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Abstract
We consider the process of uncovering the vertices of a random labeled tree according
to their labels. First, a labeled tree with n vertices is generated uniformly at random.
Thereafter, the vertices are uncoveredonebyone, in order of their labels.With eachnew
vertex, all edges to previously uncovered vertices are uncovered as well. In this way,
one obtains a growing sequence of forests. Three particular aspects of this process
are studied in this work: first the number of edges, which we prove to converge to
a stochastic process akin to a Brownian bridge after appropriate rescaling; second,
the connected component of a fixed vertex, for which different phases are identified
and limiting distributions determined in each phase; and lastly, the largest connected
component, for which we also observe a phase transition.

Keywords Labeled tree · Uncover process · Functional central limit theorem ·
Limiting distribution · Phase transition

1 Introduction

We consider the process of uncovering the vertices of a random tree: starting either
from one of the nn−2 unrooted or from one of the nn−1 rooted unordered labeled trees
of size n (i.e., with n vertices) chosen uniformly at random, we uncover the vertices

B Benjamin Hackl
math@benjamin-hackl.at

Alois Panholzer
alois.panholzer@tuwien.ac.at

Stephan Wagner
stephan.wagner@math.uu.se

1 University of Graz, Graz, Austria

2 University of Klagenfurt, Klagenfurt, Austria

3 Uppsala University, Uppsala, Sweden

4 TU Wien, Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s44007-023-00060-3&domain=pdf
https://orcid.org/0000-0003-2998-9599
https://orcid.org/0000-0003-2813-3457
https://orcid.org/0000-0001-5533-2764


862 La Matematica (2023) 2:861–892

one by one in order of their labels. This yields a growing sequence of forests induced
by the uncovered vertices, and we are interested in the evolution of these forests from
the first vertex to the point that all vertices are uncovered. See Fig. 1 for an illustration
of this process on a tree with 100 vertices.

This model is motivated by stochastic models known as coalescent models for
particle coalescence, most notably the additive and the multiplicative coalescent [3]
and the Kingman coalescent [13]. To make the distinction between these classical
coalescent models and our model more explicit, let us briefly revisit the additive
coalescent model (see [2]) as a prototypical example. This model describes a Markov
process on a state space consisting of tuples (x1, x2, . . .) with x1 ≥ x2 ≥ · · · ≥ 0 and∑

i≥0 xi = 1 that model the fragmentation of a unit mass into clusters of mass xi . Pairs
of clusters with masses xi and x j then merge into a new cluster of mass xi + x j at rate
xi + x j . In the corresponding discrete time version of the process, exactly two clusters
are merged in every time step. There are various combinatorial settings in which this
discrete additive coalescent model appears, for example in the evolution of parking
blocks in parking schemes related to “hashing with linear probing” [6] and in a certain
scheme for merging forests by uncovering one edge in every time step [20]. There is
also a rich literature on random (edge) cutting of trees, starting with the work of Meir
and Moon [17], see also [1, 7, 11, 15]. Fragmentation processes on trees have also
been studied extensively in a continuous setting, see, e.g., [4, 18, 19, 25]. Lastly, the

Fig. 1 A few snapshots of the uncover process applied to a random labeled tree of size 100. From left to
right and top to bottom, there are 12, 23, 34, …, 89, and 100 uncovered vertices in the figures, respectively.
Vertex labels are omitted for the sake of readability, and vertices are colored per connected component
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special case of our model in which the underlying tree is always a path (with random
labels) rather than a random labeled tree was considered by Janson in [12].

While the incarnation of the additive coalescent in which edges are uncovered
successively is very much related in spirit to our vertex uncover model, the underlying
processes are fundamentally different: these classical coalescent models rely on the
fact that exactly two clusters are merged in every time step, which is not the case
in our model. When uncovering a new vertex, a more or less arbitrary number of
edges (including none at all) can be uncovered. There are coalescent models like the
�-coalescent, a generalization of the Kingman coalescent [21], which allow for more
than two clusters being merged—however, at present, we are not aware of any known
coalescent model that is able to capture the behavior of the vertex uncover process.
Overview. Different aspects of the uncover process on labeled trees are investigated in
this work. In Sect. 2, we study the stochastic process given by the number of uncovered
edges. The corresponding main result, a full characterization of the process and its
limiting behavior, is given in Theorem 3.

Sections 3 and 4 are both concerned with cluster sizes, i.e., with the sizes of the
connected components that are created throughout the process. In particular, in Sect. 3,
we shift our attention to rooted labeled trees, to study the behavior of the component
containing afixedvertex. The expected size of the root cluster is analyzed inTheorem7.
Furthermore, we show that the number of rooted trees whose root cluster has a given
size is given by a rather simple enumeration formula—which, in turn, manifests in
Theorem 9, a characterization of the different limiting distributions for the root cluster
size depending on the number of uncovered vertices.

Finally, in Sect. 4, we use the results on the root cluster to draw conclusions regard-
ing the size of the largest cluster in the tree.
Notation. Throughout this work, we use the notation [n] = {1, . . . , n} and [k, �] =
{k, k+1, . . . , �} for discrete intervals, and x j = x(x−1) · · · (x− j+1) for the falling
factorials. The floor and ceiling functions are denoted by �x� and �x�, respectively.
Furthermore, we use T and T • for the combinatorial classes of labeled trees and rooted
labeled trees, respectively, and Tn and T •

n for the classes of labeled and rooted labeled

trees of size n, i.e., with n vertices. Finally, we use Xn
d−→ X and Xn

p−→ X to denote
convergence in distribution resp. probability of a sequence of random variables (r.v.)
(Xn)n≥0 to the r.v. X .

2 The Number of Uncovered Edges

In this section, our main interest is the behavior of the number of uncovered edges in
the uncover process. We begin by introducing a formal parameter for this quantity.

Definition 1 Let T be a labeled tree with vertex set V (T ) = [n]. For 1 ≤ j ≤ n,
we let k j (T ) := ‖T [1, 2, . . . , j]‖ denote the number of edges in the subgraph of T
induced by the vertices in [ j]. We refer to the sequence (k j (T ))1≤ j≤n as the (edge)
uncover sequence.

We start with a few simple observations. First, for any labeled tree of order n, we
have k1(T ) = 0, as well as kn(T ) = n − 1. Second, as any induced subgraph of a
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Fig. 2 Progression of the number of edges (left) and the number of connected components (right) when
sequentially uncovering a random labeled tree on 1000 vertices

tree is a forest, and as forests have the elementary property that the number of edges
together with the number of connected components gives the number of vertices in the
forest, we find that j−k j (T ) is the number of connected components after uncovering
the first j vertices of T . Figure2 illustrates the progression of the number of edges
and the number of connected components for 1 ≤ j ≤ 1000 in a randomly chosen
labeled tree on 1000 vertices.

Moreover, the fact that the first j vertices of the tree induce a forest also yields the
sharp bound 0 ≤ k j (T ) ≤ j −1 for all 1 ≤ j ≤ n−1. The lower bound is attained by
the star with central vertex n, and the upper bound is attained by the (linearly ordered)
path. We can also observe that as soon as kn−1(T ) > 0, the set of edges added in the
last uncover step is not determined uniquely. Thus, the star with central vertex n is the
only tree that is fully determined by its uncover sequence.

The following theorem provides an explicit formula for the (multivariate) gener-
ating function that tracks the number of edge increments over specified discrete time
intervals of the uncover process.

Theorem 1 Let r be a fixed positive integer with 1 ≤ r < n − 1, and let j1, j2, …,
jr be positive integers with 1 < j1 < j2 < · · · < jr < n. Additionally, let j0 = 1.
Then, the multivariate generating function tracking the number of uncovered edges
when uncovering vertices in [ ji + 1, ji+1] for 0 ≤ i < r in the edge uncover process
is given by

En(z1, z2, . . . , zr ) = nn− jr−1
r∏

i=1

(
n − jr + ji zi +

r∑

h=i+1

( jh − jh−1)zh
) ji− ji−1

.

(1)

In other words, given a non-decreasing sequence of non-negative integers 0 =
a0 ≤ a1 ≤ · · · ≤ ar = n − 1 with ai < ji , the coefficient of the monomial
za11 za2−a1

2 . . . zar−ar−1
r in the expansion of En(z1, . . . , zr ) is the number of labeled

trees T of order n with k ji (T ) = ai for all 1 ≤ i ≤ r .

Remark 2 By specifying the integers j1, j2, …, jr , the uncover process is effectively
partitioned into intervals. This is also reflected by the quantities occurring in the
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product in (1): the difference ji− ji−1 corresponds to the number of vertices uncovered
in the i-th interval, ji represents the number of vertices uncovered in total up to the
i-th interval, and n − jr corresponds to the number of vertices uncovered in the last
interval.

Proof of Theorem 1 We begin by observing that when the process uncovers the vertex
with label j , edges to all adjacent vertices whose label is less than j are uncovered
as well. To determine the generating function of the edge increments, we assign the
weight xi y j to the edge connecting vertex i and vertex j with i < j , and then consider
the generating function for the tree weight w(T ) (which is defined as the product of
the edge weights); En(z1, . . . , zr ) = ∑

|T |=n w(T ).
Following Martin and Reiner [16, Theorem 4] or Remmel and Williamson

[22, Equation (8)], the generating function of the tree weights w(T ) has the explicit
formula

∑

|T |=n

w(T ) = x1yn

n−1∏

j=2

( n∑

i=1

xmin(i, j)ymax(i, j)

)
. (2)

As initially observed, edges that are counted by k ji (T ) are precisely those that induce
a factor y� for some � ≤ ji . Thus we make the following substitutions: x� = 1 for all
�, y� = zi if and only if ji−1 < � ≤ ji (where1 j0 = 1), and y� = 1 if � > jr . To deal
with the sum over ymax(i, j), observe that we can rewrite it as

n∑

i=1

ymax(i, j) = n − jr +
j1∑

i=1

ymax(i, j) + · · · +
jr∑

i= jr−1+1

ymax(i, j).

In this form, the different values assumed by the sum when j moves through the
ranges 1 < j ≤ j1, j1 < j ≤ j2, etc. can be determined directly. For some j with
ji−1 < j ≤ ji , the contribution to the product in (2) is

n − jr + ji zi +
r∑

h=i+1

( jh − jh−1)zh,

and for jr < j ≤ n − 1 all y-variables are replaced by 1, so that the contribution to
the product is a factor n. Putting both of these observations together shows that the
right-hand side of (2) can be rewritten as the right-hand side of (1) and thus proves
the lemma. 
�

With a formula for the generating function of edge increments in the uncover process
at our disposal, an explicit formula for the number of trees with given (partial) uncover
sequence follows as a simple consequence.

1 Observe that y1 does not occur, since at least one of the ends of every edge has a label greater than 1.
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Corollary 2 In the setting of Theorem 1, the number of rooted labeled trees T of order
n that satisfy k ji (T ) = ai for all 1 ≤ i ≤ r is given by

(n − jr )
jr−ar−1nn− jr−1

×
r∏

i=1

( ai−ai−1∑

h=0

(
ji−1 − ai−1 − 1

h

)(
ji − ji−1

ai − ai−1 − h

)

( ji − ji−1)
h jai−ai−1−h

i

)

.

(3)

Furthermore, there are

n−2∏

i=1

((
i − ai − 1

ai+1 − ai − 1

)

(i + 1) +
(
i − ai − 1

ai+1 − ai

))

(4)

trees with a fully specified uncover sequence (0, a2, a3, . . . , an−1, n − 1).

Proof The formulas follow from extracting the coefficient of za11 za2−a1
2 · · · zar−ar−1

r
from the corresponding generating function (1), which is done step by step, starting
with z1. 
�

2.1 A Closer Look at the Stochastic Process

The exceptionally nice formula for the generating function of edge increments can
be used to study the stochastic process that describes the number of uncovered edges
in more detail. Let the sequence of random variables (K (n)

j )1≤ j≤n be the discrete
stochastic process modeling the number of uncovered edges after uncovering the first
j vertices in a random labeled tree of size n, chosen uniformly at random. The expected
number of uncovered edges can be determined by a simple argument: with j uncovered
vertices,

( j
2

)
of the

(n
2

)
possible positions for the edges have been uncovered. As every

position is, due to symmetry and the uniform choice of the labeled tree, equally likely
to hold one of the n − 1 edges, we find

EK (n)
j = (n − 1)

( j
2

)

(n
2

) = j( j − 1)

n
. (5)

To motivate our investigations further, consider the illustrations in Fig. 3. The rescaled
deviation from the mean is reminiscent of a stochastic process known as Brownian
bridge.

In order to define this process formally, recall first that the Wiener process
(W (t))t∈[0,1] is the unique stochastic process that satisfies

• W (0) = 0,
• W has independent, stationary increments,
• W (t) ∼ N (0, t) for all t > 0, and
• t �→ W (t) is almost surely continuous,
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Fig. 3 Apath of the rescaled stochastic process (K (n)
�tn�/(n−1))t∈[0,1] (left-hand side) and the corresponding

(rescaled) deviation
( K̃ (n)

t −t2n√
n

)
t∈[0,1] for a random labeled tree of size n = 10000

see [14, Definition 21.8]. A Brownian bridge can then be defined by setting

B(t) = (1 − t)W (t/(1 − t)), (6)

see, e.g., [23, Exercise 3.10]. The term “bridge” results from the fact that we have
B(0) = B(1) = 0.

While the (normalized) deviation from the mean looks like it might converge to
a Brownian bridge, we will prove that this is only almost the case. The following
theorem characterizes the stochastic process. For technical purposes, we set K (n)

0 = 0

and introduce the linearly interpolated process (K̃ (n)
t )t∈[0,1], where

K̃ (n)
t := (1 + �tn� − tn)K (n)

�tn� + (tn − �tn�)K (n)
�tn�, (7)

which by construction has continuous paths.

Theorem 3 Let (Z (n)(t))t∈[0,1] be the continuous stochastic process resulting from

centering and rescaling the linearly interpolated process (K̃ (n)
t )t∈[0,1] in the form of

Z (n)(t) := K̃ (n)
t − t2n√

n
,

and let (W (t))t∈[0,1] be the standard Wiener process. Then, for n → ∞, the rescaled
process converges weakly with respect to the sup-norm on C([0, 1]) to a limiting
process Z∞(t) that is given by

Z∞(t) = (1 − t)W
(
t2/(1 − t)

)
. (8)

Furthermore, for s, t ∈ [0, 1] with s < t , the limiting process satisfies

EZ∞(t) = 0, VZ∞(t) = t2(1 − t), and Cov(Z∞(s), Z∞(t)) = s2(1 − t).

(9)

123



868 La Matematica (2023) 2:861–892

Remark 3 While the limiting process (Z∞(t))t∈[0,1] is not a Brownian bridge (the
corresponding variances and covariances as given in (9) do not match), it is closely
related. Comparing the characterization of Z∞(t) in (8) to (6),we see that the processes
only differ by the square in the numerator of the argument of the Wiener process.

Twomain ingredients are required to prove this result (cf. [14, Theorem 21.38]): the
fact that the sequence of stochastic processes is tight on the one hand, and information
on the finite-dimensional joint distributions of (K̃ (n)

t )t∈[0,1] on the other hand.
By Prohorov’s theorem ([14, Theorem 13.29]), tightness is equivalent to the

sequence being weakly relatively sequentially compact. We prove that this is the
case by checking Kolmogorov’s criterion [14, Theorem 21.42] for which we have to
verify that the family of initial distributions (Z̃ (n)(0))n∈Z≥0 is tight and that the paths
of (Z (n)(t))t∈[0,1] cannot change too fast.

Let us begin with some probabilistic observations that will be very useful in
the proof. Consider the generating function derived in (1). Given Cayley’s well-
known tree enumeration formula, the corresponding probability generating function
for the complete uncover sequence, i.e., when we choose our integer vector as
j = (2, 3, . . . , n − 1), is

Pn(z2, . . . , zn−1) =
n−1∏

i=2

(
1

n
+ i

n
zi +

n−1∑

h=i+1

1

n
zh

)

. (10)

This suggests modeling the process with n − 2 independent random variables, each
representing an edge increment2. The factorization suggests that the j-th increment
(which corresponds to the factor with i = j + 1) happens with probability ( j + 1)/n
when the vertex with label j + 1 is uncovered, or with probability 1/n every time any
of the subsequent vertices are uncovered. This probabilistic point of view can be used
to construct a recursive characterization for the number of uncovered edges, namely3

K (n)
j+1 = K (n)

j + Ber
( j + 1

n

)
+ Bin

(
j − 1 − K (n)

j ,
1

n − j

)
. (11)

The Bernoulli variable models the probability that the j-th edge increment is added
when uncovering the vertex with label j + 1, and the binomial variable models all of
the remaining, not yet uncovered edge increments.

We can actually use a similar approach to determine an explicit characterization
of the distribution of K (n)

j . Instead of constructing the probability generating function
for a complete uncover sequence, we consider the probability generating function for
K (n)

j , obtained by normalizing the generating function from (1) for r = 1 and j1 = j .

2 We explicitly model edge increments here instead of edges, because with this approach we do not need to
care about which edge is being uncovered. Our model explicitly only captures the behavior of the number
of uncovered edges.
3 We slightly abuse notation: formally, we would need to introduce auxiliary variables that are distributed
according to the specified binomial and Bernoulli distributions.
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We find

Pn(z) = nn− j−1(n − j + j z) j−1

nn−2 =
(n − j

n
+ j

n
z
) j−1

,

which is exactly the probability generating function of a binomially distributed random
variable. This proves K (n)

j ∼ Bin( j − 1, j/n) and can, for example, be used to

determine the variance of K (n)
j as

VK (n)
j = (n − j)( j − 1) j

n2
. (12)

Now let us consider a centered and rescaled version of the process (K (n)
j )1≤ j≤n by

defining

Y (n)
j := K (n)

j − j( j−1)
n

n − j
. (13)

With the help of the recursive description in (11), we can show that (Y (n)
j )1≤ j≤n−1 is

a martingale by computing

E(Y (n)
j+1|Y (n)

j ) = E(K (n)
j+1|K (n)

j )

n − j − 1
− j( j + 1)

n(n − j − 1)

= K (n)
j + j+1

n + j−1−K (n)
j

n− j

n − j − 1
− j( j + 1)

n(n − j − 1)

= K (n)
j

n − j
− ( j − 1) j

n(nj)
= Y (n)

j .

As an immediate consequence of the construction of Y (n)
j and (12) we find

VY (n)
j = VK (n)

j

(n − j)2
= ( j − 1) j

(n − j)n2
.

Let us now consider the behavior of the finite-dimensional distributions.

Lemma 4 Let r be a fixed positive integer, and let t = (t1, . . . , tr ) ∈ (0, 1)r with
t1 < t2 < · · · < tr . Then for n → ∞, the random vector

K(n)
�tn� :=

(
K (n)

�t1n�, K
(n)
�t2n�, . . . , K

(n)
�tr n�

)
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converges, after centering and rescaling, for n → ∞ in distribution to a multivariate
normal distribution,

K(n)
�tn� − EK(n)

�tn�√
n

d−−−→
n→∞ N (0, �),

where the expectation vector EK(n)
�tn� satisfies

EK(n)
�tn� = n(t21 , t22 , . . . , t2r ) + O(1), (14)

and the entries of the variance–covariance matrix � = (σi, j )1≤i, j≤r are

σi, j =
{
t2i (1 − t j ) if i ≤ j,

t2j (1 − ti ) if i > j .
(15)

Proof As a consequence of Theorem 1 and Cayley’s well-known enumeration formula
for labeled trees of sizen, wefind that the probability generating function of the number
of edge increments after 1 < j1 < j2 < · · · < jr < n steps, respectively, is given by

Pn(z1, z2, . . . , zr ) = En(z1, z2, . . . , zr )

nn−2

=
r∏

i=1

(
1 − jr

n
+ ji

n
zi +

r∑

h=i+1

jh − jh−1

n
zh
) ji− ji−1

, (16)

where j0 = 1 for the sake of convenience. Given that this probability generating
function factors nicely, we could use a general result like the multidimensional quasi-
power theorem (cf. [10]) to prove that the corresponding random vector

�
(n)
j = (K (n)

j1
, K (n)

j2
− K (n)

j1
, . . . , K (n)

jr
− K (n)

jr−1
)

converges, after suitable rescaling, to a multivariate Gaussian limiting distribution.
However, there is a simple probabilistic argument: Observe that �(n)

j can be seen as a
marginal distribution of the sum of r independent, multinomially distributed random
vectors: write ti = ji/n and consider Mj ∼ Multi( ji − ji−1,pi ) where

pi = (pi,0, pi,1, . . . , pi,r ) ∈ [0, 1]r such that pi,h =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − tr if h = 0,

0 if 0 < h < i,

ti if h = i,

th − th−1 otherwise.

(17)
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By construction, the probability generating function of Mi is then given by

(
(1 − tr )z0 + ti zi +

r∑

h=i+1

(th − th−1)zh
) ji− ji−1

,

so that the probability generating function of the sumM1+· · ·+Mr is a product that is
very similar (and actually equal if we set z0 = 1, which corresponds to marginalizing
out the first component) to (16). In order to make the following arguments formally
easier to read, and as the first component is not relevant for us at all, we slightly abuse
notation and let Mi for 1 ≤ i ≤ r denote the corresponding marginalized multinomial
distributions instead.

For the sake of convenience, we make a slight adjustment: instead of fixing the
integer vector j = ( j1, . . . , jr ), we fix t = (t1, . . . , tr ) with 0 < t1 < · · · < tr < 1
and define j = �tn�. Here, n is considered to be sufficiently large so that the conditions
for the corresponding integer vector, 1 < �t1n� < · · · < �tr n� < n, are still satisfied.

By the multivariate central limit theorem, it is well known that a multinomially dis-
tributed random vector M ∼ Multi(n,p) converges, for n → ∞ and after appropriate
scaling, in distribution to a multivariate normal distribution,

M − np√
n

d−→ N (0, diag(p) − p�p). (18)

As a consequence, we find that

�
(n)
�nt� − E�

(n)
�nt�√

n
= (M1 + · · · + Mr ) − E(M1 + · · · + Mr )√

n

= (
√
t1 + O(n−1))

M1 − EM1√�t1n�
+ · · · + (

√
tr − tr−1 + O(n−1))

Mr − EMr√�tr n� − �tr−1n�
d−−−→

n→∞
√
t1N (0, �1) + · · · + √

tr − tr−1N (0, �r )

= N (0, t1�1 + · · · + (tr − tr−1)�r ),

where the variance–covariance matrices are given by

� j = diag(p j ) − p�
j p j .

By a straightforward (linear) transformation consisting of taking partial sums, the
random vector of increments �

(n)
�tn� can be transformed into K(n)

�tn�. This proves that
K(n)

�tn� converges, after centering and rescaling, to a multivariate normal distribution.
The entries of the corresponding variance–covariance matrix can either be deter-

minedmechanically from the entries of t1�1+· · ·+(tr − tr−1)�r by taking the partial
summation into account, or alternatively, our observations concerning the martingale
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Y (n)
j can be used. In particular, using (13), we find, for fixed s, t ∈ [0, 1] with s < t ,

that

Cov

(
K (n)

�sn� − EK (n)
�sn�√

n
,
K (n)

�tn� − EK (n)
�tn�√

n

)

= (n − �tn�)(n − �sn�)
n

E

(
Y (n)

�sn�Y
(n)
�tn�

)

=
(
n(1 − t)(1 − s) + O(1))E(Y (n)

�sn�
2)

= s2(1 − t) + O(n−1),

where we made use of the martingale property, and the fact that the second moment
of Y (n)

j is equal to the variance n−2 j( j −1)/(n− j). Ultimately, this verifies (15) and
thus completes the proof. 
�

The last remaining piece required to prove that the sequence of processes (Z (n))n≥1
is tight is a bound on the growth of the corresponding paths.

Lemma 5 There is a constant λ such that the following inequality holds for all s, t ∈
[0, 1] and all n ∈ Z>0:

E
(∣
∣Z (n)(t) − Z (n)(s)

∣
∣4
) ≤ λ |t − s|2. (19)

Proof Let us first consider the case where both sn = � and tn = m are integers.
Assume that � > m. We can follow the argument in the proof of Lemma 4 to see that
the random variable K (n)

� − K (n)
m is distributed like the last component in the sum of

two independent multinomial distributions, which gives us

K (n)
� − K (n)

m ∼ Bin
(
m − 1,

� − m

n

)
+ Bin

(
� − m,

�

n

)
.

Let uswriteBin∗(n, p) for a centered binomial distribution, i.e., a binomial distribution
Bin(n, p) with the mean np subtracted. Then we have

K (n)
� − K (n)

m − �2 − m2

n
∼ Bin∗ (m − 1,

� − m

n

)
+ Bin∗ (� − m,

�

n

)
− � − m

n
.

(20)

The fourth moment of a Bin∗(n, p)-distributed random variable, which is the fourth
centered moment of a Bin(n, p)-distributed random variable, is

np(1 − p)
(
1 + (3n − 6)p(1 − p)

) ≤ np(1 + 3np).

Note that for the Bin∗-variables in (20), we have (m−1)(�−m)
n ≤ � − m and (�−m)�

n ≤
� − m. Thus the fourth moments of the two centered binomial random variables are
bounded above by

(� − m)(1 + 3(� − m)) ≤ 4(� − m)2.
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So K (n)
� − K (n)

m − �2−m2

n is the sum of three random variables (the third one actually
constant) whose fourth moments are bounded above by 4(� − m)2, 4(� − m)2, and
(� − m)4n−4 ≤ (� − m)2, respectively. Applying the inequality E((X + Y + Z)4) ≤
27(E(X4) + E(Y 4) + E(Z4)), which is a simple consequence of Jensen’s inequality,
we get

E

(
K (n)

� − K (n)
m − �2 − m2

n

)4 ≤ 27 · (4 + 4 + 1)(� − m)2 = 243(� − m)2.

So if tn = � and sn = m are integers, we have

E
(∣
∣Z (n)(t) − Z (n)(s)

∣
∣4
) = E

(
K (n)

� − �2

n√
n

− K (n)
m − m2

n√
n

)4

≤ 243(� − m)2

n2
= 243(t − s)2.

Second, consider the case that tn and sn lie between two consecutive integers m and
m + 1: s̃n = m ≤ sn ≤ tn ≤ m + 1 = t̃n. In this case, we can express the difference
Z (n)(t) − Z (n)(s) (using the linear interpolation in the definition of K̃ (n)

t ) as

Z (n)(t) − Z (n)(s) = (t − s)n
(
Z (n)(t̃) − Z (n)(s̃)

) + (t − s)
√
n(t̃ − t − s + s̃).

The fourth moment of the first term is

E

(
(t − s)n

(
Z (n)(t̃) − Z (n)(s̃)

))4 ≤ (t − s)4n4 · 243(t̃ − s̃)2 ≤ 243(t − s)2

since |t − s| ≤ |t̃ − s̃| = 1
n . Likewise, the fourth power of the second term is easily

seen to be bounded above by (t − s)2. So the elementary inequality E((X + Y )4) ≤
8(E(X4) + E(Y 4)) yields

E
(∣
∣Z (n)(t) − Z (n)(s)

∣
∣4
) ≤ 8(243 + 1)(t − s)2 = 1952(t − s)2.

Finally, in the general case that t and s are arbitrary real numbers in the interval [0, 1]
such that tn and sn do not lie between consecutive integers, we can write

Z (n)(t) − Z (n)(s) = (
Z (n)(t) − Z (n)(u1)

) + (
Z (n)(u1) − Z (n)(u2)

)

+(
Z (n)(u2) − Z (n)(s)

)

for some real numbers u1, u2 with s ≤ u2 ≤ u1 ≤ t such that u1n and u2n are integers
and tn ≤ u1n + 1 as well as sn ≥ u2n − 1. Combining the bounds from above and
using again the inequality E((X + Y + Z)4) ≤ 27(E(X4) + E(Y 4) + E(Z4)), we
obtain
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E
(∣
∣Z (n)(t) − Z (n)(s)

∣
∣4
) ≤ 27

(
1952(t − u1)

2 + 243(u1 − u2)
2 + 1952(u2 − s)2

)

≤ 27 · 1952(t − u1 + u1 − u2 + u2 − s)2 = 52704(t − s)2,

completing the proof of the lemma with λ = 52704. 
�
All that remains now is to combine the two ingredients to prove our main result on

the limiting process.

Proof of Theorem 3 The proof relies on thewell-known result asserting that given tight-
ness of the sequence of corresponding probability measures as well as convergence
of the finite-dimensional probability distributions, a sequence of stochastic processes
converges to a limiting process (see [5, Theorems 7.1, 7.5]).

Tightness is implied (see [14, Theorems 13.29, 21.42]) by tightness of the initial
distributions (which is satisfied in our case as every Z̃ (n)(0) for n ∈ Z≥0 is degenerate
and assumes value 0 with probability 1 as a consequence of the uncover process deter-
ministically starting with no uncovered edges) and the moment bound in Lemma 5.
The (limiting) behavior of the finite-dimensional distributions of the original process
(K (n)

�tn�)t∈[0,1] is characterized by Lemma 4. This characterization carries over to the
linearly interpolated process by an application of Slutsky’s theorem [14, Theorem
13.18] after observing that

P

(∣
∣
∣
∣
∣
Z (n)(t) − K (n)

�tn� − t2n√
n

∣
∣
∣
∣
∣
> ε

)

= P

( |K̃ (n)
t − K (n)

�tn�|√
n

> ε

)

≤ E((K̃ (n)
t − K (n)

�tn�)2)
nε2

≤ E((K (n)
�tn�+1 − K (n)

�tn�)2)
nε2

n→∞−−−→ 0,

as a mechanical computation shows that E((K (n)
�tn�+1 − K (n)

�tn�)2) = O(1) (this also
follows from Lemma 5).

Note that as the finite-dimensional distributions converge to Gaussian distributions,
the limiting process (Z∞(t))t∈[0,1] is Gaussian itself—which means that it is fully
characterized by its first and second order moments. As a consequence of Lemma 4,
we find for all s, t ∈ [0, 1] with s < t that

EZ∞(t) = 0, VZ∞(t) = t2(1 − t), Cov(Z∞(s), Z∞(t)) = s2(1 − t).

It can be checked that if (W (t))t∈[0,1] is a standard Wiener process, the Gaussian
process ((1 − t)W (t2/(1 − t)))t∈[0,1] has the same first- and second-order moments
and therefore also the same distribution as Z∞. 
�

While we only needed to show tightness of the initial distributions of the processes
(Zn(t))t∈[0,1] to prove convergence to Z∞(t), we can actually prove a much stronger
result. A uniform bound (that implies tightness of Z (n)(t) for every fixed t) reads as
follows.
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Proposition 6 For any real C > 1 and any positive integer n, the random variable
Z (n)(t) satisfies the bound

P( sup
t∈[0,1]

|Z (n)(t)| ≥ C) ≤ 4(C − 1)−2, (21)

so that for C → ∞, the probability for the process to exceed C in absolute value
converges to 0 uniformly in terms of n.

Proof In order to obtain this condition, we show first that it can be reduced to an
inequality for the martingale from the previous section. To this end, let us write tn =
j + η, with j ∈ Z and η ∈ [0, 1). A simple calculation shows that

Z (n)(t) = K̃ (n)
t − t2n√

n

= (1 − η)K (n)
j + ηK (n)

j+1 − ( j + η)2/n√
n

= (1 − η)(K (n)
j − j( j − 1)/n) + η(K (n)

j+1 − j( j + 1)/n) − ( j + η2)/n√
n

= (1 − η)
K (n)

j − j( j − 1)/n√
n

+ η
K (n)

j+1 − j( j + 1)/n√
n

− j + η2

n3/2
.

The final fraction is bounded by 1, since j + η2 ≤ j + η = tn ≤ n. It follows that

sup
t∈[0,1]

|Z (n)(t)| ≤ sup
0≤ j≤n

∣
∣
∣
∣
∣

K (n)
j − j( j − 1)/n√

n

∣
∣
∣
∣
∣
+ 1,

so

P
(
sup

t∈[0,1]
|Z (n)(t)| ≥ C

) ≤ P

(

sup
0≤ j≤n

∣
∣
∣
∣
∣

K (n)
j − j( j − 1)/n√

n

∣
∣
∣
∣
∣
≥ C − 1

)

= P

(

sup
1≤ j≤n−1

∣
∣
∣
∣
∣

Y (n)
j (n − j)√

n

∣
∣
∣
∣
∣
≥ C − 1

)

. (22)

Note here that we need not consider j = 0 and j = n in the supremum, since
K (n)

j − j( j − 1)/n = 0 in either case. Since (Y (n)
j )1≤ j≤n−1 is a martingale, we can

use Doob’s maximal inequality [14, Theorem 11.2]. For any real C > 0 and any fixed
integer k with 1 ≤ k ≤ n − 1, we have

P
(
sup

1≤ j≤k
|Y (n)

j | ≥ C
) ≤ VY (n)

k

C2 = k(k − 1)

C2(n − k)n2
.
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With this, we have all required prerequisites to prove the bound. We partition the
interval over which the supremum is taken in (22), apply the martingale inequality,
and then obtain the desired result after summing over all these upper bounds. For every
integer i > 0, let I (n)

i := [2−i n, 2−i+1n] ∩ Z. We find

P

⎛

⎝ sup
n− j∈I (n)

i

∣
∣
∣
∣
∣

Y (n)
j (n − j)√

n

∣
∣
∣
∣
∣
≥ C − 1

⎞

⎠ ≤ P

⎛

⎝ sup
n− j∈I (n)

i

|Y (n)
j 2−i+1√n| ≥ C − 1

⎞

⎠

= P

⎛

⎝ sup
n− j∈I (n)

i

|Y (n)
j | ≥ 2i−1(C − 1)√

n

⎞

⎠

≤ n

22i−2(C − 1)2
V(Y (n)

n−�2−i n�)

≤ n

22i−2(C − 1)2
· 2

i

n
= 4

2i (C − 1)2
,

where in the last inequality we bounded the variance as follows:

V(Y (n)

n−�2−i n�) =
V(K (n)

n−�2−i n�)
�2−i n�2 = (n − �2−i n�)(n − �2−i n� − 1)�2−i n�

n2�2−i n�2 ≤ 2i

n
.

Finally, the union bound together with the observation that
∑

i≥1
4

2i (C−1)2
= 4(C −

1)−2 yields the upper bound in (21) and therefore completes the proof. 
�

3 Size of the Root Cluster

We now shift our attention from the number of uncovered edges to the sizes of the
connected components (or clusters) appearing in the graph throughout the uncover
process. It will prove convenient to change our tree model to rooted labeled trees,
as the nature of rooted trees allows us to focus our investigation on one particular
cluster – the one containing the root vertex. In case the root vertex has not yet been
uncovered, we will consider the size of the root cluster to be 0. Formally, we let the
random variable R(k)

n be the size of the root cluster of a (uniformly) random rooted
labeled tree of size n with k uncovered vertices.

Using the symbolic method for labeled structures (cf. [9, Chapter II]), we can set up
a formal specification for the corresponding combinatorial classes and subsequently
extract functional equations for the associated generating functions. Let T • be the
class of rooted labeled trees, and let G be a refinement of T • where the vertices
can either be covered or uncovered, and where uncovered vertices are marked with a
marker U . Finally, let F be a further refinement of G where all uncovered vertices in
the root cluster are additionally marked with marker V . A straightforward “top-down
approach,” i.e., a decomposition of themembers of the tree familyw.r.t. the root vertex,
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yields the formal specification

F = Z ∗ Set(G) + Z ∗ {UV } ∗ Set(F), G = Z ∗ Set(G) + Z ∗ {U } ∗ Set(G).

Note that the first summand in the formal description of F corresponds to the case
where the root vertex is covered, thus the size of the root cluster is zero.

Introducing the corresponding exponential generating functions F := F(z, u, v)

and G := G(z, u),

F(z, u, v) :=
∑

T∈F

z|T |u#U in T v#V in T

|T |!

=
∑

n≥1

∑

0≤k≤n

∑

m≥0

nn−1

n!
(
n

k

)

P{R(k)
n = m}znukvm,

G(z, u) :=
∑

T∈G

z|T |u#U in T

|T |! =
∑

n≥1

∑

0≤k≤n

nn−1

n!
(
n

k

)

znuk,

we obtain the characterizing equations

F = zeG + zuveF , G = z(1 + u)eG . (23)

Of course, G(z, u) = T •(z(1 + u)), where T • is the exponential generating function
associated with T •, the Cayley tree function. Starting with (23), the following results
on R(k)

n can be deduced.

Theorem 7 The expectation E(R(k)
n ) is, for 0 ≤ k ≤ n and n ≥ 1, given by

E(R(k)
n ) =

k∑

j=1

j k j

n j
. (24)

Depending on the growth of k = k(n),E(R(k)
n ) has the following asymptotic behav-

ior:

E(R(k)
n ) ∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k
n , for k = o(n), (k small),

α
(1−α)2

, for k ∼ αn, with 0 < α < 1, (k in central region),
n2

d2
, for k = n − d, with d = ω(

√
n) and d = o(n),

(k subcritically large),

κn, with κ = 1 − ce
c2
2
∫∞
c e− t2

2 dt,

for k = n − d, with d ∼ c
√
n and c > 0,

(k critically large),

n −
√

π
2 d

√
n, for k = n − d, with d = o(

√
n),

(k supercritically large).
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Proof After introducing

E := E(z, u) = ∂

∂v
F(z, u, v)

∣
∣
∣
∣
v=1

=
∑

n,k≥0

nn−1

n!
(
n

k

)

E(R(k)
n )znuk,

considering the partial derivative of (23) with respect to v easily yields

E = 1

1 − u
1+u G

− 1.

Extracting coefficients of E by an application of the Lagrange inversion formula
(see, e.g., [9, Theorem A.2]) yields

[zn]E = 1

n
[Gn−1] u

(1 + u)(1 − u
1+u G)2

· (1 + u)nenG

=
n−1∑

j=0

( j + 1)u j+1(1 + u)n−1− j · nn−2− j

(n − 1 − j)! ,

and further

[znuk]E =
k−1∑

j=0

( j + 1)

(
n − 1 − j

k − 1 − j

)
nn−2− j

(n − 1 − j)! .

Using E(R(k)
n ) = [znuk ]E

[znuk ]G = n! [znuk ]E
nn−1(nk)

, we obtain the result stated in (24):

E(R(k)
n ) = n!

k−1∑

j=0

( j + 1)

(n−1− j
k−1− j

)

(n
k

) · n−1− j

(n − 1 − j)! = n!
k−1∑

j=0

j + 1

n1+ j (n − 1 − j)! · k
j+1

n j+1

=
k∑

j=1

j k j

n j
.

In order to analyze the asymptotic behavior of E(R(k)
n ), the following integral

representation turns out to be advantageous,

E(R(k)
n ) =

∫ ∞

0
(x − 1) e−x

(
1 + x

n

)k
dx . (25)

It might be considered as a variation of the integral representation of the so-called

Ramanujan Q-function, Q(n) = ∑n−1
j=0

(n−1) j

n j = ∫∞
0 e−x (1 + x

n )n−1dx , which can
be traced back to Ramanujan himself (see, e.g., [8]).
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Equation (25) can be verified in a straightforward way by using the integral repre-
sentation of the Gamma function:

∫ ∞

0
(x − 1) e−x

(
1 + x

n

)k
dx =

∫ ∞

0
(x − 1)e−x

k∑

j=0

(
k

j

)
x j

n j
dx

=
k∑

j=0

(k
j

)

n j

(∫ ∞

0
e−x x j+1dx −

∫ ∞

0
e−x x jdx

)

=
k∑

j=0

(k
j

)

n j

(
( j + 1)! − j !)

=
k∑

j=0

k j j j !
j ! n j

=
k∑

j=0

j k j

n j
.

In order to evaluate the integral (25) asymptotically, we first show that for the

range x ≥ n
1
2+ε , with arbitrary but fixed ε > 0, the contribution to the integral is

exponentially small and thus negligible. Namely, when considering the integrand and
setting t = x

n , we obtain the following estimate, uniformly for k ∈ [0, n]:

e−x
(
1 + x

n

)k ≤ e−x
(
1 + x

n

)n = e−x+n ln(1+ x
n ) = e−n

(
t−ln(1+t)

)

.

Simple monotonicity considerations yield t − ln(1 + t) ≥ t
4 , for t ≥ 1 (thus x ≥ n),

and t − ln(1 + t) ≥ t2
4 , for t ∈ [0, 1] (thus x ∈ [0, n]). Due to these estimates and by

evaluating the resulting integral, we get the following bounds on the integral for the
respective ranges:

∫ ∞

n
(x − 1)e−x

(
1 + x

n

)k
dx ≤

∫ ∞

n
xe− x

4 dx = 16
(
1 + n

4

)
e− n

4 ,

∫ n

n
1
2+ε

(x − 1)e−x
(
1 + x

n

)k
dx ≤

∫ ∞

n
1
2+ε

xe− x2
4n dx = 2ne− 1

4 n
2ε

,

thus, by combining both cases, uniformly for k ∈ [0, n] and ε ∈ (0, 1
2 ]:

∫ ∞

n
1
2+ε

(x − 1)e−x
(
1 + x

n

)k
dx = O

(
ne− 1

4 n
2ε )

.

Furthermore, we note that (roughly speaking) if k is sufficiently far away from n
the integration range with negligible contribution can be extended. Namely, setting
δ = 1 − k

n and x = nt , we obtain for the integrand

e−x
(
1 + x

n

)k = e−n
(
t− k

n ln(1+t)
)

= e−n
(
t−(1−δ) ln(1+t)

)

≤ e−nδt = e−δx = e−(1− k
n )x ,

where we used the trivial estimate ln(1 + t) ≤ t , for t ≥ 0. E.g., if δ ≥ n− 1
4 , i.e.,

k ≤ n − n
3
4 , one easily obtains from this estimate that the contribution to the integral
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from the range x ≥ n
1
4+ε is asymptotically negligible:

∫ n
1
2+ε

n
1
4+ε

(x − 1)e−x
(
1 + x

n

)k
dx ≤

∫ ∞

n
1
4+ε

xe−(1− k
n )xdx

≤
∫ ∞

n
1
4+ε

xe−n− 1
4 xdx = O

(
ne−nε )

.

To get the asymptotic expressions for the integral stated in the theorem, wewill take
into account the growth of k w.r.t. n, consider suitable expansions of the integrand for

the range x ≤ n
1
2+ε (or x ≤ n

1
4+ε , respectively) and evaluate the resulting integrals,

where we apply the “tail exchange technique,” i.e., we may extend the integration
range to x ≥ 0, since only asymptotically negligible contributions are added.

• k small or in the central region: assuming k ≤ n−n
3
4 , an expansion of the integrand

for x ≤ n
1
4+ε leads to the expansion (with a uniform bound in this range):

e−x
(
1 + x

n

)k = e−x+k ln(1+ x
n ) = e

−x(1− k
n )+O( kx

2

n2
) = e−x(1− k

n ) ·
(
1 + O

( kx2
n2
))

= e−x(1− k
n ) ·

(
1 + O

(
n− 1

2+2ε)
)
,

and thus to the following evaluation of the integral:

∫ n
1
4+ε

0
(x − 1)e−x

(
1 + x

n

)k
dx =

∫ n
1
4+ε

0
(x − 1)e−x(1− k

n )dx ·
(
1 + O

(
n− 1

2+2ε)
)

=
∫ ∞

0
(x − 1)e−x(1− k

n )dx ·
(
1 + O

(
n− 1

2+2ε)
)

=
k
n

(1 − k
n )2

·
(
1 + O

(
n− 1

2+2ε)
)
,

where we used the formula

∫ ∞

0
(x − 1)e−νxdx = 1 − ν

ν2
, for ν > 0. (26)

Of course, this gives in particular

E(R(k)
n ) ∼

{
k
n , for k = o(n),

α
(1−α)2

, for k ∼ αn, with 0 < α < 1.

• k subcritically large: in the following, we treat cases with k
n → 1; there we have

to distinguish according to the growth behavior of the difference d = n − k. First
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we examine the region
√
n � d � n, i.e., d = o(n), but d = ω(

√
n), for which

we get the following expansion of the integrand (for x ≤ n
1
2+ε):

e−x
(
1 + x

n

)k = e−x+(n−d) ln(1+ x
n ) = e

− d
n x+O( x

2
n )+O( x

3

n2
)

= e− dx
n ·

(
1 + O

( x2
n

) + O
( x3
n2
))

.

Considering the corresponding integral (and applying tail exchange), we obtain

E(R(k)
n ) =

∫ ∞

0
(x − 1)e− dx

n dx

+O
(
1

n
·
∫ ∞

0
(x − 1)x2e− dx

n dx

)

+ O
(

1

n2
·
∫ ∞

0
(x − 1)x3e− dx

n dx

)

.

Using (26) and

∫ ∞

0
(x − 1)x�e−νxdx = O

( 1
ν�+2

)
, for � ≥ 0 and ν ∈ (0, 1),

we obtain the stated result:

E(R(k)
n ) = n2

d2
+ O

( n
d

) + O
( n3
d4
) = n2

d2
·
(
1 + O

( d
n

) + O
( n
d2
)) ∼ n2

d2
.

• k critically large: for the case that the difference d = n − k is of order �(
√
n), we

obtain the following expansion of the integrand:

e−x
(
1 + x

n

)k = e− dx
n − x2

2n ·
(
1 + O

( dx2
n2

) + O
( x3
n2
))

.

Thus, after completing the integrals occurring, we get

E
(
R(k)
n

) =
∫ ∞

0
(x − 1)e− dx

n − x2
2n dx

+ O
( d

n2
·
∫ ∞

0
x3e− dx

n − x2
2n dx

)
+ O

( 1

n2
·
∫ ∞

0
x4e− dx

n − x2
2n dx

)
.

Since, for � ≥ 0,

∫ ∞

0
x�e− dx

n − x2
2n dx = O

( ∫ ∞

0
x�e− x2

2n dx
)

= O
(
n

�+1
2
)
,

this yields

E
(
R(k)
n

) =
∫ ∞

0
x e− dx

n − x2
2n dx + O(

√
n).
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Setting d = c
√
n and applying the substitution t = c + x√

n
, we evaluate the

integral obtaining the stated result:

∫ ∞

0
x e− dx

n − x2
2n dx = n

∫ ∞

c
(t − c) e

c2
2 − t2

2 dt = n

(

1 − ce
c2
2 ·

∫ ∞

c
e− t2

2 dt

)

.

• k supercritically large: for d = n − k = o(
√
n), we get the expansion

e−x
(
1 + x

n

)k = e− x2
2n · (1 − dx

n

) ·
(
1 + O

( d2x2
n2

) + O
( x3
n2
))

.

Computations analogous to the previous ones, using

∫ ∞

0
x�e− x2

2n dx = 2
�−1
2 �

(
�+1
2

) · n �+1
2 , for � ≥ 0,

lead to the stated result:

E
(
R(k)
n

) =
∫ ∞

0
xe− x2

2n dx − d

n

∫ ∞

0
x2e− x2

2n dx + O(d2) + O(
√
n)

= n −
√

π√
2
d
√
n + O(d2) + O(

√
n).


�
Wecan even obtain the exact distribution of R(k)

n . There are twodifferent approaches
we want to briefly sketch: for one, an explicit formula for the generating function
F = F(z, u, v) can be found either from manipulating the recursive description (23),
or directly by decomposingF as a tree forming the uncovered root cluster with a forest
with covered roots attached. Either way, this yields

F = T •(vXe−X ) + G

1 + u
, with X = uG

1 + u
.

Note that the second summand, G
1+u = zeG , corresponds to the case where the root

vertex is covered. Extracting coefficients via an application of the Lagrange inversion
formula then yields an explicit formula for Fn,k,m := n![znukvm]F(z, u, v), i.e., the
number of labeled rooted trees with n vertices of which k are uncovered andm belong
to the root cluster (for 0 ≤ m ≤ k ≤ n and n ≥ 1):

Fn,k,m =
{(n−1

k

)
nn−1, m = 0,

(n
m

)(n−m−1
k−m

)
nn−k−1mm(n − m)k−m, m ≥ 1.

From this formula, the probabilitiesP(R(k)
n = m) = Fn,k,m

nn−1(nk)
given in Theorem9 can be

obtained directly.We omit these straightforward, but somewhat lengthy computations,
since in the following the results are deduced in a more general and elegant way.
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Alternatively, there is also a more combinatorial approach to determine these prob-
abilities: there is an elementary formula enumerating trees where a specified set of
vertices forms a cluster.

Lemma 8 Let n and k be positive integers, and let r1, r2, . . . , r� be fixed positive
integers with r1 + · · · + r� ≤ k. Moreover, fix disjoint subsets R1, . . . , R� of [k] with
|Ri | = ri for all i . The number of n-vertex labeled trees for which R1, . . . , R� are
components of the forest induced by the vertices with labels in [k] is given by

nn−k−1(n − r1 − · · · − r�
)k−r1−···−r�−1

(n − k)�rr1−1
1 · · · rr�−1

� . (27)

Proof We interpret each such tree T as a spanning tree of a complete graph K with
n vertices. Set r = r1 + · · · + r�. The vertices of K can be divided into the sets
R1, . . . , R�, the remaining k − r vertices in {1, 2, . . . , k} forming a set Q, and the
n− k vertices with label greater than k forming a set S. Note first that the components
induced by the sets R1, . . . , R� can be chosen in r

r1−2
1 · · · rr�−2

� ways. If the vertex sets
corresponding to R1, . . . , R� are contracted to single vertices v1, . . . , v�, K becomes
a multigraph K ′ with n − r + � vertices, and the tree T becomes a spanning tree T ′ of
K ′ upon contraction. Note that there are ri edges from vi to every other vertex in K ′,
and that T ′ cannot contain any edges from vi to another vertex in {v1, . . . , v�} ∪ Q.
Thus T ′ remains a spanning tree if all such edges are removed from K ′ to obtain a
multigraph K ′′. Conversely, if we take an arbitrary spanning tree of K ′′ and replace the
vertices v1, . . . , v� by spanning trees of R1, . . . , R�, respectively, we obtain a labeled
tree with n vertices that has the desired properties. It remains to count spanning trees
of K ′′, which has an adjacency matrix of the block form

A =
⎡

⎣
O O r1T

O E − I E
1rT E E − I

⎤

⎦

Here, 1 denotes a (column) vector of 1s, r a (column) vector whose entries are
r1, . . . , r�, O a matrix of 0s, E a matrix of 1s, and I an identity matrix. The blocks
correspond to �, k − r and n − k rows/columns, respectively. The number of span-
ning trees can now be determined by means of the matrix-tree theorem: the Laplacian
matrix is given by

L =
⎡

⎣
(n − k)D O −r1T

O (n − r)I − E −E
−1rT −E nI − E

⎤

⎦ ,

where D is a diagonal matrix with diagonal entries r1, . . . , r�. Our goal is to compute
the determinant of L with the first row and column removed; let this matrix be L1.
If we subtract 1

n−k times the first � − 1 rows from all of the last n − k rows of L1,
we obtain a matrix where all entries in the first � − 1 columns, except those in the
diagonal, are 0. Thus the determinant is equal to the product of these diagonal entries
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r2(n − k), . . . , r�(n − k) times the determinant of a matrix of the block form

[
(n − r)I − E −E

−E nI − (
1 + r−r1

n−k

)
E

]

,

where the blocks have length k−r and n− k, respectively. This matrix has n−r as an
eigenvalue of multiplicity k− r −1, since subtracting n− r times the identity yields a
matrix with k−r identical rows. For the same reason, n is an eigenvalue of multiplicity
n − k − 1. It remains to determine the remaining two eigenvalues. The corresponding
eigenvectors can be constructed as follows: let the first k− r entries (corresponding to
the first block) be equal to a, and the remaining entries equal to b. It is easy to verify
that this becomes an eigenvector for the eigenvalue λ if the simultaneous equations

(n − k)a − (n − k)b = λa,

−(k − r)a + (k − r + r1)b = λb,

are satisfied. The two solutions are the eigenvalues of the 2 × 2-coefficient matrix of
this system, and their product is the determinant of this 2 × 2 matrix, which is

(n − k)(k − r + r1) − (n − k)(k − r) = (n − k)r1.

It finally follows that the determinant of L1, thus the number of spanning trees of K ′′
is equal to

r2(n − k) · · · r�(n − k) · (n − r)k−r−1nn−k−1(n − k)r1
= nn−k−1(n − r)k−r−1(n − k)�r1 · · · r�.

Multiplying by rr1−2
1 · · · r�−2

� (the number of possibilities for the spanning trees
induced in the components R1, . . . , R�), we obtain the desired formula. 
�

As a consequence of Lemma 8 for � = 1, the probability P(R(k)
n = r) can be

obtained by multiplying nn−k−1(n − r)k−r−1(n − k)rr−1 with r
(k
r

)
(which gives the

number of rooted labeled trees on n vertices whose root is contained in a cluster of size
r among the first k uncovered vertices), and then normalizing by nn−1, the number of
labeled rooted trees on n vertices.

Theorem 9 The exact distribution of R(k)
n is characterized by the following probability

mass function (p.m.f.), which is given by the following formula for 0 ≤ m ≤ k ≤ n
and n ≥ 1 (and is equal to 0 otherwise):

P(R(k)
n = m) =

⎧
⎪⎨

⎪⎩

1 − k
n , for m = 0,

mm (n−k)(n−m)k−m−1

nk
( k
m

)
, for 1 ≤ m ≤ k < n,

1, for m = k = n.

Depending on the growth of k = k(n), we obtain the following limiting behavior:
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• k small, i.e., k = o(n):

R(k)
n

p−→ 0.

• k in central region, i.e., k ∼ αn with 0 < α < 1:

R(k)
n

d−→ Rα, where the discrete r.v. Rα is characterized by its p.m.f.

P(Rα = m) =: pm =
{
1 − α, m = 0,
mm

m! (1 − α)αme−αm, m ≥ 1,

or alternatively by the probability generating function p(v) = ∑
m≥0 pmvm =

1−α
1−T •(vαe−α)

.

• k subcritically large, i.e., k = n − d with d = ω(
√
n) and d = o(n):

(d

n

)2 · R(k)
n

d−→ Gamma
(1

2
,
1

2

)
,

whereGamma( 12 ,
1
2 ) is a Gamma-distribution characterized by its density f (x) =

1√
2πx

e− x
2 , for x > 0.

• k critically large, i.e., k = n − d with d ∼ c
√
n and c > 0:

1

n
· R(k)

n
d−→ R(c),

where the continuous r.v. R(c) is characterizedby its density fc(x) = 1√
2π

c√
x(1−x)

3
2

e− c2x
2(1−x) , for 0 < x < 1.

• k supercritically large, i.e., k = n − d with d = ω(1) and d = o(
√
n):

1

d2
· (n − R(k)

n

) d−→ D,

where the continuous r.v. D is characterized by its density f (x) = 1√
2π x

3
2
e− 1

2x ,

x > 0.
• k supercritically large with fixed difference, i.e., k = n − d with d fixed:

n − d − R(k)
n

d−→ D(d),

where the discrete r.v. D(d) is characterized by the p.m.f.

P(D(d) = j) =: p j = e−d · d(d + j) j−1

j ! · e− j , j ≥ 0,
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or alternatively via the probability generating function p(v) = ∑
j≥0 p jv

j =
ed(T •( v

e )−1).

Proof The probability mass function of R(k)
n follows from the considerations made

before the statement of the theorem. Due to its explicit nature, the limiting distribution
results stated in Theorem 9 can be obtained in a rather straightforwardway by applying
Stirling’s formula for the factorials after distinguishing several cases. 
�

Remark 4 Of course, for labeled trees, the distribution of R(k)
n matches with the distri-

bution of the cluster size of a random vertex. Furthermore, by conditioning, one can
easily transfer the results of Theorem 9 to results for the size S(k)

n of the cluster of the
k-th uncovered vertex: P(S(k)

n = m) = P(R(k)
n = m|R(k)

n > 0) = n
k · P(R(k)

n = m),
for m ≥ 1.

Remark 5 Preliminary considerations indicate that the approaches used to character-
ize the distribution of R(k)

n could be extended, at least in principle, to obtain joint
distributions of the size of the root cluster at several times during the uncover process.
However, it seems that using them to deduce functional limit theorems for the size of
the root cluster, e.g., in the critical region, might be a daunting task.

Remark 6 The distributions R(c) and D occurring in the critical and supercritical
region, resp., are related to the Lévy-distribution Lévy(γ ), γ > 0, with density

fγ (x) =
√

γ

2π

e−γ /(2x)

x3/2
, x > 0.

Actually, D is a standard Levy-distributed random variable (γ = 1), whereas R(c)

can be obtained as the reciprocal of a shifted Lévy-distributed random variable L
d=

Levy(c2):

R(c)
d= 1

1 + L
.

4 Size of the Largest Uncovered Component

With knowledge about the behavior of the root cluster at our disposal, we return to
non-rooted labeled trees and study the size of the largest cluster. To this aim, we
introduce the random variable X (k)

n,r which models the number of components of size
r after uncovering the vertices 1 to k in a uniformly random labeled tree of size n.

Formally, X (k)
n,r : Tn → Z≥0. Note that we have, for all labeled trees T ∈ Tn ,

n∑

r=1

r · X (k)
n,r (T ) = k. (28)
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Theorem 10 Let n, k, r ∈ Z≥0with0 ≤ r ≤ k ≤ n. The expectednumberof connected
components of size r after uncovering k vertices of a labeled tree of size n chosen
uniformly at random is

EX (k)
n,r =

(
k

r

)( r

n

)r−1(
1 − k

n

)(
1 − r

n

)k−r−1
. (29)

Proof Observe that X (k)
n,r can be written as a sum of Bernoulli random variables

X (k)
n,r =

∑

S⊆[k]
|S|=r

X (k)
n,S,

with X (k)
n,S being 0 or 1 depending on whether or not the vertices in S form a cluster

after k uncover steps. By symmetry and linearity of the expected value, we have

EX (k)
n,r =

∑

S⊆[k]
|S|=r

EX (k)
n,S =

(
k

r

)

EX (k)
n,[r ].

A formula for the expected value on the right-hand side follows from Lemma 8 and
thus proves the theorem. 
�

In the spirit of the observation in (28), the formula in Lemma 8 provides a combi-
natorial proof for the following summation identity.

Corollary 11 Let n, k ∈ Z≥0 with 0 ≤ k ≤ n. Then, the identity

k∑

r=1

(
k

r

)

rrnn−k−1(n − r)k−r−1(n − k) = knn−2 (30)

holds.

Proof The right-hand side enumerates the vertices in [k] in all labeled trees on n
vertices. The left-hand side does the same,with the summands enumerating the vertices
in connected components of size r . 
�
Remark 7 Observe that the identity in (30) can be rewritten as

k∑

r=1

(
k

r

)

rr (n − r)k−r−1 = k

n − k
nk−1,

which is a specialized form ofAbel’s Binomial Theorem—a classical, andwell-known
result; see, e.g., [24].

For a tree T ∈ T , let c(k)
max(T ) denote the largest connected component of T after

uncovering the first k vertices.
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Theorem 12 Let n ∈ Z≥0, and let Tn ∈ Tn be a tree chosen uniformly at random.
Then the behavior of the random variable c(k)

max(Tn) as n → ∞ can be described as
follows:

• for k = n − d with d = ω(
√
n) (subcritical case), we have c(k)

max(Tn)/n
p−→ 0.

• for k = n − d with d = o(
√
n) (supercritical case), we have c(k)

max(Tn)/n
p−→ 1.

Informally, we can interpret this result as follows: as long as there are substantially
more than an order of

√
nmanyvertices left to be uncovered, thenwith high probability,

there is no “giant” component (i.e., a component that contains at least a fixedpercentage
of all vertices). Otherwise, if there are substantially fewer than an order of

√
n many

vertices left to be uncovered, then with high probability there is one such “giant”
component whose size is asymptotically equal to n.

Proof of Theorem 12 For the subcritical case, we use the expected root cluster size
from Theorem 7. Since a cluster of size r contains the root with probability r

n , we
have

n2

d2
∼ ER(n−d)

n =
n−d∑

r=0

EX (n−d)
n,r · r · r

n
≥

n−d∑

r=m

EX (n−d)
n,r

r2

n
≥ m2

n

n−d∑

r=m

EX (n−d)
n,r

≥ m2

n
P(c(n−d)

max (Tn) ≥ m).

This implies that

P(c(n−d)
max (Tn) ≥ m) = O

( n3

d2m2

)
,

so if m = εn for any fixed ε > 0, we have P(c(n−d)
max (Tn) ≥ m) → 0.

In the supercritical case, we recall the corresponding case for the size of the root
cluster from Theorem 7. Using Markov’s inequality yields, for any ε > 0,

P(n − R(k)
n ≥ εn) ≤ n − E(R(k)

n )

εn
∼ d

√
n

εn
n→∞−−−→ 0.

Thus, the root cluster is the largest cluster of size∼ nwith high probability. Translating
this from rooted to unrooted trees proves the theorem. 
�

In the critical case where n − k ∼ c
√
n for a constant c, we are also able to char-

acterize the behavior of c(k)
max(Tn)/n: this variable converges weakly to a continuous

limiting distribution. In order to describe the distribution, we first require the following
lemma.

Lemma 13 Suppose that n − k ∼ c
√
n, and fix α > 0. The probability that the forest

induced by the vertices with labels in [k] of a uniformly random labeled tree Tn with
n vertices contains two components, each with at least αn vertices, whose sizes are
equal, goes to 0 as n → ∞.
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Proof Suppose that there are two components with a vertices each, where a ≥ αn.
By Lemma 8, the probability for this to happen is given by

P(a) =
( k
a,a,k−2a

)
nn−k−1(n − 2a)k−2a−1(n − k)2a2a−2

nn−2 ,

provided that k ≥ 2a (otherwise, the probability is trivially 0). The initial multinomial
coefficient gives the number of ways to choose the labels of the two components, the
denominator is simply the total number of labeled trees. Our aim is to estimate this
expression. The case k = 2a is easy to deal with separately, so assume that k > 2a.
Then by Stirling’s formula, we have, for some constant C1,

P(a) ≤ C1kk+1/2

a2a+1(k − 2a)k−2a+1/2 · n
n−k−1(n − 2a)k−2a−1(n − k)2a2a−2

nn−2

= C1k1/2(n − k)2n

a3(n − 2a)(k − 2a)1/2

(
1 + n − k

k

)−k(
1 + n − k

k − 2a

)k−2a
.

It is well known that (1 + β/x)x is increasing in x for fixed β. So if k − 2a ≤ n3/4,
we have, using the assumption that n − k ∼ c

√
n,

(
1 + n − k

k

)−k(
1 + n − k

k − 2a

)k−2a

≤
(
1 + n − k

k

)−k(
1 + n − k

n3/4

)n3/4

= exp
(
−k log

(
1 + n − k

k

)
+ n3/4 log

(
1 + n − k

n3/4

))

= exp
(
−k

(n − k

k
+ O(n−1)

)
+ n3/4

(n − k

n3/4
− (n − k)2

2n3/2
+ O(n−3/4)

))

= exp
(
−c2n1/4 + o(n1/4)

)
.

In this case, P(a) goes to 0 faster than any power of n. Otherwise, i.e., if k−2a > n3/4,
we have k − 2a ∼ n − 2a, and using the assumption that a ≥ αn as well as the same
Taylor expansion as above, we obtain

P(a) ≤ C2(n − k)2

n3/2(n − 2a)3/2
exp

(
− (n − k)2

2(n − 2a)

)

for a constant C2. We can rewrite this as

P(a) ≤ C2

n3/2(n − k)
f
( (n − k)2

n − 2a

)

with f (x) = x3/2e−x/2. Since this function is bounded, we have proven that P(a) =
O(n−2), uniformly in a. Summing over all possible values of a, it follows that the
probability in question is O(n−1). In particular, it goes to 0. 
�
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Now we are able to prove the following description of the limiting distribution of
c(k)
max(Tn)/n.

Theorem 14 Suppose that n− k ∼ c
√
n, and fix α > 0. The probability that the forest

induced by the vertices with labels in [k] of a uniformly random labeled tree Tn with
n vertices contains a component with at least αn vertices tends to

∑

j≥1

(−1) j−1c j

(2π) j/2

∫

· · ·
∫

α≤t1<···<t j
τ j=t1+···+t j<1

j∏

i=1

t−3/2
i (1 − τ j )

−3/2 exp
(

− c2τ j
2(1 − τ j )

)
dt1 · · · dt j

as n → ∞.

Proof Let r1, . . . , r� be positive integerswithαn ≤ r1 < · · · < r� and r1+· · ·+r� ≤ k.
By Lemma 8, the probability that the forest induced by vertices with labels in [k] has
components of sizes r1, . . . , r� is givenby the following formula,with r = r1+· · ·+r�:

P(r1, . . . , r�) =
( k
r1,...,r�,k−r

)
nn−k−1(n − r)k−r−1(n − k)�rr1−1

1 · · · rr�−1
�

nn−2 ,

and the same argument as in Lemma 13 shows that this probability is O(n−�), uni-
formly in r1, . . . , r�. Moreover, if we set ri = ti n, Stirling’s formula gives us the
following asymptotic formula for this probability after some manipulations: with
t = t1 + · · · + t�, it is

P(r1, . . . , r�) ∼ c�

n�(2π)�/2

�∏

i=1

t−3/2
i (1 − t)−3/2 exp

(
− c2t

2(1 − t)

)
.

Moreover, by the inclusion–exclusion principle, the probability that there is at least
one component of size at least αn is given by

∑

αn≤r1≤k

P(r1) −
∑

αn≤r1<r2
r1+r2≤k

P(r1, r2)

+ · · · + (−1) j−1
∑

αn≤r1<···<r j
r1+···+r j≤k

P(r1, . . . , r j ) + · · · + O(n−1).

The final error term takes the possibility into account that there are two components
of the same size. The probability of this event is O(n−1) by Lemma 13. Note that we
actually only need a finite number of terms, as the sums become empty for jα > 1.
If we plug in the asymptotic formula for P(r1, . . . , r�) and pass to the limit, the sums
become integrals, and we obtain the desired formula. 
�

123



La Matematica (2023) 2:861–892 891

Acknowledgements Wewould like to thank Svante Janson for pointing out a gap in the proof of Theorem 3
in the extended abstract of this paper. Further we want to thank Markus Kuba for pointing out the relations
to the Lévy-distribution for certain limiting distributions occurring in Theorem 9. Finally, we would like to
thank the anonymous reviewers for their helpful comments.

Funding Open access funding provided by University of Graz. The author S. Wagner was supported by the
Knut and Alice Wallenberg Foundation. An extended abstract of this paper appeared in the Proceedings of
the 33rd International Conference on Probabilistic, Combinatorial andAsymptoticMethods for theAnalysis
of Algorithms (AofA 2022).

Data availability Not applicable.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Addario-Berry, L., Broutin, N., Holmgren, C.: Cutting down trees with aMarkov chainsaw. Ann. Appl.
Probab. 24(6), 2297–2339 (2014)

2. Aldous, D., Pitman, J.: The standard additive coalescent. Ann. Probab. 26(4), 1703–1726 (1998)
3. Bertoin, J.: RandomFragmentation andCoagulation Processes. Cambridge Studies in AdvancedMath-

ematics, vol. 102. Cambridge University Press, Cambridge (2006)
4. Berzunza Ojeda, G., Holmgren, C.: Invariance principle for fragmentation processes derived from

conditioned stable Galton–Watson trees. arXiv Preprint (2010). arXiv:2010.07880
5. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)
6. Chassaing, P., Louchard, G.: Phase transition for parking blocks, Brownian excursion and coalescence.

Random Struct. Algorithms 21(1), 76–119 (2002)
7. Fill, J.A., Kapur, N., Panholzer, A.: Destruction of very simple trees. Algorithmica 46(3–4), 345–366

(2006)
8. Flajolet, P., Grabner, P.J., Kirschenhofer, P., Prodinger, H.: On Ramanujan’s Q-function. J. Comput.

Appl. Math. 58(1), 103–116 (1995)
9. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

10. Heuberger, C., Kropf, S.: Higher dimensional quasi-power theorem and Berry–Esseen inequality.
Monatsh. Math. 187(2), 293–314 (2018)

11. Janson, S.: Random cutting and records in deterministic and random trees. Random Struct. Algorithms
29(2), 139–179 (2006)

12. Janson, S.: Sorting using complete subintervals and the maximum number of runs in a randomly
evolving sequence. Ann. Combin. 12(4), 417–447 (2009)

13. Kingman, J.F.C.: The coalescent. Stoch. Process. Appl. 13(3), 235–248 (1982)
14. Klenke, A.: Probability Theory—A Comprehensive Course, 3rd edn. Universitext. Springer, Cham

(2020)
15. Kuba, M., Panholzer, A.: Isolating a leaf in rooted trees via random cuttings. Ann. Combin. 12(1),

81–99 (2008)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2010.07880


892 La Matematica (2023) 2:861–892

16. Martin, J.L., Reiner, V.: Factorization of some weighted spanning tree enumerators. J. Combin. Theory
Ser. A 104(2), 287–300 (2003)

17. Meir, A., Moon, J.W.: Cutting down random trees. J. Austral. Math. Soc. 11, 313–324 (1970)
18. Miermont, G.: Self-similar fragmentations derived from the stable tree. I. Splitting at heights. Probab.

Theory Relat. Fields 127(3), 423–454 (2003)
19. Miermont, G.: Self-similar fragmentations derived from the stable tree. II. Splitting at nodes. Probab.

Theory Relat. Fields 131(3), 341–375 (2005)
20. Pitman, J.: Coalescent random forests. J. Combin. Theory Ser. A 85(2), 165–193 (1999)
21. Pitman, J.: Coalescents with multiple collisions. Ann. Probab. 27(4), 1870–1902 (1999)
22. Remmel, J.B., Williamson, S.G.: Spanning trees and function classes. Electron. J. Combin. 9(1),

Research Paper 34, 24 (2002)
23. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Grundlehren der mathematischen

Wissenschaften, vol. 293, 3rd edn. Springer, Berlin (1999)
24. Riordan, J.: Combinatorial Identities. Wiley, New York (1968)
25. Thévenin, P.: A geometric representation of fragmentation processes on stable trees. Ann. Probab.

49(5), 2416–2476 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	The Uncover Process for Random Labeled Trees
	Abstract
	1 Introduction
	2 The Number of Uncovered Edges
	2.1 A Closer Look at the Stochastic Process

	3 Size of the Root Cluster
	4 Size of the Largest Uncovered Component
	Acknowledgements
	References




