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Abstract
Consider Young diagrams of n boxes distributed according to the Plancherel measure.
So those diagrams could be the output of the RSK algorithm, when applied to random
permutations of the set {1, . . . , n}. Here we are interested in asymptotics, as n → ∞,
of expectations of certain functions of randomYoung diagrams, such as the number of
bumping steps of the RSK algorithm that leads to that diagram, the side length of its
Durfee square, or the logarithm of its probability. We can express these functions in
terms of hook lengths or contents of the boxes of the diagram, which opens the door
for application of known polynomiality results for Plancherel averages.We thus obtain
representations of expectations as binomial convolutions, that can be further analyzed
with the help of Rice’s integral or Poisson generating functions. Among our results
is a very explicit expression for the constant appearing in the almost equipartition
property of the Plancherel measure.

Keywords Robinson–Schensted algorithm · Young diagram · Plancherel measure ·
Durfee square · Asymptotic expansion · Vershik–Kerov conjecture

1 Introduction

We identify Young diagrams (sets consisting of left aligned decreasingly ordered
rows of square boxes) with partitions λ = (λ1, . . . , λk) with λ1 ≥ λ2 ≥ · · · ≥ λk ,
and denote |λ| = λ1 + . . . + λk . The notation λ � n then signifies that λ is a partition
of n, i.e., |λ| = n. We let Y (π) = Yλ := ∑k

�=1 λ�(� − 1) denote the number of
bumping steps of the Robinson–Schensted algorithm (see Figs. 1 and 2) when applied
to a permutation π that is mapped to a pair of standard Young tableaux of shape λ.
A standard Young tableau is a Young diagram λ filled with numbers 1, . . . , |λ| in a
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way such that numbers in each row and each column are increasing. See e.g. [23,
Sect. 1.6] or [24, Sect. 3.1] for nice expositions of the algorithm and references to the
original articles by Gilbert de Beauregard Robinson, by Craige Eugene Schensted,
and by Donald Ervin Knuth, who significantly widened the scope of the algorithm,
the abbreviation with reference to all three authors, RSK algorithm, now frequently
being used also to refer to the original Robinson–Schensted algorithm.

We denote by Yn the restriction of Y (π) to permutations of the set {1, 2, . . . , n}
chosen uniformly at random. The Young diagrams λ obtained by the RSK algorithm

are then distributed according to the nth Plancherelmeasure, i.e., IPl(n)(λ) = f 2λ
n! = n!

p2λ
,

where fλ is the number of standard Young tableaux of shape λ, satisfying fλ = n!
pλ
,

and where pλ := ∏u∈λ hu denotes the product of the hook lengths of the diagram λ,
see [7]. Here the hook length hu of a particular box u of λ is one more than the number
of boxes to the right of u plus the number of boxes below u. Note that Yλ has also the
meaning of |λ| times the y-coordinate of the barycenter of the set

Sλ := {(i, j) ∈ Z
2 : 0 ≤ j ≤ k − 1, 0 ≤ i ≤ λ j+1 − 1},

which is just the set of lower left corners of the boxes of λ in French notation, which
addresses boxes by Cartesian coordinates of the first quadrant. Apart from here we
always stick to English notation with its matrix style indexing of boxes. Note that
Xλ, the x-coordinate of the barycenter of Sλ, is given by Yλ′ , where λ′ is the partition
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Fig. 1 Tableaux P and Q, as they evolve when subjecting the RSK algorithm to the permutation π =
(75186342). P is constructed by row insertions of elements of π one by one, while Q is recording the
position of boxes as they are added

2 → 1 3 4

5 6
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Fig. 2 Detailed insertion of 2 into the second to last tableau P . Inserting 2, 3, and 5 into their (shaded)
destination boxes causes bumps of elements down one row, being now in need of insertion themselves. In
the last step, 7 is the largest element of row four, so this insertion happens without a pump
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conjugate to λ, its parts being defined by λ′
j := |{i : λi ≥ j}|. Stated differently, λ and

λ′ are mirror images of one another with respect to the main diagonal (upper left to
lower right). The sets of hook lengths are therefore the same for λ and λ′, which yields
invariance of Plancherel measure under conjugation. Thus Xn and Yn are identical in
distribution. This allows for a representation of IEYn and VarYn in terms of Xn + Yn
and Xn − Yn ,

IEYn = 1
2 IE (Xn + Yn),

VarYn = 1
2 (Var Xn + VarYn) = 1

4

(
Var (Xn + Yn) + Var (Xn − Yn)

)
.

Note that we can express Xλ − Yλ, resp. Xλ + Yλ, in terms of contents {cu : u ∈ λ},
resp. hook lengths {hu : u ∈ λ}, of the diagram λ:

Xλ − Yλ =
∑

u∈λ

cu, Xλ + Yλ =
∑

u∈λ

hu − |λ|. (1.1)

Here the content cu of a box u = (i, j) of λ is j − i , i.e., the column number of u
minus the row number of u, see Fig. 3 for an illustration of hook lengths, contents, and
bumping step counts. For a proof of (1.1) note

Yλ =
k∑

i=1

λi (i − 1) =
∑

(i, j)∈λ

(i − 1) =
λ1∑

j=1

λ′
j∑

i=1

(i − 1) =
λ1∑

j=1

λ′
j∑

i=1

(λ′
j − i)

=
∑

(i, j)∈λ

(λ′
j − i),

and similarly

Xλ = Yλ′ =
∑

(i, j)∈λ

( j − 1) =
∑

(i, j)∈λ

(λi − j),

leading to Xλ−Yλ = Yλ′−Yλ = ∑

(i, j)∈λ

[
( j−1)−(i−1)

]
= ∑

(i, j)∈λ

( j−i) = ∑

u∈λ

cu and

Xλ+Yλ+|λ| = ∑

(i, j)∈λ

[
(λi − j)+(λ′

j −i)+1
]

= ∑

u∈λ

hu , where (λi − j)+(λ′
j −i)+1

is clearly the hook length of box (i, j).
Further functions of λ that can be written in terms of hook lengths or contents are

log pλ = ∑
u∈λ log(hu) making its appearance in Sect. 3, and D(λ) = ∑

u∈λ δ0,cu ,
the number of boxes of λ on the main diagonal, that we will meet in Sect. 4.

Being able to express some function of λ in terms of the contents or hook lengths
of the boxes of λ can allow us to employ the polynomiality results for Plancherel
averages derived by Stanley [26].

Theorem 1.1 ([26, Theorems2.1, 4.3]) Let F(x) be a formal power series over Q
of bounded degree that is symmetric in the variables x = (x1, x2, . . .). Then both
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Fig. 3 The partition (5, 3, 1, 1) � 10, drawn as Young diagram, filled from left to right with bumping step
counts, sums of box coordinates, hook lengths, and contents. The sum of the entries of the second diagram
is 10 less than the sum of the hook lengths

averages

1

n!
∑

λ�n
f 2λ F(cu : u ∈ λ) and

1

n!
∑

λ�n
f 2λ F(h2u : u ∈ λ)

are polynomial functions of n.

Note that an even more general result is given in [26, Theorem4.4]. See also [20]
for alternative proofs and further generalizations.

The proof of [26, Theorem2.1] restricts w. l. o. g. to elementary symmetric func-
tions indexed by partitions μ = (μ1, . . . , μk), i.e., to functions F(·) = eμ(·) =
∏k

i=1 eμi (·), where em(x1, x2, . . .) = ∑
i1<···<im xi1 . . . xim for m ≥ 1. As remarked

in [26] right below that proof, the resulting polynomial Nμ is of degree |μ| if and only
if |μ| is even and μ1 ≤ |μ|

2 , otherwise, Nμ = 0. Here is an immediate application of
these degree considerations.

Lemma 1.2 Var (Xn − Yn) = (n2
)
.

Proof Since IE (Xn − Yn) = 0, we have

Var (Xn − Yn) = 1

n!
∑

λ�n
f 2λ

(∑

u∈λ

cu

)2

= n(n − 1)

2
.

Note that here we have F(cu : u ∈ λ) = (
e1(cu : u ∈ λ)

)2, i.e., μ = (1, 1). The
polynomial Nμ is therefore of degree 2, and it is completely determined by its values
at n ∈ {0, 1, 2}, which are Nμ(0) = Nμ(1) = 0, Nμ(2) = 1, proving the claim. The
result Nμ(n) = n(n−1)

2 is also stated as a special case in [26, p. 94]. 	

Aworkaround is needed for Var (Xn+Yn), or even IE (Xn+Yn), because Xλ+Yλ is

not a symmetric function of {h2u : u ∈ λ}, but only of {hu : u ∈ λ}. Finding a series rep-
resentation x = ∑

k≥0 ak pk(x
2) with polynomials pk , that holds for integers x ≥ 1,

(but need not hold or even converge elsewhere) would allow, interchanging summa-
tions, to apply the polynomiality results termwise. If we are lucky—and we are—the
polynomials pk have well known Plancherel averages. Such kind of workaround is
employed in this paper to deal with Plancherel averages of several interesting func-
tions of partitions, leading firstly to a representation of the expectation as a binomial
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Table 1 Some functions of partitions λ � 4 and their expectations with respect to Plancherel measure

λ IE

IPl(4)(λ) 1
24

3
8

1
6

3
8

1
24

Xλ − Yλ 6 2 0 −2 −6 0

Xλ + Yλ 6 4 4 4 6 25
6

log IPl(4)(λ) log 1
24 log 3

8 log 1
6 log 3

8 log 1
24

8
3 log 1

2 + log 3
2

D(λ) 1 1 2 1 1 7
6

convolution, that is free of references to partitions, and can be analyzed using Rice’s
integral, or Poisson generating functions. In some cases holonomicity of the sequence
of expectations can be inferred from the binomial convolution representation. This then
allows for fast computation of many terms, that can be used to numerically confirm
error terms, or conduct experiments.

The paper is organized as follows: In Sect. 2 we consider the expected number
of bumping steps in the RSK algorithm. In particular, we derive asymptotics for
IE (Xn + Yn), thus refining the result obtained by Romik [22]. In Sect. 3 we con-
sider IE log IPl(n)(λ), with λ distributed according to Plancherel measure. From the
first asymptotic terms we obtain a very explicit representation of a constant appearing
in an almost equipartition property (abbreviated AEP) for Plancherel measure, con-
jectured in [28], and proven in [4]. In Sect. 4 we derive asymptotics of the expectation
of the side length D(λ) of the Durfee square of λ, i.e., the largest square fitting in
the upper left corner of the Young diagram of λ, when partitions λ are distributed
according to Plancherel measure, see Table 1. Considering in Sect. 5 more generally
lengths of south-east directed cuts through the Young diagram of λ, we enter the realm
of a sequence of random curves ψλ known to converge uniformly in probability to the
Logan-Shepp-Vershik-Kerov limit shape curve � for |λ| → ∞. For any fixed integer

a the sequence with terms
√
nIEψλ

(
a√
2n

)
, with expectation computed with respect

to IPl(n), turns out to be holonomic. Experiments then strongly hint at convergence of

IEψλ

( �u√
2n√
2n

)
→ �(u), uniformly in u, and reveal that second order terms show

interesting fluctuations. However we are only able to prove asymptotic results in the
case of fixed a, i.e., in the vicinity of u = 0. In Sect. 6 we return to the number Yn
of bumping steps, giving a heuristic argument for VarYn = O(n2), based on the limit
shape curve.

2 Refined Asymptotics of the Expected Number of Bumping Steps in
the RSK Algorithm

Recall that IE (Xn+Yn) = 2IEYn denotes twice the expected number of bumping steps
of the RSK algorithm when applied to a random permutation of {1, . . . , n}. Romik

123



La Matematica (2023) 2:668–691 673

[22, Eq. (1)] derived the following asymptotic result, IEYn ∼ 128
27π2 n

3
2 , and showed

Yn/IEYn → 1 in probability. The sequence of interest starts

(
IE (Xn + Yn)

)10
n=1 = (0, 1, 7

3 ,
25
6 , 19

3 , 44
5 , 347

30 , 8181
560 , 541273

30240 , 1943453
90720

)
.

The next theorem leads to a refinement of Romik’s asymptotic equivalent for IEYn .

Theorem 2.1 (Expected number of bumping steps in the RSK algorithm) Let δn :=
log n + 2γ + 12 log 2, with γ denoting Euler’s constant. Then

IE (Xn + Yn) = 256

27π2 n
3
2 − n + 9δn − 77

9π2 n
1
2 + 3510δn − 31589

27648π2 n− 1
2

+ 5565δn − 62224

786432π2 n− 3
2 + e8

212π3/2 cos
(
8
√
n + π

4

)
n− 7

4 + O
(
n− 9

4

)
.

Proof As Xn + Yn is not a symmetric polynomial of the multiset {h2u : u ∈ λ}, but
only of the multiset {hu : u ∈ λ}, we can not expect IE (Xn +Yn) to be a polynomial in

|λ|. Indeed, by Romik’s result, IE (Xn + Yn) = 	(n
3
2 ) is definitely not a polynomial.

However, we can invoke polynomiality results via the following identity. Using

p(x, r) :=
r∏

i=1

(x2 − i2), (2.1)

the equation

x = 1 +
∞∑

r=1

(
2r

r

)
(−1)r

(1 − 2r)(2r + 1)! p(x, r) (2.2)

holds for x ∈ N := {1, 2, 3, . . .}. This will be proved in the Appendix.
Now, by [21, Theorem1], we have

1

n!
∑

λ�n
f 2λ
∑

u∈λ

p(hu, r) = Kr

(
n

r + 1

)

, (2.3)

with Kr = (2r)!(2r+1)!
(r+1)!2r ! , leading to

IE (Xn + Yn) = 1

n!
∑

λ�n
f 2λ
∑

u∈λ

(hu−1)
(2.2)= 1

n!
∑

λ�n
f 2λ
∑

u∈λ

∞∑

r=1

(
2r

r

)
(−1)r

(1 − 2r)(2r + 1)! p(hu, r)

(2.3)=
∞∑

r=1

(
2r

r

)
(−1)r

(1 − 2r)(2r + 1)! Kr

(
n

r + 1

)

=
∞∑

r=1

(
2r

r

)2
(−1)r+1

(2r − 1)(r + 1)(r + 1)!
(

n

r + 1

)

=
n∑

r=2

(
2r − 2

r − 1

)2
(−1)r

(2r2 − 3r)r !
(
n

r

)

= (−1)n
n!
2π i

∮

C

f (z)

z(z − 1)(z − 2) · · · (z − n)
dz,
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where C is a contour that encircles integers 2, 3, . . . , n, but neither any other integers,
nor poles of f , which is given by

f (z) := 
2(2z − 1)

z2(2z − 3)
5(z)
.

For the method of evaluating a large finite difference via the so-called Rice’s integral
used above see the article [9]. By computing (leading asymptotic terms of) residues

of gn(z) := f (z) n!
(−z)

(n+1−z) at ± 3

2 , 1,± 1
2 , (note that gn(z) is analytic for z ∈ {−1, 0})

we obtain

IE (Xn + Yn) = 256n
3
2

27π2

(

1 − 3

8n
− 7

128n2
− 9

1024n3

)

− n

+ δn
n

1
2

π2

(
1 + 1

8n
+ 1

128n2

)
− 5n

1
2

π2

(

1 + 1

8n
− 1

1920n2

)

+ δn
n− 1

2

512π2

(
1 − 3

8n

)
+ n− 1

2

1024π2

(

1 + 13

8n

)

− δn
n− 3

2

218π2 + n− 3
2

214 ·3π2

+ O
(
n− 5

2 log n
)

+ 1

2π i

∮

C ′
f (z)

n!
(−z)


(n + 1 − z)
dz,

where we recall δn = log n + 2γ + 12 log 2, and where C ′ encircles the interval
[− 3

2 , n], but no poles of the integrand outside that interval. This integral is taken care
for in the appendix, yielding the contribution involving cos(8

√
n + π

4 ). Such a term
is not completely uncommon, see e.g. the example at the end of [9, Sect. 5]. Slightly
rearranging the terms completes the proof. 	


2.1 Holonomicity of the Sequence (IE (Xn + Yn) + n)n∈N

Defining

un :=
n∑

r=1

(
2r − 2

r − 1

)2
(−1)r

(2r2 − 3r)r !
(
n

r

)

,

we have IE (Xn + Yn) = un − n. The sequence (un) satisfies the linear recurrence
relation

un+4 = 4n3+23n2+63n+78
(n+3)(n+4)2

un+3 − (2n−1)(3n+2)
(n+4)2

un+2 + (4n−7)(n+2)
(n+4)2

un+1 − (n+1)(n+2)
(n+4)2

un,
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with initial conditions

u0 = 0, u1 = 1, u2 = 3, u3 = 16

3
.

Clearly, the terms un
n! comprise a sequence, that is the convolution of two sequences

that are obviously holonomic. For said convolution the gfun package [25] then easily
produces a recursion.

For the Poisson generating function U (z) := e−z∑
n≥0

un
n! z

n we obtain

U (z) = −z
∑

k≥0

(
2k

k

)2
(−z)k

(k + 1)(2k − 1)(k + 1)!2 = z 2F3

[− 1
2 ,

1
2

2, 2, 2
;−16z

]

,

a hypergeometric function that may also be used to recover asymptotics of un , see
[15, Sect. 5.11.2] for asymptotic expansions of generalized hypergeometric functions.
Indeed, the leading terms of an asymptotic expansion of U (z), provided by Maple,
together with Depoissonization via the saddle point method, yield an alternative proof
of Theorem 2.1.

Note that the recurrence relation allows for easily computing millions of terms of
the sequence (IE (Xn + Yn))n≥1, which can be used to numerically confirm the error
term in Theorem 2.1.

3 The Constant Appearing in the AEP for Plancherel Measure

We consider the random variables Zn = Zn(λ) := ∑
u∈λ log hu , where λ � n is

distributed according to the Plancherel measure, and denote zn := IE Zn . The sequence
starts

(z1, . . . , z5) =
(
0, log 2, log 2

3 +log 3, 17
6 log 2+ log 3

4 , 13
6 log 2+ 7

10 log 3+ 7
12 log 5

)

≈ (0, 0.6931471806, 1.329661349, 2.238570083, 3.209686276)

The first few asymptotic terms of zn will lead to a representation of the constant H ,
conjectured by Vershik and Kerov [28] to exist as the limit in probability of random

variables − 1√
n
log IPl(n)(λ), where IPl(n)(λ) := n!

(∏
u∈λ

1
hu

)2
, with λ � n again

distributed according to the Plancherel measure. A strengthening of the conjecture
(convergence in L p for p < ∞) has been proved by Bufetov [4], from which we
borrowed above notation, and an expression for H in terms of a threefold integral has
been given in [4, Eq. (15)]. We aim here at a less involved representation of H , and at

more terms of an asymptotic expansion of IE [n− 1
2 (2Zn − log n!)].
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Theorem 3.1 Let Hn = 1 + 1
2 + · · · + 1

n denote the nth harmonic number. Then, as
n → ∞, we have

− IE log IPl(n)(λ)√
n

= H −
(
13

24
log n + 13γ

12
+ log

√
2π + 1

4
− h′(0)

)
1√
n

+ o
(
n− 1

2
)
,

where

H = 16

3π2 (4γ + 1) + 64

π2

∑

�≥2

�2

4�2 − 1

(
log � − H� + γ + 1

2�

)

≈ 1.87702830628

and

h′(0) =
∑

�≥2

�

(

H� − log � − γ − 1

2�
+ 1

12�2

)

≈ 0.001562493.

Proof As we will prove in the appendix, the Kronecker delta defined on N×N can be
expressed in terms of the polynomials p(x, r) given in (2.1) as follows,

δ�,n =
∞∑

r=�−1

(−1)�+r+1 2�2

(r + � + 1)!(r − � + 1)! p(n, r). (3.1)

From this we deduce

log n =
∑

�≥2

log �
∑

r≥�−1

2(−1)�+r+1�2

(r + � + 1)!(r − � + 1)! p(n, r) = 2
∑

r≥2

(−1)r g(r)p(n, r − 1),

for n ∈ N, where g is given by

g(r) =
r∑

�=2

(−1)��2 log �


(r + � + 1)
(r − � + 1)
.

We want to extend g to a meromorphic function in the right halfplane �r > −1.
Therefore we employ

log � = H� − γ − 1

2�
+ 1

12�2
+ O(�−4),

and the identities (all with easy proofs, only the last one is proven in the appendix)

r∑

�=2

(−1)��2


(r + � + 1)
(r − � + 1)
= 1


(r)
(r + 2)
(3.2a)
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r∑

�=2

(−1)��


(r + � + 1)
(r − � + 1)
= 3(r − 1)

2(2r − 1)
(r)
(r + 2)
(3.2b)

r∑

�=2

(−1)�


(r + � + 1)
(r − � + 1)
= r − 1

2r
(r)
(r + 2)
(3.2c)

r∑

�=2

(−1)��2(H� − 1)


(r + � + 1)
(r − � + 1)
= 1

4(r − 1)(2r − 1)
(r)2
. (3.2d)

By Euler’s reflection formula, for complex r /∈ Z and for real � → ∞ we have


(r + � + 1)
(r − � + 1)
sin π(� − r)

π
= 
(r + � + 1)


(� − r)
∼ �2r+1.

Therefore the following series

h(r) :=
∑

�≥2

(−1)��2
log � − H� + γ + 1

2� − 1
12�2


(r + � + 1)
(r − � + 1)

converges for �r > −1, and satisfies h(1) = h(0) = 0, with h′(0) as given in the
theorem. Hence

g(z) = h(z) + 1 − γ


(z)
(z + 2)
+ 1

4(z − 1)(2z − 1)
(z)2
− (z − 1)(16z + 1)

24z(2z − 1)
(z)
(z + 2)

is the sought extension, meromorphic for �z > −1. Now

zn = 1

n!
∑

λ�n
f 2λ
∑

u∈λ

log hu = 2
∑

r≥2

(−1)r g(r)
1

n!
∑

λ�n
f 2λ
∑

u∈λ

p(hu, r − 1)

= 2
∑

r≥2

(−1)r g(r)Kr−1

(
n

r

)

= (−1)n
n!
2π i

∮

C

φ(z)

z(z − 1)(z − 2) · · · (z − n)
dz,

where

φ(z) = 2g(z)

(2z)
(2z − 1)


(z + 1)2
(z)
.

Here C is a contour that encircles integers 2, . . . , n, but neither any other integers, nor
poles of φ.

By computing (leading asymptotic terms of) residues of �n(z) := φ(z) n!
(−z)

(n+1−z)

at 1, 1
2 , and 0, we obtain
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Table 2 Some terms of the sequence approaching H

n 1√
n
(2zn − log n!) n 1√

n
(2zn − log n!) n 1√

n
(2zn − log n!)

2 0.4901290717 7 0.8208116414 128 1.4880650932

3 0.5008878635 8 0.8690239552 256 1.5781760349

4 0.649543169 16 1.0657023619 512 1.6489336120

5 0.7297992837 32 1.2347905493 1024 1.7039138626

6 0.7726513179 64 1.3748129422 2048 1.7462734777

zn = n log n − n

2
− 1

4
+ 4

9π2

(
24γ + 7 − 18πh( 12 )

)
n

1
2

− log n

48
− 13γ

24
+ 1

8
+ h′(0)

2
+ O(n− 1

2 ) + 1

2π i

∮

C ′
�n(z)dz,

whereC ′ encircles the interval [0, n], but no poles of the integrand outside that interval.
As shown in the appendix, the latter integral is o(1), thus we arrive at

−IE
log IPl(n)(λ)√

n
= IE

2Zn − log n!√
n

= 8

9π2

(
24γ + 7 − 18πh( 12 )

)
− 13

24

log n√
n

−
(
13γ

12
+ log

√
2π + 1

4
− h′(0)

)
1√
n

+ o
(
n− 1

2
)
.

Finally, for the evaluation of h( 12 ), we use
( 12+�+1)
( 12−�+1) = (−1)�+1 π
4 (4�2−

1), as well as
∑

�≥2(4�
2 − 1)−1 = 1

6 , leading to

h( 12 ) = − 4

π

∑

�≥2

�2

4�2 − 1

(
log � − H� + γ + 1

2�

)
+ 1

18π
,

which completes the proof. 	


Remark 3.2 Note that the term 2
∑

r≥2(−1)r g(r)Kr−1
(n
r

)
can be used to compute zn

for values of n so large that naively generating all partitions λ � n is not an option. Of
course, care has to be taken, since cancellations will occur in numerical computations
because of alternating signs of summands. Table 2 shows that 1√

n
(2zn − log n!) is

slowly approaching H from below, with the values obtained in [29, Table1] from
simulations fitting neatly into this pattern. The convergence rate is in good accordance
with the error term given in Theorem 3.1. Observe that 13γ

12 + log
√
2π + 1

4 − h′(0) ≈
1.792693. For n = 2048 we then get H − ( 1324 log 2048 + 1.792693)/

√
2048 ≈

1.746154, which matches the table entry fairly well.
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4 The Expected Side Length of the Durfee Square

Here we consider the side length of the Durfee square of partition λ,

D(λ) := max{i : λi ≥ i},

and we denote the restriction of D(λ) to λ � n distributed according to Plancherel
measure by Dn .With respect to uniformmeasure,where all partitionsλ � n are equally
likely, the expectation and themost likely value of D(λ) have been studied in [5, 6, 18].
Regarding Plancherel measure, it is known since the days of the limit shape theorem
(see Theorem 5.1 in the next section) that 1√

n
Dn → 2

π
in probability. Furthermore, we

may deduce from [2, Theorem3.6] convergence in distribution of π√
log n

(
Dn − 2

π

√
n
)

to a standard normal random variable. Should that convergence in distribution be
accompanied by convergence of secondmoments, IEDn = 2

π

√
n+O (√log n

)
would

follow.Weare not aware of a proof of such result, let alone of any results in the literature
regarding fine asymptotics of IEDn .

Theorem 4.1 Let dn := IEDn. Then, as n → ∞, we have

dn = 2

π

√
n +

(
3

16π
− e2

8π
sin
(
4
√
n
)
)

1√
n

+ O(n−1).

Proof In terms of contents cu of a Young diagram λ, we have

D(λ) =
∑

u∈λ

δ0,cu .

Define polynomials in terms of the polynomials p(x, r) given in (2.1) via

q(x, r) :=
r−1∏

i=0

(x2 − i2) =
{
x2 p(x, r − 1), r ≥ 1,

1, r = 0.

These also allow for a representation of the Kronecker delta, similar to (3.1),

δ�,n =
∞∑

r=�

(−1)�+r 2 − δ0,n

(r + �)!(r − �)!q(n, r), (4.1)

now valid for non-negative integers �, n. By [26, Eq. (7)], see also [8, TheoremA.1],
we have

1

n!
∑

λ�n
f 2λ
∑

u∈λ

q(cu, r) = (2r)!
(r + 1)!

(
n

r + 1

)

. (4.2)
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This leads to the representation

dn = 1

n!
∑

λ�n
f 2λ
∑

u∈λ

δ0,cu =
∑

r≥1

(−1)r+1(2r − 2)!
(r − 1)!2r !

(
n

r

)

. (4.3)

For the Poisson generating function D(z) := e−z∑
n≥0

dn
n! z

n we obtain

D(z) = z
∑

k≥0

(−z)k(2k)!
k!2(k + 1)!2 = z

(

2J 20 (2
√
z) − J0(2

√
z)J1(2

√
z)√

z
+ 2J 21 (2

√
z)

)

,

where J0 and J1 are Bessel functions of the first kind. We may use D(z) to recover
asymptotics of dn , see [15, Sect. 5.11.4] for asymptotic expansions of Bessel functions.
We find

D(z) = 2

π

√
z − 1

16π
√
z

− sin(4
√
z)

8π
√
z

+ 3 cos(4
√
z)

64π z
+ O(z− 3

2
)
,

for |z| → ∞, | arg z| ≤ π − δ with δ > 0. A uniform bound is furnished by |D(z)| ≤
cosh(4

√|z|). Evaluating now dn = n!
2π i

∮
C z−n−1ezD(z)dz, with contour C := {z ∈

C : |z| = n}, observing that there is an approximate saddle point at z = n, finishes
the proof. 	

Remark 4.2 The sequence starts

(
dn
)10
n=1=(1, 1, 1, 7

6 ,
17
12 ,

33
20 ,

109
60 , 3217

1680 ,
39703
20160 ,

364859
181440 ),

and it again satisfies a linear recurrence relation,

dn+3 = 3n2 + 9n + 8

(n + 2)(n + 3)
dn+2 − 3n + 1

n + 3
dn+1 + n + 1

n + 3
dn, (4.4)

with initial conditions

d0 = 0, d1 = 1, d2 = 1,

readily obtained from (4.3) using gfun.

5 Expected Fluctuations Around the Limit Shape Curve

Let us introduce the limit shape curve

�(u) =
{

2
π

(
u arcsin u√

2
+ √

2 − u2
)

, if |u| ≤ √
2,

|u|, if |u| >
√
2.

(5.1)

The lower right boundary of the Young diagram of a partition λ � n, scaled to have
unit area, rotated together with parts of positive x-axis and negative y-axis by 135◦,
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0 √
21√

20
−1√
20

1√
5

−1√
5

2√
5

−2√
5

√
2

Fig. 4 The Logan–Shepp–Vershik–Kerov limit shape curve � (upper boundary of the grey region). Super-
imposed is the partition (5, 3, 1, 1) � 10, properly scaled and rotated by 135◦. The dots have coordinates(

a√
20

, 1√
5

(
ωa,10 + |a|

2
))
, for a ∈ {−6, . . . , 6}

gives rise to a piecewise linear function ψλ, also defined on R. When λ is distributed
according to Plancherel measure, the random functions ψλ approach the limit shape
curve, as n → ∞, in a sense that is made precise in the following result by Vershik
and Kerov [27] and Logan and Shepp [14], which we present following closely [23,
Theorem1.22].

Theorem 5.1 (Limit shape theorem for Plancherel-random partitions) For all ε > 0,
we have P(‖ψλ −�‖∞ > ε) → 0 as n → ∞, i.e., the random functions ψλ converge
to � in probability in the norm ‖ · ‖∞.

A discretized version of ψλ, defined on the set
{ a√

2n
: a ∈ Z

}
, can be expressed in

terms of contents cu of λ via �λ(a) :=∑u∈λ δ−a,cu .

Indeed, the set
{(

a√
2n

, 2√
2n

(
�λ(a) + |a|

2

)) : a ∈ Z

}
is a subset of the graph of ψλ

containing, among others, all the points where the slope ofψλ changes from 1 to−1 or
back. For example, if λ = (5, 3, 1, 1), then (�λ(a))4a=−4 = (1, 1, 1, 2, 2, 1, 1, 1, 0).
Define now a related function, �λ(a) := 1

2

(
�λ(a) + �λ(−a)

)
, i.e.,

�λ(a) =
{
D(λ), a = 0,
1
2

∑
u∈λ δ|a|,|cu |, else.

This symmetrised function is used because it can be expressed in terms of Kronecker
deltas restricted to pairs of nonnegative integers, thus allowing to use the representation
(4.1). Next, let ωa,n := IE�λ(a), with λ � n distributed according to the Plancherel
measure, and define a sequence of functions

�̃n(u) :=
√
2

n

(

ω�√2nu,n + 1

2
|�√2nu|

)

,
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Fig. 5 Plots of �̃n(u)−�(u) for roughly quadrupling values of n ∈ {1573, 6230, 24798, 98943} from top
left to bottom right

that one would expect to converge to �(u), although such convergence is not
implied by Theorem 5.1. By [2, Theorem3.6] we have convergence in distribution

of π
√
n√

2 log n

[√
2
n

(
�λ(�

√
2nu) + 1

2 |�
√
2nu|

)
− �(u)

]

to a standard normal random

variable in case that |u| <
√
2. Should there also be convergence of second moments,

�̃n(u) = �(u) + O
(√

log n
n

)

would follow for |u| <
√
2. See Fig. 4 for the limit

shape curve, and, scaled to unit area, a superimposed partition of 10, and values
�̃10(u) for u ∈ { a√

20
: −6 ≤ a ≤ 6}. There is a seeming coincidence on the y-axes,

yet �(0) = 2
√
2

π
≈ .900316, ω0,10√

5
= 364859

181440
√
5

≈ .899305, and the ordinate of the

upper corner of the rotated Young diagram, 2√
5

≈ .894427, are all different.
An alternating sum representation of ωa,n , building upon (4.1), is the following

ωa,n =
∑

r>a

(−1)r+a+1(2r − 2)!
(r − 1 + a)!(r − 1 − a)!r !

(
n

r

)

, (5.2)

which again gives rise to a linear recurrence relation (obtained using gfun)

(n + 4)(n + a + 3)(n − a + 3)ωa,n+4

= [4n3 + 32n2 + (86 − 2a2)n + 78 − 7a2]ωa,n+3

− (n + 3)(6n2 + 22n + 20 − a2)ωa,n+2

+ (n + 1)(n + 2)(n + 3)(4ωa,n+1 − ωa,n),
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holding for n ≥ a − 2, with initial conditions

ωa,n = 0, for min(0, a − 2) ≤ n ≤ a, ωa,a+1 = 1

(a + 1)! .

Note that there is a common factor (n + 1) in the recurrence relation, when a = 2.
Note also that setting a = 0 yields a recurrence relation with both order and degree
one larger than the one given in (4.4).

As was done for dn , asymptotics via Poisson generating functions (which can again
be expressed in terms of Bessel functions) can be obtained also for ωa,n for fixed
integer a > 0:

ωa,n + a

2
= 2

π

√
n +

(
4a2 + 3

16π
− (−1)a

e2

8π
sin
(
4
√
n
)
)

1√
n

+ O(n−1). (5.3)

In order to obtain asymptotics of ωa,n for n and a simultaneously approaching ∞,
which would be needed for asymptotics of �̃n(u), one could use the parametrization
n = 2κ2 ∈ N, a = �2κu, and consider

ω�2κu,2κ2
κ

= 1

2π i

∮

C ′′
1

κ

(−1)�2κu+1
(−z)
(2z − 1)


(z + �2κu)
(z − �2κu)
(z + 1)

(2κ2)!
(−z)


(2κ2 + 1 − z)
dz,

implied by (5.2), where C ′′ is a contour that encircles integers 1, . . . , 2κ2, but neither
any other integers, nor poles of the integrand. Outside C ′′, the integrand has poles
at 1

2 , at 0, and at all negative half-integers. For fixed u it turns out that each residue
contributes to the leading (constant) term of the asymptotics in the limit κ → ∞, with
the sum of those contributions converging, but for fixed κ the sum of residues does not
converge. Balancing those two limiting processes (taking more and more residues into
account, letting κ → ∞) and at the same time bounding the integral over a sequence
of correspondingly deformed contours appears to be intricate, so unfortunately we
have not been able to prove �̃n(u) → �(u) for u �= 0.

Using holonomicity of (ωa,n)n≥0 to generate many terms of that sequence for many
values of a, we obtain the plots in Figs. 5 and 6. The values for n in Fig. 5 and in the
second plot in Fig. 6 have been chosen to satisfy sin(4

√
n) ≈ 1 in order to givemaximal

weight to the term (−1)a present in (5.3) and thus ensure better comparability of the
plots in the vicinity of 0. The value of n in the first plot of Fig. 6 satisfies sin(4

√
n) ≈ 0.

We conclude this section with some (non-rigorous) observations based on these plots.

(a) Regarding convergence of the sequence
(
�̃n(·)

)
n≥1 to �(·), the plots in Fig. 5

suggest that for any ε > 0 we have max
0≤u≤√

2−ε

|�̃n(u) − �(u)| = O( 1n
)
. Near

√
2 we only seem to have max

|u−√
2|≤ε

|�̃n(u) − �(u)| = O( 1√
n

)
, with this slower

convergence in agreement with the convergence rate stated in [2, Eq. (3.4)] for
convergence of �̃n(

√
2) → �(

√
2) in probability, building upon results from [1,

3, 12, 19] addressing the problem of the longest increasing subsequence, see also
[23].
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Fig. 6 Plots of �̃n(u)−�(u) for n = 200415 (upper plot) and for n = 200767 (lower plot), with u varying
in the discrete set { a√

2n
: 0 ≤ a ≤ 800}

(b) A common feature of all plots in Figs. 5 and 6 is the presence of subintervals of
“smooth” behavior surrounded by regions of more “irregular” behavior. In order
to enforce “smooth” dependence of ωa,n on a, one would, in the light of (5.3),
restrict to odd (or to even) a. However, this would only work for 0 ≤ a ≤ αn with
αn = o(

√
n). The location of the first “peak” to the right of 0 seems to suggest, that

αn = 	
(
n

1
4
)
may hold. For larger a it is no longer useful to distinguish between

even and odd, instead one should consider ωa,n evaluated at a belonging to other
arithmetic progressions: Near a√

2n
= √

2 cos π
3 ≈ 0.707 theway to gowould be to

consider
(
ωa+3k,n

)
k , whereas near

a√
2n

= √
2 cos π

4 = 1 it would be
(
ωa+4k,n

)
k .

Every fifth term should be taken near
√
2 cos π

5 ≈ 1.144 and
√
2 cos 2π

5 ≈ 0.437.
We expect this pattern to continue, with regions of smoothness near

√
2 cos �π

m for
1 ≤ � < m

2 , and �,m coprime. For larger m these regions will become noticeable
only if n gets large enough, and those regions will shrink with n further increasing,
making room for yet other regions to pop up.

6 A Heuristic Upper Bound for the Variance of the Number of
Bumping Steps in the RSK Algorithm

Let Ln := Xn + Yn , �n := IE (Xn + Yn), and vn := Var (Xn + Yn). We now give a
heuristic derivation of �n , and an upper bound for vn based on [13]. Let �(x) be the
function defined in (5.1), describing the limit shape of normalized Young diagrams
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Fig. 7 A plot of Cov (Ln − Ln−1, Ln−1) for n ∈ {2, . . . , 40}

with respect to Plancherel measure. Denote s(x) := 1
π

√
2 − x2, the density of the

semicircle distribution with support [−√
2,

√
2]. As shown in [13], this is also the

limiting density of the randomabscissa of a newly inserted box into a scaled and rotated
Young diagram that closely resembles the limit shape curve, when new insertions are
made according to the Plancherel growth process, that ensures that at each stage of the
process the Young diagram is distributed according to Plancherel measure, see also
[23, Sect. 1.19]. This leads to

�n − �n−1 ∼ √
2n
∫ √

2

−√
2
�(x)s(x)dx = 128

9π2

√
n,

and thus �n ∼ 256
27π2 n

3
2 . Moreover, assuming independence of Ln−1 and Ln − Ln−1,

vn − vn−1 ∼ 2n
∫ √

2

−√
2

(

�(x) − 64
√
2

9π2

)2

s(x)dx = 54π4 + 2835π2 − 32768

162π4 n,

and thus

vn ∼ 54π4 + 2835π2 − 32768

324π4 n2 ≈ 0.01496867061 n2.

Numerically we have e.g. v50
502

≈ 0.01216526413.
Indeed, Ln−1 and Ln − Ln−1 seem to be negatively correlated. The sequence

of covariances
(
Cov (Ln − Ln−1, Ln−1)

)
n≥2 starts (0, 0,− 1

9 ,− 17
180 ,− 1

15 ,− 61
450 ,

− 863
5600 , . . .), staying negative up to n = 40 with roughly linear growth, see Fig. 7.
So it seems that in the light of Lemma 1.2 one can safely guess that for the number

Yn of bumping steps VarYn = 	(n2) holds. It would be desirable to have a proof for
that, and also know at least the leading asymptotic term of VarYn .

7 Conclusion

In this paper we have obtained asymptotics of expectations of certain statistics of
Plancherel distributed Young diagrams. That these statistics could be expressed in
terms of hook lengths and contents of the boxes of such diagram was essential,
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as it allowed us to invoke polynomiality results for Plancherel averages, leading
to representations of expectations as binomial convolutions, that make for easier
asymptotic treatment. We hope that this approach will help to analyse further statis-
tics of Plancherel distributed Young diagrams. Now polynomiality results have also
been found for measures different from Plancherel (such as the Jack deformation of
Plancherel measure, see [20]), or for subclasses of Plancherel distributed Young dia-
grams, such as strict partitions (see [11, 16, 17]). In case that appropriate substitutes
for (2.3) or (4.2) are at hand, it is reasonable to believe that certain statistics in these
settings could also be analysed along the lines of this paper.
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8. Appendix

8.1 Proof of Equation (2.2)

We use p(n, r) = (2r+1)!
n

( n+r
2r+1

)
and rewrite (2.2) as

n2 =
∑

r≥0

(−1)r

1 − 2r

(
2r

r

)(
n + r

2r + 1

)

=: Sn

Denoting by � the forward difference operator, we will show that �3S is the zero
sequence, which together with S1 = 1,�S1 = 3,�2S1 = 2 yields Sn = n2 for
n ∈ N. Now

�3Sn =
∑

r≥1

(−1)r

1 − 2r

(
2r

r

)(
n + r

2r − 2

)

=
∑

r≥1

(−1)r+1 2

r

(
2r − 2

r − 1

)(
n + r

2r − 2

)

= 2
∑

r≥1

(−1)r+1

n + 2

(
n + r

r − 1

)(
n + 2

r

)

= 2

n + 2

∑

r≥0

(−1)r
(
n + r + 1

n + 1

)(
n + 2

r + 1

)

= 0,
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where the last equality follows from [10, Eq. (5.24)]. 	


8.2 Proof of Equation (3.1)

The equation is easily checked for � > n, since then also r ≥ n and thus p(n, r) = 0.
For 1 ≤ � ≤ n we have

n−1∑

r=�−1

2�2(−1)r+�+1

(r + � + 1)!(r − � + 1)!
(2r + 1)!

n

(
n + r

2r + 1

)

= 2�2(−1)�+1

n(n + �)

n−1∑

r=�−1

(−1)r
(

n + r

n + � − 1

)(
n + �

r + �+1

)

= 2�2(−1)�+1

n(n + �)
(−1)n+1δ�,n = δ�,n,

treating the case � = n directly, and using [10, Eq. (5.24)] again for n > �. 	


8.3 Proof of Equation (4.1)

We use q(n, r) = n(2r)!
n+r

(n+r
2r

)
for n > 0, and q(0, 0) = 1. The equation is easily

checked for n = 0, and for � > n, since then also r > n and thus q(n, r) = 0. For
n > 0, 0 ≤ � ≤ n we have

n∑

r=�

2(−1)r+�

(r + �)!(r − �)!
n(2r)!
n + r

(
n + r

2r

)

= (−1)�
2n

n + �

n∑

r=�

(−1)r
(
n + r − 1

n + � − 1

)(
n + �

r + �

)

= 2n(−1)�

n + �
(−1)nδ�,n = δ�,n,

treating the case � = n directly, and using [10, Eq. (5.24)] again for n > �. 	


8.4 Proof of Equation (3.2d)

Using H� − 1 = ∑�
k=2

1
k , and interchanging summation, we obtain, using [10,

Eq. (5.16)] at several places,

r∑

�=2

(−1)��2(H� − 1)

(r + �)!(r − �)! = 1

(2r)!
r∑

k=2

1

k

r∑

�=k

(−1)�[r2 − (r + �)(r − �)]
(

2r

r − �

)

= 1

(2r)!
r∑

k=2

1

k

r∑

�=k

(−1)�
[

r2
(

2r

r − �

)

− 2r(2r − 1)

(
2r − 2

r − � − 1

)]

= 1

(2r)!
r∑

k=2

1

k
(−1)k

[

r2
(
2r − 1

r − k

)

− 2r(2r − 1)

(
2r − 3

r − k − 1

)]
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= 1

(2r)!
r∑

k=2

(−1)kr

r − 1
(k − 1)

(
2r − 1

r − k

)

= 1

(2r)!
r∑

k=2

(−1)kr

r − 1

[

(r − 1)

(
2r − 1

r − k

)

− (2r − 1)

(
2r − 2

r − k − 1

)]

= 1

(2r)!
r

r − 1

[

(r − 1)

(
2r − 2

r

)

− (2r − 1)

(
2r − 3

r

)]

= 1

(2r)!
r

r − 1

r

r − 2

(
2r − 3

r

)

= 1

4(r − 1)(2r − 1)(r − 1)!2 .

	


8.5 Saddle Point Evaluation of the Integral In := 1
2�i

∮
C′ f(z) n!0(−z)

0(n+1−z)dz

This integral appears in the proof of Theorem 2.1, see Sect. 2 for relevant notation.
Putting n = m2, the integrand may be rewritten as

G(z) := π
(m2 + 1)
2(2z − 1)

sin(π z)
(m2 + 1 − z)(2z − 3)
3(z + 1)
3(z)
.

Denoting by ψ the digamma function, we have

G ′(z)
G(z)

= ψ(m2 + 1 − z) + 4ψ(2z − 1) − 3ψ(z + 1) − 3ψ(z) − π cot π z − 2

2z − 3

∼ log
(z − m2 − 1)(2z − 1)4

(z + 1)3z3
− 1

z − 1
2

+ 3

2z + 2
+ 3

2z
− 1

z − 3
2

,

with error terms O(m−2) + O(z−2), holding for m → +∞, |z| → ∞, subject to
z = o(m2) and δ ≤ | arg z| ≤ π − δ for some δ > 0.

Two approximate saddle points of G(z) are ζ := 6+4mi and ζ̄ = 6−4mi. Indeed,
d
dz logG(ζ ) = G ′(ζ )

G(ζ )
= O( 1

m2 ), and
d2

dz2
logG(ζ ) = i

2m + O( 1
m2 ), which suggests a

contour directed north-west in the point ζ : Let z = ζ + ei
π
4 u and observe

G(z) = G(ζ ) exp
(
O( u

m2 ) + i
4m (ei

π
4 u)2 + O( u2

m2 )
)

= G(ζ )e− u2
4m

(
1 + O( u+u2

m2 )
)

.

Also note that a cumbersome evaluation results in

G(ζ ) = −ie8im+8

213πm4

(

1 + O
(
1

m

))

.

Define the counter-clockwise oriented contourC ′ as the polygon connecting the points

z0 := − 5
2 + ε, z1 := ζ − m − mi, z2 := ζ + m + mi, z3 := n + 1 + mi,

z6 := ζ̄ − m + mi, z5 := ζ̄ + m − mi, z4 := n + 1 − mi,
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with ε > 0 small, and with segment ci connecting zi and zi+1 for 0 ≤ i ≤ 5, and
c6 connecting z6 and z0. It turns out that the integrals along c0 and c6 are of order
O(m−5+2ε), and ci , for 2 ≤ i ≤ 4, make even smaller contributions. Moreover, the

combined contribution of c1 and c5 is −2
√

m
π

�(ei
π
4 G(ζ )(1 + O( 1

m ))), which, up to

error terms of order O(m− 9
2 ), simplifies to

−2

√
m

π
�(ei

π
4 G(ζ )) = e8

212π
3
2m

7
2

�(ie
π i
4 +8im) = e8

212π
3
2m

7
2

cos
(π

4
+ 8m

)
.

8.6 Bounding the Integral Jn := 1
2�i

∮
C′ 8n(z) dz

This integral appears in the proof of Theorem 3.1, see Sect. 3 for relevant notation.
Let C ′ be the boundary of the rectangle with corners − 1

2 ± i4em, n + 1
2 ± i4em, and

m = √
n.

Observe (−1)��2
(
log � − H� + γ + 1

2� − 1
12�2
) = O(�−2), and, abbreviating

ρ = r + 1
2 ,

∣
∣
∣
∣


2(r + 1)


(r + � + 1)
(r − � + 1)

∣
∣
∣
∣ =

∣
∣
∣
∣
r(r − 1) · · · (r − � + 1)

(r + 1) · · · (r + �)

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

�∏

k=1

ρ − (k − 1
2 )

ρ + (k − 1
2 )

∣
∣
∣
∣
∣
≤ 1

for �ρ ≥ 0, i.e., for �r ≥ − 1
2 , therefore 
2(r + 1)h(r) = O(1) for �r ≥ − 1

2 , which
leads to 
2(z + 1)g(z) = O(1) for �z ≥ − 1

2 , |z − w| ≥ 1
2 for w ∈ {0, 1

2 , 1}. Hence

�n(z) = O
(


(2z)
(2z − 1)


4(z + 1)
(z)

n! 
(−z)


(n + 1 − z)

)

= O
(

24z

z4
2(z + 1) sin π z


(n + 1)


(n + 1 − z)

)

,

by the reflection and duplication formulas. For z = − 1
2 + it , with t = O(√n

)
, we

have |
2(z + 1) sin π z| = π and
∣
∣
∣


(n+1)

(n+1−z)

∣
∣
∣ = O(n− 1

2
)
, yielding a contribution

O(n− 1
2
)
from the integral over the left segment of C ′. The contributions from the two

horizontal segments isO(n− 3
2
)
, while the right segment makes an exponentially small

contribution. All this can be seen from the estimates

1


2(z + 1) sin π z
= O

⎛

⎝
(

σ 2 + t2

e2

)−σ− 1
2

⎞

⎠ ,

holding for z = σ + it with σ ≥ − 1
2 and |z − w| ≥ 1

2 for w ∈ Z, and

∣
∣
∣
∣
24z
(n + 1)


(n + 1 − z)

∣
∣
∣
∣ = O

(

(16n)σ exp
( 2t2

n − σ + t

))

,

holding for z = σ + it with − 1
2 ≤ σ ≤ n + 1

2 and t = O(√n
)
.

123



690 La Matematica (2023) 2:668–691

References

1. Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence
of random permutations. J. Am. Math. Soc. 12, 1119–1178 (1999)

2. Bogachev, L.V., Su, Z.: Gaussian fluctuations of Young diagrams under the Plancherel measure. Proc.
R. Soc. Lond. Ser. A 463, 1069–1080 (2007)

3. Borodin, A., Okounkov, A., Olshanski, G.: Asymptotics of Plancherel measures for symmetric groups.
J. Am. Math. Soc. 13, 481–515 (2000)

4. Bufetov, A.I.: On the Vershik-Kerov conjecture concerning the Shannon-McMillan-Breiman theorem
for the Plancherel family ofmeasures on the space ofYoung diagrams. Geom. Funct. Anal. 22, 938–975
(2012)

5. Canfield, E.R., Corteel, S., Savage, C.D.: Durfee polynomials. Electron. J. Combin. 5, 32 (1998)
6. Canfield, E.R.: From recursions to asymptotics:Durfee and dilogarithmic deductions.Adv.Appl.Math.

34, 768–797 (2005)
7. Frame, J.S., Robinson, G. de B., Thrall, R.M.: The hook graphs of the symmetric groups. Can. J. Math.

6, 316–324 (1954)
8. Fujii, S., Kanno,H.,Moriyama, S.: Instanton calculus and chiral one-point functions in supersymmetric

gauge theories. Adv. Theor. Math. Phys. 12, 1401–1428 (2008)
9. Flajolet, P., Sedgewick, R.: Mellin transforms and asymptotics: finite differences and Rice’s integrals.

Theor. Comput. Sci. 144, 101–124 (1995)
10. Graham, R.L., Knuth, D.E., Patashnik, O.: Conrete mathematics: a foundation for computer science.

Addison-Wesley, Boston (1994)
11. Han, G.-N., Xiong, H.: Polynomiality of Plancherel averages of hook-content summations for strict,

doubled distinct and self-conjugate partitions. J. Combin. Theory Ser. A 168, 50–83 (2019)
12. Johansson, K.: Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math.

153, 259–296 (2001)
13. Kerov, S.: A differential model for the growth of Young diagrams. In: Proceedings of the St. Petersburg

Mathematical Society, , Vol. IV, Amer. Math. Soc. Transl. Ser. 2, vol. 188, pp. 111–130. American
Mathematical Society, Providence (1999)

14. Logan, B.F., Shepp, L.A.: A variational problem for random Young tableaux. Adv. Math. 26, 206–222
(1977)

15. Luke, Y.L.: The special functions and their approximations. Academic Press, Cambridge (1969)
16. Matsumoto, S.: Polynomiality of shifted Plancherel averages and content evaluations. Ann. Math.

Blaise Pascal 24, 55–82 (2017)
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