 Mean andVariance

We can now derive moments for the additive functionals F, F≤N , F>N with the help
of generating functions and singularity analysis. The calculations are essentially the
same in all cases so, to simplify the exposition, we perform them only for F and
indicate in the end how the results differ.

Due to general principles of generating functions, studying the mean and variance
corresponds to studying Pt (x, 0) and Ptt (x, 0). According to calculations for general
additive functionals from [22], we can write

Pt (x, 0) = x Px (x, 0)

∑
T f (T )x |T | + P(x, 0)

∑
k≥2 Pt (xk, 0)

P(x, 0)(1 + ∑
k≥2 xk Px (xk, 0))

, (13)
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and

Ptt (x, 0) = x Px (x, 0)

P(x, 0)(1 + ∑
k≥2 xk Px (xk, 0))

(
P(x, 0)

( ∑

k≥1

Pt (xk, 0)
)2

+P(x, 0)
∑

k≥2

k Ptt (xk, 0) +
∑

T

x |T | f (T )(2F(T ) − f (T ))

)
, (14)

for the first and second derivative. To perform singularity analysis, we must first find
singular expansions for these expressions. To this end, we study the sums involved in
them separately.

Recall that ρp = 0.33832 . . . is the dominant singularity of P(x) = P(x, 0). Using
the facts thatρp < 1 so thatρm

p < ρp form ≥ 2 and that log |Aut T | = O(|T | log |T |),
we see that the derivatives involving higher powers of x are analytic in a larger region
than P(x, 0). Now, note that we can rewrite

2F(T ) − f (T ) = 2
∑

B∈B(T )

F(B) + f (T ),

so that it is enough to study
∑

x |T | f (T )
∑

F(B) and
∑

x |T | f (T )2, as well as∑
x |T | f (T ). We will now show that we can factor each of these expressions as

P(x, 0) times some function that is analytic in a larger radius than ρp. For the sum in
the expression for the mean, we have

∑

T

x |T | f (T )

=
∑

T

x |T | ∑

B∈BI (T )

log(mult(B)!) =
∑

B∈P

∞∑

m=1

log(m!)
∑

T :mult(B)=m

x |T |

=
∑

B∈P

∞∑

m=1

log(m!)xm|B|(P(x, 0) − x |B| P(x, 0))

= P(x)
∑

B∈P

∞∑

m=1

log(m!)xm|B|(1 − x |B|) = P(x)
∑

B∈P

∞∑

m=2

log(m)xm|B|,

where we note that P(x, 0) − x |B| P(x, 0) equals the generating function for Pólya
trees without B as a root branch. By taking absolute values, we can now bound

∑

B∈P

∞∑

m=2

log(m)|x |m|B| = O

( ∑

B∈P
|x |2|B|

)
,

as long as |x | < 1. The extra power of 2 means that the sum converges for |x | <√
ρp < 1, so by the Weierstrass M-test, we have analyticity in a larger region than for

the original generating function P(x).
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For the sum involving
∑

F(B), we have

∑

T

x |T |
⎛

⎝
∑

B∈BI (T )

log(mult(B)!)
⎞

⎠

⎛

⎝
∑

B∈BI (T )

mult(B)F(B)

⎞

⎠

=
∑

B∈P
F(B)

∞∑

m=1

m log(m!)
∑

T :mult(B)=m

x |T |

+
∑

B1,B2∈P :
B1 �=B2

∑

m1,m2≥1

log(m1!)m2F(B2)
∑

T :mult(B1)=m1
mult(B2)=m2

x |T |.

Using the fact that
∑

B F(B)xm|B| = Pt (xm, 0) and performing calculations similar
to above, the first sum can be seen to be

P(x, 0)
∞∑

m=2

log(m!mm−1)Pt (xm, 0),

where the sum is analytic in a larger region than the original function. To deal with
the other sum, we first rewrite

∑

T :mult(B1)=m1
mult(B2)=m2

x |T | = P(x, 0)xm1|B1|(1 − x |B1|)xm2|B2|(1 − x |B2|).

Then, we note that

∑

B1:
B1 �=B2

F(B1)

∞∑

m1=1

m1xm1|B1|(1 − x |B1|)

=
∞∑

m1=1

∑

B1:
B1 �=B2

F(B1)xm1|B1| =
∞∑

j=1

Pt (x j , 0) −
∞∑

j=1

F(B2)x j |B2|.

These observations let us rewrite the larger sum as

P(x, 0)

⎛

⎝
∞∑

j=1

Pt (x j , 0)

⎞

⎠
∞∑

m=1

log(m!)xm|B|(1 − x |B|)

−P(x, 0)
∑

B

F(B)

∞∑

m=1

log(m!)xm|B|(1 − x |B|)
∞∑

j=1

x j |B|.

The first of these two sums can now be dealt with using calculations identical to those
performed earlier, and further simplifications for the second sum allow us to rewrite
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the whole expression as P(x, 0) multiplied by

((
Pt (x, 0) +

∞∑

m=2

Pt (xm, 0)

)
∑

B

∞∑

m=2

log(m)xm|B| −
∞∑

m=2

log(m!)Pt (xm+1, 0)

)
.

The sum
∑

x |T | f (T )2 can be dealt with using similar techniques and we conclude
that we can rewrite (13) and (14) as

Pt (x, 0) = x Px (x, 0)
H(x) + ∑

k≥2 Pt (xk, 0)

(1 + ∑
k≥2 xk Px (xk, 0))

,

Ptt (x, 0) = x Px (x, 0)

(1 + ∑
k≥2 xk Px (xk, 0))

((
Pt (x, 0) +

∑

k≥2

Pt (xk, 0)
)2

+
∑

k≥2

k Ptt (xk, 0) + 2(Pt (x, 0)H(x) + K (x)) + L(x)

)
, (15)

for functions H(x), K (x) and L(x) that are analytic in a larger region than P(x, 0).
We can now deduce singular expansions for Pt (x, 0) and Ptt (x, 0) by using

the well known expansion of Px (x, 0). The process of singularity analysis then
gives asymptotic expressions for the first two raw moments after division by (the
asymptotic expansion of) [xn]P(x, 0). The variance is obtained by considering
E(log(|Aut T |)2) − E(log(|Aut T |))2, where cancellation of terms of order n2 gives
that both the variance and the mean is of order n. Numerical computations yield
μ = 0.1373423 . . . and σ 2 = 0.1967696 . . ..

If we instead consider F≤N (T ) or F>N (T ), the extra indicator function introduced
in the expression will carry trough the calculations and affect the indices in the sums.
In the sums with index m above, we will sum up to m = N in the first case and sum
from m = N + 1 to infinity in the second. In the case of F>N (T ), the corresponding
analytic functions H>N (x), K >N (x) and L>N (x) will converge to zero within their
region of convergence when N → ∞.

4.2 Asymptotic Normality for log |AutPn|

If we introduce a cut-off and study F≤N instead of log |Aut T |, we can perform
calculations completely analogous to the ones we did for (8) to obtain the functional
equation

P≤N (x, t) = x exp

⎛

⎝P≤N (x, t) +
∞∑

j=2

cN ( j, t)

j
P≤N (x j , j t)

⎞

⎠ , (16)
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where we define

cN ( j, t) = j
∑

λ� j

(−1)|λ|−1

|λ|
( |λ|

λ1, λ2, . . .

)(
N∏

n=1

n!λn t

)
.

Except for the root, every vertex in the tree occurs as the child of some other vertex.
This implies that it contributes to exactly one of the terms

I (mult(B) ≤ N ) log(mult(B)!),

in the expansion of F≤N (T ). Thus, as a crude upper bound, each of the n vertices
contributes at most log N ! to the total value of the additive functional. Therefore, we
see that F≤N (T ) = O(n) and, if we restrict to |t | < δ for some suitable δ > 0,

G(x, y, t) := x exp

⎛

⎝y +
∞∑

j=2

cN ( j, t)

j
P≤N (x j , j t)

⎞

⎠

is analytic in a region containing x = ρp, y = τ . Theorem 2.23 in [5] now gives
asymptotic normality for F≤N (T ), i.e. WN ∼ N(0, σ 2

N ) for some constant σ 2
N .

Note that

Var(Xn − Wn,N ) = Var(F(Pn) − F≤N (Pn))

n
.

Since F(T ) − F≤N (T ) = F>N (T ), we want to show that Var(F>N (Tn))/n → 0
when N → ∞which leads us to study P>N

tt (x, t). The reasoning from the last section
shows that coefficients in Taylor expansions of H>N (x), K >N (x) and L>N (x) around
x = ρp go to zero as N → ∞. By dominated convergence, the same is true for the
expressions

∑

k≥2

P>N
t (xk, 0) and

∑

k≥2

k P>N
tt (xk, 0),

since all terms of P>N
t and P>N

tt involve powers of F>N (T ) and these go to zero
for any fixed tree as N → ∞. By studying (15) (except with P>N

tt (x, t) instead of
Ptt (x, t)) we see that all the coefficients in the singular expansion of P>N

tt (x, t) depend
on these quantities.

We can derive a singular expansion for P>N
tt (x, t) in a way analogous to the one

indicated for Ptt (x, t) in the last subsection. This expansion must be of the type

aN

(
1 − x

ρp

)−3/2

+ bN

(
1 − x

ρp

)−1

+ cN

(
1 − x

ρp

)−1/2

+ ON (1),

where each coefficient, as well as the error, goes to zero with N by the reasoning
above. If we now perform singularity analysis and divide by [xn]P(x, 0), we get the
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second raw moment for this modified functional. We can derive a singular expansion
for P>N

t (x, t) (of leading order − 1
2 ) which also has the property that all coefficients

go to zero with N . Then, subtracting E(F>N (Pn))2 and observing cancellation of
n2-terms, we obtain

Var(F>N (Pn)) = γ 2
N n + ON (1) .

Here, γN goes to 0 as N → ∞ since it relies on the coefficients of the singular
expansions of P>N

t (x, t) and P>N
tt (x, t). We then divide by n to get

Var(Xn − Wn,N ) = γ 2
N + ON

(
1

n

)
.

Note that the O-term converges to zero as N → ∞ and that this convergence is
uniform in n. This implies that the variance of Xn − Wn,N goes to zero uniformly
for all n so that Lemma 3 applies. Thus, we can conclude asymptotic normality for
log |AutPn| from the asymptotic normality of F≤N (Pn) and finish the proof.

5 Automorphisms of Unrooted Trees

We show how to extend our results to unrooted versions of labeled trees and Pólya
trees. Even though it is not clear what an unrooted version of a Galton–Watson tree
is in general, some special cases can be dealt with using methods similar to the ones
below, e.g. labeled unrooted binary trees.

5.1 Unrooted Labeled Trees

We can define unrooted labeled trees on the same probability space as rooted trees by
taking a rooted tree and unrooting it. As there are exactly n unique ways of rooting any
labeled tree, this gives the uniform probability measure on unrooted trees, assuming
that we started with the uniform measure on rooted trees.

Now let T be a rooted tree of size n and Tv be the tree rooted at the vertex v. Note
that Aut Tv is the stabilizer of v in Aut T . Thus, we have

1 ≤ |Aut T |
|Aut Tv| = |Orbit of v| ≤ |T |,

due to the orbit-stabilizer theorem [1, Lemma6.1]. Taking logarithms and normalizing,
we find that

0 ≤ log |Aut T | − μn√
n

− log |Aut Tv| − μn√
n

≤ log n√
n

, (17)

with μ being the mean constant for rooted labeled trees from Theorem 1. If we let
Xn = log |Aut T |−μn√

n
and likewise Yn = log |Aut Tv |−μn√

n
for rooted trees, then we see
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that we have almost sure convergence of Xn − Yn to 0, and thus also convergence
in probability. Slutsky’s theorem together with the result for rooted trees now lets us
conclude that

Xn = Xn − Yn + Yn
d−→ N (0, σ 2),

with σ 2 also coming from the theorem for rooted trees.

5.2 Unrooted Pólya Trees

We derive an analog of equation (5) that takes the size of the automorphism group into
account. Let us first recall that a centroid of a tree is a vertexwith the property that none
of the components obtained by removing it contains more than half of the vertices. It
is a classical result going back to Jordan [11] (see also e.g. [13, Ex. 6.21a]) that every
tree has either a unique centroid (which we then call a central vertex) or two centroids,
connected by an edge (called a central edge). Centroid vertices are also characterized
by the property that the sum of the distances to all other vertices is minimized.

A central edge that connects two isomorphic trees will be called a symmetry line
and the term “central edge” will be reserved for edges between centroid vertices that
are not symmetry lines. The difference between the automorphisms of rooted trees
compared to unrooted trees is that in the latter case any automorphism must preserve
edges but not necessarily the root. We now have a bijection between Pólya trees P
and the union of unrooted trees U and pairs of Pólya trees P1, P2 ∈ P with P1 �= P2.
Observe that for a rooted tree, there are four cases:

1. The root is a central vertex. There is a bijection from such trees to unrooted trees
with a central vertex and, furthermore, any automorphism must preserve a central
vertex so that the two trees have the same group of automorphisms.

2. The root is one endpoint of a symmetry line. We have a bijection between trees
with a symmetry line where one of its endpoints is the root and unrooted trees with
a symmetry line. We simply root the tree at one of the endpoints and note that we
get the same rooted Pólya tree no matter which endpoint we choose. Any automor-
phism must preserve the central edge, but due to symmetry any automorphism of
the rooted tree corresponds to two automorphisms of the unrooted version since
we can map the endpoints of the symmetry line into each other.

3. The root is one endpoint of a central edge. First note that we have a bijection
between unrooted trees with a central edge Uce and pairs of rooted trees P p

ce that,
if joined by an edge at the roots, result in a tree with that edge as central. We now
have a bijection between the union Uce ∪P p

ce and rooted trees with a central edge
where one of the two endpoints is the root. This can be seen by, in the former case,
choosing one of the vertices of the central edge as the root. This means that we
have two cases to consider: a given rooted tree corresponds to an unrooted treewith
a central edge or it corresponds to a pair of rooted trees. In the first case, we note
that any automorphism of an unrooted tree must preserve the central edge, and as
it is not a symmetry line this implies that it must fix the root. For rooted trees in
bijection with pairs of rooted trees we note that the two trees must be different but
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have the same size implying that no additional symmetry can occur when joining
them. In both cases, the size of the automorphism group of the rooted tree is the
same size as its counterpart.

4. The root satisfies none of the above. Then one root branch contains strictly more
than half of the vertices and the tree decomposes into an unordered pair of rooted
trees, i.e., the large branch and the rest of the tree (including the root). As the
trees have different sizes this makes the decomposition unique and the size of the
automorphism group of the original tree is simply the product of the groups of the
two subtrees.

Let Uc(x, t) be the generating function for unrooted trees with a central vertex and
Ue(x, t) be the generating function for unrooted trees with a central edge or sym-
metry line. Combining the observations from above, and translating it to the level of
generating functions, we find that

P(x, t) = Uc(x, t) + Ue(x, t) − 2t P(x2, 2t) + P(x2, 2t) + 1

2
P(x, t)2 − 1

2
P(x2, 2t)

where the two middle terms involving P(x2, 2t) are correction terms corresponding
to point 2. above and the last two terms count unordered pairs of distinct rooted trees
corresponding to point 3. By noting thatU (x, t) = Uc(x, t)+Ue(x, t) and rearranging
we get

U (x, t) = P(x, t) − 1

2
P(x, t)2 +

(
2t − 1

2

)
P(x2, 2t)

which is enough to obtain moments for log |Aut T | and calculations show that the
mean and variance constants are the same as for rooted trees.

To extend the results for rooted trees to a full central limit theorem we use the far-
reaching result in [21, Theorem 1.3]. This theorem shows that the random unrooted
tree Un on n vertices is close to a tree Tn obtained by identifying the roots of a rooted
Pólya tree PKn (of random size Kn) and a tree Bn of stochastically bounded size
|Bn| = n − Kn + 1 = OP (1). To be precise, the total variation distance between Un

and Tn is O(e−cn) for a constant c > 0.
In other words, an unrooted tree essentially consists of a large rooted Pólya tree

and something small. Thus, we have

P

(
log |AutUn| − μn√

n
≤ a

)
= P

(
log |Aut Tn| − μn√

n
≤ a

)
+ O(e−cn). (18)

Moreover, if |Bn| ≤ M for some fixed M , then we have log |Aut Tn| =
log |AutPKn | + O(log n) by the same argument that gave us (17), and consequently

log |Aut Tn| − μn√
n

= log |AutPKn | − μn√
n

+ O
( log n√

n

)

= log |AutPKn | − μKn√
Kn

+ O
( log n√

n

)
.
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Since |Bn| = n − Kn + 1 is stochastically bounded, we see that

log |Aut Tn| − μn√
n

− log |AutPKn | − μKn√
Kn

p−→ 0.

So an application of Slutsky’s theorem in combination with (18) and the results for
rooted Pólya trees proves the central limit theorem for the size of the automorphism
group in the case of unrooted trees.
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