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Abstract
Graphs in metric spaces appear in a wide range of data sets, and there is a large body of
work focused on comparing, matching, or analyzing collections of graphs in different
ambient spaces. In this survey, we provide an overview of a diverse collection of
distance measures that can be defined on the set of finite graphs immersed (and in
some cases, embedded) in a metric space. For each of the distance measures, we
recall their definitions and investigate which of the properties of a metric they satisfy.
Furthermore we compare the distance measures based on these properties and discuss
their computational complexity.

1 Introduction

In this survey, we provide a methodical overview of a collection of distance measures
aimed at comparing graphs immersed and embedded in an ambient metric space, such
as Euclidean space. Data in this form arises in a wide range of areas, including GIS,
trajectory analysis, protein alignment, plant morphology, and commodity networks
such as electrical grids. Intuitively comparing twonetworksmight require amapping or
correspondence between the networks. For example, if one has a ground truth of a road
network and a simplification or reconstruction of the same network, one may wish to
measure the error of the latter. In this case, a mapping between the two networks would
identify the parts of the ground truth that are successfully reconstructed/simplified and
would enable one to study the local error of the reconstruction. In another example,
two embedded graphs could serve as representations of a geographic network (e.g.,
rivers) in two different years, andmappings between them allow one to measure where
and how much the networks have changed. On the other hand, many networks are not
isomorphic, nor is one necessarily interested in true subgraph isomorphism.
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Given the prevalence of immersed and embedded graphs, as well as the wide range
of potential domain questions, we need mathematical foundations for comparing and
measuring the resemblance of such structures. Moreover, such data is often collected
from a noisy and error-prone process, leading to a need for a wide variety of distances
that are robust to different types of issues in the data. Such measures are useful in
machine learning and statistical approaches, where an understanding of the mathe-
matical structure of the options gives stronger guarantees and theoretical analyses.

More formally, in this paper, we consider the set GM of finite graphs immersed in a
topological metric space (M, δ) and the set ˜GM of finite graphs embedded in M . The
most common setting is when we compare planar graphs immersed or embedded in
Euclidean space, so that M = R

2 and δ is the Euclidean distance d2. We note that
immersions (where edges are allowed to cross) and embeddings (where the image
in the space M may not have crossings) are both of interest; for example, a road
network is often considered to be embedded, but, in fact, given overpasses and bridges,
in M = R

2 an immersion is the correct representation. Our core question is the
following: given G1,G2 ∈ GM (or ∈ ˜GM ), how can we measure the distance between
G1 and G2? Moreover, what metric properties does a given distance satisfy?

Goal. The goal of this survey is to enumerate and to understand various metric prop-
erties of GM and ˜GM under different graph distance measures. We note that different
distancemeasures capture different aspects of the given graphs, and we conjecture that
a formal study of the mathematical properties strengthens our understanding of these
tradeoffs. For example, some prioritize global similarity, while others focus on local
matching; some are theoretically sound but difficult to compute. After briefly summa-
rizing relevant definitions and background in Section 2, we discuss distances between
immersed graphs in Section 3. Finally, we conclude in Section 4 bymentioning several
natural open problems and possible future work in this area.

2 Preliminaries

We are motivated by the study of the spaces of graphs embedded in Euclidean space
induced by different distances. In this work, we consider a more general setting:
spaces of graphs immersed in a metric space (M, δ). (In fact, we consider spaces of
pseudographs, allowing self-loops and multiple edges between pairs of vertices.) We
begin by briefly defining some of the key concepts used in the remainder of this paper,
but refer the reader to a topology text for full definitions [17, 24].

2.1 Distances andMetrics

A number of key properties are considered desirable for comparisons between sets.
Here, we focus on the properties most relevant for graph comparison; see for example
[9, 10] for more thorough surveys and discussion of distances in a range of more
general settings. We note that there are additional studies of the geometry of graph
spaces, e.g., [20].
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Table 1 Types of distances

Finiteness Identity Sym. Sep. Subadd.

Distance ? ? ? ? ?

Metric Y Y Y Y Y

Pseudo-metric (PM) Y Y Y ? Y

Semi-metric (SM) Y Y Y Y ?

Quasi-metric (QM) Y Y ? Y Y

Extended metric N Y Y Y Y

Directed PM Y Y N ? Y

Extended directed PM N Y N ? Y

Extended directed QM N Y N Y Y

For each distance discussed in this paper, we note whether or not the distance satisfies Finiteness, Identity,
Symmetry, Separability, and Subadditivity. A question mark indicates that it does not need to satisfy that
property, but may

Definition 1 (Key Properties of Dissimilarity Functions) Let X be a set. Consider a
function d : X × X → R≥0, where R≥0 denotes the non-negative extended real line,
i.e., R≥0 := R≥0 ∪ ∞. We define the following properties:

1. Finiteness: for all x, y ∈ X, d(x, y) < ∞.
2. Identity: for all x ∈ X, d(x, x) = 0.
3. Symmetry: for all x, y ∈ X, d(x, y) = d(y, x).
4. Separability: for all x, y ∈ X, d(x, y) = 0 implies x = y.
5. Subadditivity (Triangle Ineq.): for all x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y).

We say that d is a distance metric (or simply a metric) if it satisfies all five
properties. However, less strict notions of dissimilarity can be defined. We say that d
is a pseudo-metric if it satisfies finiteness, identity, symmetry, and subadditivity, but
not necessarily separability.1

We say that d is a semi-metric if it satisfies finiteness, identity, symmetry, and
separability, but not necessarily subadditivity. We say that d is a quasi-metric if it
satisfies finiteness, identity, separability, and subadditivity, but not necessarily sym-
metry; see Table 1. If we do not know which, if any, of these properties d satisfies,
then we simply refer to d as a distance.

When we know that certain properties are not satisfied, we can add certain adjec-
tives.We refer to distance functions that allow infinite distances as extended distances.

We say that d is asymmetric or directed2 if it does not satisfy symmetry (and may
or may not satisfy identity, separability, and subadditivity). For example, an extended
directed quasi-metric is a distance that satisfies identity, separability, and subadditivity,
but does not satisfy finiteness and symmetry.

1 Note that the terminology for different comparison functions is not standard across fields. We choose to
use the terms that are used in topology and computational geometry (e.g., [9]).
2 The term directed distance is sometimes used to refer to a distance function that allows for the range to
include negative numbers. This is not the sense in which we are using this term. Throughout this paper, our
distances are always nonnegative.
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Remark 1 (Distances Between Sets) Let X be a set and let d : X × X → R≥0 be a
distance. Let A, B ⊆ X. Then, we define d(A, B) := inf

(x,y)∈A×B
d(x, y).

Remark 2 (Metrizing Distances) If d is not a metric, we can often metrize it. For
example, if d is asymmetric, then we can symmetrize it to define a symmetric dis-
tance D : X × X → R≥0, where D(x, y) = max{d(x, y), d(y, x)}. Note that: if d
satisfies separability, then D is also separable. Likewise, finiteness, identity, and sub-
additivity of D follow from finiteness, identity, and subaditivity of d, respectively.
Throughout this paper, this is how we symmetrize asymmetric distances, but we note
that there are other options as well.

As a more complicated example, if d is a pseudo-metric, we can make it separable
by defining equivalence classes. For each x ∈ X, we define its equivalence class,
denoted [x], as the set of points [x] := {y ∈ X | d(x, y) = 0} and let Y be the
set of all equivalence classes. Then, we define D : Y × Y → R≥0 by D([x], [y]) =
max
x ′∈[x]

max
y′∈[y]

d(x ′, y′).

2.2 Correspondences andMatchings

Let (M, δ) be ametric space, and A, B ⊂ M . Oneway to define the distance between A
and B is to “line up” the points in the two sets and to use the distance δ tomeasure “how
well” the two sets are aligned. For this, we define correspondences and matchings.

A correspondence τ between A and B is simply a subset of A × B. Often, it is
convenient to think of τ both as a subset and as a function that can take subsets of
A to subsets of B and vice versa. Specifically, for A′ ⊆ A, we define τ(A′) := {b ∈
B | ∃a ∈ A′ s.t. (a, b) ∈ τ }, and define τ−1(B ′) similarly to be {a ∈ A | (a, b) ∈ τ }.
We call τ a matching if each element of A � B appears in τ at most once. We call τ
a perfect matching if τ induces a bijection between the two sets, b : A → B with
b(a) = τ({a}).

2.3 Open Balls and theMetric Topology

Let X be a set and d : X × X → R≥0 a distance. For each r ≥ 0 and x ∈ X, we define
the open ball of radius r centered at x by taking all points in X whose distance to x
is less than r :

Bd(x, r) := {y ∈ X | d(x, y) < r}.

In the case that d is a metric, this is called a metric ball; if d is a pseudo-metric, it is a
pseudo-metric ball, and so on. The closure of an open ball is a closed ball and can be
written: Bd(x, r) = {y ∈ X | d(x, y) ≤ r}.

We can use the set of all open balls in X under the distance d in order to define a
topology on X. This is called the open ball topology in general, and denoted (X, d).
If d is a metric, the resulting topological space is called a metric space. If d is a
pseudo-metric, then it is a pseudo-metric space, and so on. We say that (X, d) is a
metric measure space if there exists a Borel measure μ on (X, d) such that all open
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balls have positive measure (i.e., for all x ∈ X and r > 0, μ(Bd(x, r)) > 0); see [16,
Ch. 31

2 ] for more details on metric measure spaces.
At times, we may find it convenient to assume that a topological space is compact.

We say that a topological space T is compact if every open cover has a finite subcover.
On compact sets, minimum and maximum are defined:

Lemma 1 (Minimum and Maximum Over a Compact Space) If T is a compact topo-
logical space and f : T → R is a continuous function, then sup f and inf f are
attained by elements in T .

See, e.g., [27, Corollary 13.18] for a proof. In particular, the previous lemma allows
us to write max f = sup f and min f = inf f .

2.4 The Space of Paths

Let X be a set and d : X × X → R≥0 be a distance function. Using the open ball
topology in X and the subspace topology3 on the unit interval I = [0, 1] ⊂ R, a path
in X is a continuous map γ : I → X, and we shall refer to γ as a path from γ (0)
to γ (1). If X is a metric space, then the length of γ can be defined, and we call γ

rectifiable if its length is finite; see [26] for the formal definition of path lengths. A
path is a geodesic if it is locally shortest, that is, if no local perturbation of γ results
in a shorter path.

A reparameterization ϕ of the unit interval I is a continuous, non-decreasing, and
bijective map ϕ : I → I . Thus, we may also call ϕ an orientation-preserving homeo-
morphism on I (here, the homeomorphism is orientation-preserving since φ(0) = 0
and φ(1) = 1). Thus, two paths γ1, γ2 : I → X are equivalent, up to orientation-
preserving homeomorphism, if there exist two reparameterizations ϕ1 and ϕ2 such
that γ1 ◦ ϕ1 = γ2 ◦ ϕ2. (Note: we can always force one of the reparameterizations to
be the identity map). For a, b ∈ X, we use PathsX(a, b) to denote the collection of all
paths from a to b in X, up to reparameterization. Then, for A, B ⊆ X, we define

PathsX(A, B) :=
⋃

(a,b)∈A×B

PathsX(a, b).

Let (M, δ) be a metric space, and let � := PathsM (M, M). If we topologize �

with the compact-open topology, then � is compact (and, by Lemma 1, we can take
minima and maxima over �).

2.4.1 The Hausdorff Distance (General Form)

Let (M, δ) be a metric space and let 2M denote the collection of all subsets of M .
Then, the directed Hausdorff distance

−→
δ H : 2M × 2M → R≥0 in (M, δ) is defined

by −→
δ H (A, B) := sup

a∈A
δ (a, B) = sup

a∈A
inf
b∈B δ (a, b) , (1)

3 Here, the unit interval I = [0, 1] is a (closed) subspace of R under the standard topology.
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Fig. 1 Two curves γ1 and γ2 with small Hausdorff distance, as each point on one curve is quite near
some point on the other. However, these two curves have large Fréchet distance, realized by the gray leash
connecting γ1(1) to γ0(1)

where the supremum over an empty set is defined to be zero and the infimum over an
empty set is defined to be ∞. 4 See Fig. 1 We symmetrize this distance by taking the
maximum (as inRemark 2) in order to obtain theHausdorff distance δH : 2M×2M →
R≥0, which is defined by

δH (A, B) := max{−→δ H (A, B),
−→
δ H (B, A)}.

The directed Hausdorff distance is not a metric, as it does not satisfy finiteness, sym-
metry, nor separability (e.g., consider M = R, A = {0} and B = Z and observe
that

−→
δ H (A, B) = ∞ and

−→
δ H (B, A) = 0). However, when restricted to the set of

non-empty compact subspaces of M , the directed Hausdorff distance and the Haus-
dorff distance both satisfy finiteness.

Lemma 2 (TheHausdorff Distances) Let (M, δ) be ametric space. The directedHaus-
dorff distance on M satisfies identity and subadditivity, but not finiteness, symmetry,
and separability (i.e., it is an extended directed pseudo-metric), and the Hausdorff
distance is an extended metric on M.

Let Y ⊂ 2M be a collection of non-empty, compact subspaces of M. Then, the
directed Hausdorff distance when restricted to Y satisfies finiteness, identity, and
subadditivity, but neither symmetry nor separability (i.e., it is a directed psuedo-metric
on Y), and the Hausdorff distance is a metric when restricted to Y.

The proof of this lemma follows from themetric properties of δ; see [19] for details.
For a detailed study of the Hausdorff distance, see [22].

2.4.2 Fréchet Distance Between Paths

We define the Fréchet distance δF : � × � → R≥0 by

δF (γ1, γ2) = inf
ϕ

max
t∈[0,1] δ

(

γ1(t), γ2
(

ϕ (t)
))

,

where ϕ ranges over all reparameterizations of I ; see Fig. 2. The Fréchet distance is
sometimes called the dog-walking distance, with the following intuition: if a woman
is walking on one path, and her dog is walking on the other, find the shortest possible

4 Felix Hausdorff introduced this distance in his 1914 book [18], where he restricted his attention to the
space of closed, nonempty subsets of 2M .
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Fig. 2 Two curves γ0 and γ1, with the corresponding points on the curves shown connected in light grey.
The Fréchet distance asks for the correspondence which minimizes the longest grey connection, shown here
as a thicker line

leash length that allows them to walk on their curves from start to end. In a sense, the
Fréchet distance is really a continuous perfect matching between the curves, where
the cost of the matching is the worst case distance between points that are paired under
the correspondence.

Similarly, the weak Fréchet distance δwF : � × � → R≥0 is defined using the
same formula, but where φ is allowed to range over all continuous surjections (as
opposed to bijections) such that φ(0) = 0 and φ(1) = 1. In other words, these maps
do not need to be monotonic and are allowed to decrease.

While introduced originally by Fréchet in his thesis as one of the first examples of
a metric [14], this distance was first investigated from a computational perspective by
Alt and Godau [4], who also established the following lemma.

Lemma 3 (The Fréchet Metrics) Let (M, δ) be a metric space, and let � =
PathsM (M, M). Both the Fréchet distance δF and the weak Fréchet distance δwF

are metrics on M.

2.5 Immersions and Embeddings into Metric Spaces

Let (M, δ) be a metric space and G = (V , E) be an abstract graph, which we view as
a stratified one-dimensional simplicial complex. We restrict our attention to nontrivial
graphs, so that each graph must contain at least one vertex. In this setting, note that
when we write x ∈ G, the point x can either be a vertex in VG or a point interior to an
edge in EG . We topologize G using the quotient space topology, where each (closed)
edge is homeomorphic to the unit interval I = [0, 1] in R

1, and we topologize M
using the open ball topology.

An immersion of G into M is a continuous map φ : G → M such that for each
point x ∈ G and for all small enough open neighborhoods nx of x in G, the map φ

restricted to nx (denoted φ|nx ) is a homeomorphism onto its image.5 We call the
pair (G, φ) an immersed graph in M . We say that (G, φ) is rectifiable if V and E
are finite sets, and, for every edge e ∈ EG , the length of φ(e) is finite. To simplify
notation, we sometimes use G in place of the pair (G, φ).

5 In differential geometry, immersions are required to be smooth maps. We do not require that in this paper.
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(a) Immersion, Not Embedding (b) Immersion and Embedding

Fig. 3 Two graphswith the same image in (M, δ). In (a), a graphwith two vertices and one edge is immersed
in M . Note that the edge self-intersects. In (b), a graph with three vertices and three edges is embedded in M
with the same image as the graph in (a). In the embedding, the graph and its image in M are homeomorphic

Given two graphs (G1, φ1) and (G2, φ2) immersed in M , we say that they are
equivalent up to homeomorphism, which we denote (G1, φ1) ∼= (G2, φ2), if there
exists a homeomorphism α : G1 → G2 such that the following diagram commutes:

G1 G2

M

α

φ1 φ2

In other words, for all x ∈ G, φ1(x) = (φ2 ◦ α)(x). The set of all rectifiable
immersions of nontrivial graphs (up to homeomorphism) into M is denoted GM .

An immersion of G is said to be an embedding if G is homeomorphic onto the
image φ(G). In other words, immersions allow edge crossings and embeddings do
not; see Fig. 3 and [12, 21, 23]. The set of all rectifiable embeddings of nontrivial
graphs (up to homeomorphism) into M is denoted ˜GM .

3 Comparisons on Immersed Graphs

Given a metric space (M, δ), we consider the collection GM of finite graphs immersed
in this metric space. Each (G, φ) ∈ GM is a graph G = (V , E), where V is the vertex
set and E is the edge set, together with an immersion φ : G → M . In this section, we
investigate the metric properties of different distance functions on GM .

By default, we work on immersed graphs, where edges may cross each other. As
every embedding is an immersion, the metric properties hold automatically when
restricted to embedded graphs. However, when not all metric properties hold for
immersed graphs, some additional properties may hold for embedded graphs that
do not hold for the immersed graphs. We explicitly discuss this restriction and why it
holds in the relevant sections.

3.1 Hausdorff Distances

In Sect. 2.4.1, we introduced the directed and undirected Hausdorff distances in
the general setting,

−→
δH and δH , respectively. We now consider

−→
δH restricted to

GM . We call this restriction the directed Hausdorff distance between immersed
graphs

−→
dH : GM × GM → R≥0 and define it by

123



La Matematica (2023) 2:197–222 205

−→
dH (G1,G2) = −→

δH (φ1(G1), φ2(G2)) ,

and the (undirected) Hausdorff distance dH : GM × GM → R≥0 is

dH (G1,G2) = δH (φ1(G1), φ2(G2))

= max{−→dH (G1,G2) ,
−→
dH (G2,G1)}.

Since each graph in GM is a compact subset of M , by Lemma 1, we know that the
Hausdorff distance between two graphs in GM is realized by points in the graphs (and
hence the inf and sup of Equation (1) are actually min and max).

Theorem 1 (Metric Properties of Hausdorff Distances Between Immersed Graphs)
Let (M, δ) be a metric space. The following statements hold:

1. The directed Hausdorff distance
−→
dH on GM satisfies finiteness, identity, and sub-

additivity, but not symmetry and separability (i.e., it is a directed pseudo-metric).

2. The Hausdorff distance dH on GM satisfies finiteness, identity, symmetry, and
subadditivity, but does not satisfy separability (i.e., the Hausdorff distance on
immersed graphs is a pseudo-metric).

3. The Hausdorff distance dH restricted to embedded graphs in ˜GM is a metric.

Proof First, note that Statement 3 follows fromLemma2 and the fact that eachG ∈ ˜GM

is a compact subspace ofM . Now, for Statements 1 and 1,
−→
dH and dH onGM also satisfy

nonnegativity, identity, and subadditivity. Neither
−→
dH nor dH satisfy separability, for

two different immersed graphsmay have the same image (e.g., a single edgemapped to
a line segment and a Y -shaped graph mapped onto the same line segment; see Fig. 3),
where two different graphs are mapped to the same subset of R

2.
By construction, just as in the general case,

−→
dH is asymmetric and dH is symmet-

ric; for instance, if the immersion of G1 is a true subset of the immersion of G2,
then

−→
dH (G1,G2) = 0 >

−→
dH (G2,G1).

3.2 Fréchet Distance

The Fréchet distance is a metric originally defined on paths in R
n (see Sect. 2.4.2),

but it can also be defined for more general objects, such as oriented manifolds. Let
A, B ⊆ R

d be two oriented manifolds and let f : A → M and g : B → M be two
immersions.6 Then the Fréchet distance between A and B is given by

inf
α
max
t∈A

δ ( f (t), g(α(t))) ,

whereα : A → B ranges over all orientation-preservinghomeomorphisms. In fact, this
definition can be generalized to any two homeomorphic spaces, such as graphs. How-
ever, care must be taken to either define an appropriate notion of orientation, or define
the distance without requiring the homeomorphisms to be orientation-preserving.

6 This definition can be generalized to continuous maps.
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Fig. 4 Graphs with large Fréchet
but small Hausdorff distance

Here, the Fréchet distance between immersed graphs dF : GM × GM → R≥0
can be defined by restricting our attention to the Fréchet distance between paths, and
avoiding any mention of orientation-preserving homeomorphims. In particular, for
(G1, φ1), (G2, φ2) ∈ GM , the Fréchet distance is defined as

dF (G1,G2) = min
α

max
e∈E1

δF (φ1(e), φ2(α(e)))

if G1,G2 are homeomorphic, and ∞ if they are not.7 Here, α ranges over all edge
mappings corresponding to the isomorphisms of G1 and G2, see [5], and we assume
the graphs have no degree two vertices. The latter can be assumed since we consider
graphs in GM equivalent up to homeomorphism. Note that we are abusing notation
slightly here and viewingφG(e) as a parameterized curve, rather than just an immersion
of an edge; since the Fréchet distance considers all reparameterizations of the curve
regardless, any parameterization of the image of the edge is sufficient. Since graphs
are compared using an isomorphism, the Fréchet distance can be arbitrarily larger than
the Hausdorff distance, see Fig 4.

Theorem 2 (Metric Properties of Fréchet Distance Between Immersed Graphs) The
Fréchet distance dF is a metric.

Proof It is well-known that the Fréchet distance is a pseudo-metric: Identity and sym-
metry follow directly from the definition.

Separability is also fulfilled: consider two graphs (G1, φ1), (G2, φ2) with Fréchet
distance 0. These graphs must be isomorphic if their distance is 0, and hence G1 is
the same as G2.

For completeness, we provide a proof that the subadditivity is satisfied: Consider
three graphs (G1, φ1), (G2, φ2)(G3, φ3) ∈ GM . Then

dF (G1,G2) + dF (G2,G3)

= min
α1:G1→G2

max
e1∈E1

dF (φ1(e1), φ2(α1(e1)))

+ min
α2:G2→G3

max
e2∈E2

dF (φ2(e2), φ3(α2(e2)))

≥ min
α1:G1→G2

min
α2:G2→G3

(

max
e1∈E1

dF (φ1(e1), φ2(α1(e1)))

+ max
e2∈α1(e1)

dF (φ2(e2), φ3(α2(e2)))
)

≥ min
α1:G1→G2

min
α2:G2→G3

max
e1∈E1

dF (φ1(e1), α2(φ2(α1(e1))))

= min
α:G1→G3

max
e1∈E1

dF (φ1(e1), φ3(α(e1))) = dF (G1,G3)

7 Typically, this would be an infimum rather than a minimum, but since we are simply reducing to the
Fréchet distance between paths in Euclidean space, this infimum is realized.
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Thefirst inequality follows simply by combining the two terms, and the second inequal-
ity follows from the triangle inequality that is fulfilled by dF for curves (which in turn
follows from it being fulfilled by δF ).

Note that if G1 and G2 are simple graphs, each isomorphism has a unique edge
mapping. Hence computing this distance is at least as hard as determining graph
isomorphism. For trees [5], it can be computed in polynomial time and for graphs of
bounded tree width [7] it is fixed-parameter tractable. For planar embedded graphs,
it is desirable that isomorphisms are “orientation-preserving” in the sense that they
preserve orderings of edges around each vertex. This property can be used to enumerate
all such planar orientation-preserving isomorphisms, and thus compute the distance
for embedded graphs in polynomial time [13].

3.3 Path-Based Distance

The path-based distance was originally presented in [1]. This distance uses the Fréchet
distance between paths in graphs (see Sect. 2.4.2) to define a distance between graphs.

Let (M, δ) be a metric space. For each (G, φ) ∈ GM , let �G denote the set of all
paths in G up to reparameterization; that is, �G = PathsG(G,G). See Sect. 2.4. The
directed path-based distance

−−→
dpath : GM × GM → R≥0 is the directed Hausdorff

distance between (G1, φ1) and (G2, φ2):

−−→
dpath(G1,G2) = max

P∈�1
min
Q∈�2

δF (φ1(P), φ2(Q)).

As noted in Remark 2, we can symmetrize this asymmetric distance in order to
define the path-based distance dpath : GM × GM → R≥0 as the Hausdorff distance
between path sets �1 and �2. Specifically,

dpath(G1,G2) = max
{−−→
dpath(G1,G2),

−−→
dpath(G2,G1)

}

.

Due to compactness of �1 and �2 and by Lemma 1, we can always find paths where
this distance is realized. In other words, if

−−→
dpath(G1,G2) = ε, then there exist paths

P1 ∈ �1 and P2 ∈ �2 such that the Fréchet distance between P1 and P2 is ε. See
Fig. 5 for an example; note that the two graphs shown have infinite Fréchet distance,
as they are not homeomorphic.

Theorem 3 (Metric Properties of Path-Based Distances) The directed path-based dis-
tance satisfies finiteness, identity, and subadditivity, but not separability nor symmetry.
The path-based distance is a metric.

Proof For each (G, φ) ∈ GM , define the set of paths �G = PathsG(G,G) and the
set of immersed paths φG(�G) := {φG ◦ f | f ∈ �G}. Since φG is an immersion
and�G is compact,we know thatφG(�G) is also compact.Hence, the theorem follows
from setting Y = {φG(�G) | (G, φG) ∈ GM } in Lemma 2, where Y is a collection of
compact subspaces of PathsM (M, M).
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(a)Graph G1. (b)Graph G2.

Fig. 5 Two graphs, G1 and G2, shown separately for ease of visibility. When they are embedded to be
overlapping (so that the outer four vertices are in the same location in the plane), these graphs have small
path based distance: each edge in G1 will can map to two edges in G2, and the path based distance will be
less than the radius of G2’s inner loop

The exact complexity of the path-based distance is still an open and potentially
challenging question, as the measure depends up Fréchet mappings between curves
in the graph, of which there could be exponentially many to consider. However, in the
paper that introduces it [1], the authors present a polynomial time approximation algo-
rithm which is based on the maximum Fréchet distance and demonstrate its efficacy
on real-world map datasets.

3.4 Traversal Distance

The traversal distance, introduced by Alt et al. in [3], for a pair of immersed graphs
(G1, φ1), (G2, φ2) ∈ GM is defined as follows. Let f : [0, 1] → G1 be a continuous
and surjective function, called a (full) traversal of G1, and let g : [0, 1] → G2 be
a continuous—but not necessarily surjective—function, called a partial traversal of
G2.We compare functions f and g by their L∞ norm, max

t∈[0,1] δ ( f (t), g(t)). Taking the

infimumover all possible f and g, we arrive at the traversal distance
−→
dT : GM×GM →

R≥0. Formally, the traversal distance from (G1, φ1) to (G2, φ2) is defined by

−→
dT (G1,G2) = inf

f ,g
max
t∈[0,1] δ ( f (t), g(t)) ,

where f ranges over all full traversals of G1 and g ranges over all partial traversals
of G2. Noticing that reparametrizations of each traversal f and each partial traversal
g are included in that infimum, we observe the following equivalence:

−→
dT (G1,G2) = inf

f ,g
δF ( f , g).

Compared to the Fréchet distance, the traversal distance can also be applied to non-
homeomorphic graphs. On homeomorphic graphs, the Fréchet distance is an upper
bound for the traversal distance, as the Fréchet correspondence yields a candidate
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G2G1

Fig. 6 Homeomorphic graphs with small traversal but large Fréchet and path-based distances

G1 G2 G3

h

w w w

Fig. 7 Example showing that the traversal distance violates both separability and subadditivity. Assume that
the four vertices of these graphs are the same, i.e., G1 and G3 are subgraphs of G2. Since G1 is a subgraph

of G2, the traversal distance from G1 to G2 is zero. To compute
−→
dT (G1,G3), conside the traversal of G1

that starts at the bottom left, goes up to the next vertex, right to the third vertex, and finally down to the last
vertex. The best partial traversal of G3 would be one that goes up and down one of the vertical edges

traversal to consider. However, the traversal distance can be arbitrarily smaller than
the Fréchet distance, see Fig. 6.

We take the symmetric version of the traversal distance by maximizing the two
directed distances. In other words, we define dT : GM × GM → R≥0 by

dT (G1,G2) = max{−→dT (G1,G2) ,
−→
dT (G2,G1)}.

Theorem 4 (Metric Properties of Traversal Distance) The directed traversal distance−→
dT satisfies finiteness and identity but does not satisfy symmetry, separability, and
subadditivity.

The symmetric traversal distance dT satisfies finitesness, identity, and symmetry,
but it does not satisfy separability nor subadditivity.

Proof Since the distance between f and g is finite and since the traversal distance is
taking the infimum over all possible traversals f and partial traversals g, we know that−→
dT is finite. When (G1, φ1) = (G2, φ2), taking the same traversal yields a traversal
distance of zero. Hence, the traversal distance satisfies the identity property. Since any
proper subgraph has distance zero to its supergraph, but not vice versa, we also have
that it is not symmetric.

To see that the traversal distance does not fulfill separability and subadditivity,
consider the following graphs: G2 is comprised of four vertices and four edges
forming an axis-aligned rectangle in R

2, G1 is the subgraph of G2 obtained by
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G1 G2

p

Fig. 8 The path p highlighted red in (G1, φ1) has large distance to any path in (G2, φ2), but the traversal
distance from (G1, φ1) to (G2, φ2) is small

removing the bottom edge, and G3 is the subgraph of G2 obtained by removing
the top edge. See Fig. 7. Then,

−→
dT (G1,G2) = 0, but (G1, φ1) and (G2, φ2) are not

equivalent (up to homeomorphism). Thus, separability is not satisfied. In addition, we
have

−→
dT (G2,G3) = w/2 and

−→
dT (G1,G3) = w. Since w > w/2 + 0, subadditivity

is not satisfied.
Since

−→
dT satisfies finiteness and symmetry and identity, so does the symmetrized

version dT . By construction, dT is also symmetric. The two graphs of Fig. 3 have
distance zero, which means that dT does not satisfy separability. However, for dT ,
subadditivity does not hold. For this, consider again the graphs in Fig. 7. We have
dT (G1,G3) = w. If we add small outward left and right spikes (say, they are length ε

with ε < w
2 ) on all graphs at height h/2 (calling the resulting graphs G∗

1, G
∗
2, and G

∗
3,

respectively), then we have dT (G1,G2) = dT (G2,G3) = w/2 and dT
(

G∗
1,G

∗
3

) =
w + ε. Hence, subadditivity does not hold.

Since a (partial) traversal is also a path in the graph, the traversal distance is related
to the path-based distance. Both take the Fréchet distance from a traversal/path in
(G1, φ1) to a closest partial traversal/path in (G2, φ2). However, the traversal distance
minimizes over all traversals, whereas the path-based distance maximizes over all
paths. Hence, the traversal distance is a lower bound to the path-based distance, i.e.,

dT (G2,G1) ≤ −−→
dpath(G2,G1).

Fig. 8 gives an examplewhere the path-baseddistance is strictly larger than the traversal
distance.

3.5 Strong andWeak Graph Distance

The strong and weak graph distances were first introduced in [2], with the goal of
combining topology and geometry. They are based on the strong/normal and weak
Fréchet distance between graphs.

Let (G1, φ1), (G2, φ2) ∈ GM . A graph mapping s : G1 → G2 is a continuous
map.An alternative characterization of a graphmapping for planar embedded graphs is
as follows: each vertex v ∈ V1 is sent to a point s(u) ∈ G2, and each edge {u, v} ∈ E1
is sent to a path8 from s(u) to s(v) in G2. Note that s(u) can be a vertex or any point
internal to an edge.

8 In [10] a graph mapping is required to map each edge to a simple path, and it is shown that for computing
the distances it suffices to check such simple graph mappings.
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G2G1 G3

Fig. 9 Graph G2 has strictly larger (strong or weak) graph distance than traversal distance to G1. And
graph G2 has strictly larger strong than weak graph distance to G3

Letting s range over all graph mappings from G1 to G2, the directed strong graph
distance

−→
dS : GM × GM → R≥0 between G1 and G2 is given by

−→
dS (G1,G2) = inf

s:G1→G2
max
e∈E1

δF (φ1(e), φ2(s(e))),

and the directed weak graph distance
−→
dW : GM × GM → R≥0 is given by

−→
dW (G1,G2) = inf

s:G1→G2
max
e∈E1

δwF (φ1(e), (φ2(s(e)).

Note that these distances are not symmetric. However, we may define their undirected
versions by taking the maximum of the directed distances, i.e.,

dS(G1,G2) = max{−→dS (G1,G2),
−→
dS (G2,G1)}

and

dW (G1,G2) = max{−→dW (G1,G2),
−→
dW (G2,G1)}.

In [2] it was shown that these distances are metrics for planar embedded graphs and
pseudo-metrics for non-planar graphs. However, for immersed graphs, separability
also holds for graphs when defining graph mappings as continuous maps between the
(abstract) graphs. Hence we obtain:

Theorem 5 (Metric Properties of Strong and Weak Graph Distances) The directed

strong and weak graph distances (
−→
dS and

−→
dW ) satisfy finiteness, identity, separability,

and subadditivity, but not symmetry (i.e., they are quasi-metrics). The undirected strong
and weak graph distances (dS and dW , respectively) are metrics.

Furthermore, in [2] the authors point out that

dT (G1,G2) ≤ −→
dW (G1,G2) ≤ −→

dS (G1,G2),

which connects this distance to the traversal distance discussed in Sect. 3.4. See also
Fig. 9.

Both the strong and weak graph distances are NP-hard to decide for general graphs.
However, for trees we can compute them in cubic time for the strong graph distance
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and quadratic time for the weak graph distance. For planar embedded graphs under
a geometric assumption (which requires cycles to have a nice shape), the weak dis-
tance can be computed in quadratic time, but the strong distance remains NP-hard.
An open question is whether a “stronger/symmetric” version of the graph distance,
which requires the same graph mapping for both directions, would be equivalent to
a generalization of the contour tree distance; see Sect. 3.6 for a discussion of that
distance.

3.6 Contour Tree Distance

In [6],motivated by computing the Fréchet distance between two surfaces, the “contour
tree distance” is defined between the contour trees of two surfaces.We naturally extend
this distance to a distance on the subset of GM consisting of connected (immersed)
graphs; let CM denote this space. The contour tree distance dC : CM × CM → R is
defined to be

dC (G1,G2) = inf
τ

sup
(x,y)∈τ

δ(φ1(x), φ2(y)),

where τ ranges over the set of all correspondences between (G1, φ1) and (G2, φ2)

such that:

1. τ is a connected subset of G1 × G2.
2. For each x ∈ G1, τ ∩ ({x} × G2) is a non-empty, connected subset of G2.
3. For each y ∈ G2, τ ∩ (G1 × {y}) is a non-empty, connected subset of G1.

The connectedness of the correspondence τ requires the graphs to be connected,
too. This is the reason that we are restricting our attention to CM as opposed to GM .

The contour tree distance resembles the Fréchet distance in that it establishes a
correspondence between portions of the graphs. However, unlike standard Fréchet
distance, the contour tree distance allows a comparison of non-homeomorphic graphs
using G1 × G2, in a manner similar to the Fréchet distance. It allows for “stretching"
a region of the graph, as any vertex in one can correspond to a connected subregion
in the other. See Fig. 10 for an illustration.

Theorem 6 (dC is a Metric) On the space CM of connected graphs, dC is a metric.

Proof The distance fulfills identity via the trivial correspondence, and symmetry
because the same correspondence works for G1 × G2 and G2 × G1.

For separability, assume that dC (G1,G2) = 0. Then either a correspondence τ

exists such that d(φ(x), φ(y)) = 0 for all (x, y) ∈ τ or there is a limit of correspon-
dences such that d(φ(x), φ(y)) < ε for arbitrary small ε and (x, y) ∈ τ . In both cases
it follows that G1 and G2 have the same immersion.

To see that it also satisfies subadditivity, we concatenate the correspondences and
use subadditivity in (M, δ).

The contour tree distance is NP-complete to compute, even for trees [6]. It seems
that the contour tree distance can be considered as a symmetric version of the strong
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Fig. 10 Two graphs with small contour tree distance showing corresponding parts of the graphs

graph distance; see Sect. 3.5. Both align portions of the graphs, but where the strong
graph distance uses two separate mappings between the two graphs, the contour tree
distance uses symmetric correspondences.

3.7 Local Persistent Homology Distance

The next distance we investigate is the local persistent homology (LPH) distance,
originally presented in [1] as a metric on plane graphs. To define this distance, we
compare the graphs at a local level using persistent homology (see, e.g., [11]). Briefly,
persistent homology is a multiscale version of the fundamental topological notion
of homology, which measures the “features" in a space (i. e. connected components,
holes, and higher-dimensional voids).

More formally: given a nested sequence of topological spaces (called a filtration),
persistent homology tracks the appearance (“births”) and disappearance (”deaths”) of
topological features within the filtration. The results are then encoded in a persistence
diagram as pairs of (birth, death) points in the first quadrant of the plane. A standard
distance between persistence diagrams is as follows: given persistence diagrams D1
and D2, their bottleneck distance db is defined to be

db(D1, D2) := inf
f :D1→D2

sup
x∈D1

||x − f (x)||

where f ranges over all bijections between D1 and D2.
The local persistent homology distance compares graphs at a local level and requires

the following additional preliminary definition. Let Y ⊆ X a set. We define an ε-
thickening of Y , denoted Y

ε, to be

Y
ε :=

⋃

x∈Y
Bd(x, ε)
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Fig. 11 Apicture of a geometric graph embedded inR
2, shown in the leftmost box, alongwith ε-thickenings

for increasing values of ε. The graph contains 3 loops: two that are entirely in red graph, as well as one
“relative" loop which is formed by the leftmost partial cycle of the graph along with its boundary. The birth
and death times of each are indicated below the filtration; each such pair will form a point in the persistence
diagram, with longer lifetime loops appearing further from the diagonal that has slope 1

= {x ∈ X | d(Y, x) ≤ ε}.

When X is a real vector space, Y
ε is referred to as the Minkowski sum of Y with a

closed ball of radius ε in (X, d).
Let (G, φG) ∈ GM . Then Gε is the ε-thickening of G in (M, δ). We define the

function δG : M → R as the distance function to the setφG(G); namely, for all x ∈ M ,
we define δG(x) := min

y∈φG (G)
δ (x, y). Equivalently, δG(x) is the smallest non-negative

ε such that x is in the ε-thickening Gε . Let U be a closed subset of M , and let ∂U
denote the boundary ofU . We consider the distance function restricted to the quotient
space U∗ := U/∂U ; that is, we define δG,U : U∗ → R by

δG,U ([x]) =
⎧

⎨

⎩

δG(x), [x] �= ∂U

min
y∈∂U

δG(y), [x] = ∂U .

See Fig. 11 for an example.
Given graphs (G1, φ1) and (G2, φ2) in GM , let D1 and D2 be the persistence

diagrams of δG1,U and δG2,U , respectively. A local distance signature between G1
and G2 is the assignment of a distance to the neighborhood U ; in our case, we assign
the bottleneck distance between D1 and D2 to the set U , and denote it BU (G1,G2).
The local distance signature is valuable in its own right and can be used in heatmaps
to visualize the locations of large differences between the two graphs, as shown in
Fig. 12.

We use the construction described above to define an overall distance between the
two graphs.

Let B denote the set of all metric balls in (M, δ); that is,

B = {Bδ(x, r) | x ∈ M, r ∈ R≥0}.

As a set, B is equivalent to the product M ×R≥0. And so, we use the product topology
on M × R≥0 to define a topology on B.
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Fig. 12 Comparison of two
constructed road networks G1 in
color and G2 in gray. The
color-coded network visualizes
the heatmap of the local distance
signature for x ∈ G1. Figure
rights: c©2014 Ahmed, Fasy,
and Wenk. First appeared in [1]

We call ω : B → R≥0 a weight function if it: (i) vanishes for large enough balls
(i.e., there is an R ∈ R such that ω(Bδ(x, r)) = 0 for all r > R), (ii) has a finite inte-

gral (
∫

U∈B
ω(U ) dU < ∞), and (iii) is continuous. The local persistent homology

distance with respect to the weight function ω is the function dLH : GM ×GM → R

defined by

dLH (G1,G2) =
∫

U∈B
ω(U )BU (G1,G2) dU . (2)

If M is a metric measure space, this integral is well-defined. In particular, we can
expand it to a double integral as follows:

dLH (G1,G2) =
∫ ∞

r=0

∫

x∈M
ω(U )BU (G1,G2) dx dr , (3)

where U = Bδ(x, r). Moreover, as we see in the next theorem, this distance is a
pseudo-metric:

Theorem 7 (Metric Properties of dLH ) For a given metric measure space M and
weight function ω, the local homology distance dLH satisfies finiteness, identity, sym-
metry, and subadditivity but does not satisfy separability (i.e., it is a pseudo-metric).
The LPH distance restricted to comparing embedded graphs is a metric.

Proof Let ω : B → R≥0 be the weight function defining dLH .
We prove that dLH satisfies nonnegativity, finiteness, identity, symmetry, and sub-

additivity.
Nonnegativity. LetG1,G2 ∈ GM . The distance dLH is defined in Equation (2) using

an integral over U with integrand ω(U )BU (G1,G2). Since ω is a weight function, we
know that ω is nonnegative. As BU (G1,G2) is the bottleneck distance between two
persistence diagrams, we know this term is also nonnegative. Thus, dLH (G1,G2),
being the integral of the product of two nonnegative functions, is nonnegative.

Finiteness. Let X ⊂ M be the support of ω. Since ω is a weight function, we know
that there exists an R such that ω vanishes on allU = Bδ(x, r) ∈ B satisfying R ≤ r ,
i.e., we have ω(U ) = 0. On the other hand, for all balls U = Bδ(x, r) ∈ B such
that r ≤ R, we know that BU (G1,G2) ≤ 2R (since thickening by 2R or more results

in the empty topological space). Then, letting c =
∫

U∈B
ω(U ) dU and B′ denote the
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support of ω, we bound the expression of Equation (2):

dLH (G1,G2) ≤
∫

U∈B′
ω(U )R dU +

∫

U∈B\B′
0 · BU (G1,G2) dU = cR + 0 < ∞.

Identity. If G1 = G2 ∈ GM , then BU (G1,G2) = 0 for all U , and so
dLH (G1,G2) = 0.

Symmetry. The symmetry of dLH follows immediately from the symmetry of the
bottleneck distance between persistence diagrams.

Subadditivity. Subadditivity follows, again, from the subadditivity of the bottleneck
distance between persistence diagrams.

Inseparability. Let (G1, φ1) be the immersion of the graph with two vertices and
one edge from Fig. 3(a) and let G2 be the graph with three vertices and three edges
from Fig. 3(b). Note that G1 and G2 are not homeomorphic, yet have the same image
in M . Then, for all metric balls U in (M, δ), we have BU (G1,G2) = 0. Thus, dLH is
not separable.

Remark 3 (Variants of the LPH Distance) When restricted to the setting where M is
compact, then dLH also satisfies separability if ω is nonvanishing on small enough
balls. This was observed in [1] for M a compact subspace of R

n .
The definition of the LPH distance given in Equation (2) integrates the bottleneck

distance over the space of all metric balls B. We can aggregate over B in other ways,

such as using the L p-norm

(∫

U∈B
ω(U )BU (G1,G2)

p dU

)1/p

in place of the bottle-

neck distance. We can also replace the bottleneck distance BU with the Wasserstein
metric or erosion distance between persistence diagrams. Changing the distance in
these ways, the same metric properties hold. In addition, there are many different
descriptors that one could consider in place of the persistence diagram, such as the
Euler characteristic curve of δG,U or a simpler descriptor such as the number of con-
nected components in G ∩ U . However, if we use a weaker invariant, we may lose
additional metric properties.

3.8 Graph Edit Distances

We next consider graph edit distances, which take a completely different and more
combinatorial view when comparing graphs. Introduced in the 1980s, edit distances
for general graphs are a well-studied way to compare graphs [25]. Given associated
weights or costs for graph operations (e.g., vertices or edges to be inserted or deleted),
the edit distance is the infimum of the sum of edit costs over all sequences of edit
operations needed to transform one graph into the other. Edit distances are drastically
different than other notions covered so far, in that they do notminimize somemaximum
correspondence, but rather sum all costs, leading to much larger distances. We give a
brief overview of two versions of geometric edit distances and their metric properties
here, as studied in [8]; see[15] for a survey of the many variants and heuristics on
broader classes of graphs.
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Fig. 13 Two examples of edit sequences between graphs G1 and G2. Both the edit distance and the
geometric graph distance are ≥ 2δ, which Fréchet, Hausdorff, and path-based distances are all equal to δ

on this example

A natural notion of edit distance for geometric graphs, which to the best of our
knowledge was first discussed in [8], allows deleting and inserting vertices and edges
for some cost related to the distance in the ambient spaceM , as well asmoving vertices
for cost propotional to the distance moved in M and change in edge lengths. More
formally, the cost is then defined for each edit operation as follows:

1. Edge Deletion and Insertion. The cost of removing or inserting an edge is the
length of the edge.

2. Vertex Deletion and Insertion. The cost of inserting or deleting an isolated vertex
is 1. The cost of inserting a vertex in the middle of an edge to create two edges is
free, as is the reverse operation. Otherwise, the cost of deleting a vertex is 1, plus
the cost of deleting all incident edges.

3. VertexMoving. The cost of moving a vertex is the distance that the vertex is moved,
plus the sum of the changes in edge lengths of all incident edges.

The graph edit distance dedit : GM × GM → R≥0 is defined by

dedit (G1,G2) = inf
τ

∑

τi∈τ

c(τi ), (4)

where τ ranges over all finite sequences of edit operations that start at G1 and end
at G2 and c(τi ) denotes the cost of the edit operation τi .

In Fig. 13a, we see two graphs, G1 and G2, which each have two vertices and a
single edge. The edit sequence between them is moving the right vertex first (shown
as a grey double arrow), for a cost of δ to move the vertex itself plus the difference in
length between the blue edge and the grey diagonal; the next edit move will shift the
left vertex up, which again costs δ plus the difference in length between the diagonal
and the red upper edge. This simple example already demonstrates the distinction
of the edit distance and previous distances introduced in this survey, as the Fréchet,
Hausdorff, and the path-based distance are all equal to δ on these graphs, while the
edit distance must always be ≥ 2δ, given that each vertex must move δ.

We note that variations of edit distance could be examined, particularly with regards
to different costs for vertex insertion or deletion costs; however, we begin with this
definition as it is the one proposed and studied in the literature [8].We begin by explor-
ing metric proerties of graph edit distance, before discussing some of its limitations.
The following properties hold for this distance:9

9 While we do not believe these lemmas and theorems to be new results, finding exact references to these
lemmas and theorems was not straightforward. So, for completeness, we provide proofs here.
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Theorem 8 (Metric Properties of Graph Edit Distance) The graph edit distance dedit
is a semi-metric that satisfies sub-additivity.

Proof To see that dedit is finite, consider the following weighted graph G =
(GM , E, ω), where the vertex sets are all immersed graphs. A pair of immersed
graphs ((G1, φ1), (G2, φ2)) corresponds to an edge in E if and only if they are con-
nected through a single edit operation. The weight of the edge,ω ((G1, φ1), (G2, φ2)),
is the cost of that edit. Then, dedit ((G1, φ1), (G2, φ2)) is the length of the shortest path
from (G1, φ1) to (G2, φ2) in G. Since any graph is connected to the empty graph by
a finite sequence of edit operations by removing all edges then removing all vertices,
we know that the edit distance between two graphs is finite.

Identity follows because an empty sequence of edits transforms a graph to itself.
Separability follows because, given (G1, φ1) � (G2, φ2) ∈ GM , we know that there
must be some edit operation of positive cost to convert (G1, φ1) to (G2, φ2).

To prove symmetry, consider a fixed finite sequence τ in Equation (4). Let −τ

denote the reverse sequence. Since any finite sequence of edits can be reversed to
transform one graph to another, we know that −τ is one of the sequences considered
by the infimumwhen defining dedit (G2,G1). Moreover, since costs of edit operations
is symmetric, the cost of τ is the same as the cost of −τ . Hence, we obtain:

dedit (G1,G2) = inf
τ

∑

τi∈τ

c(τi ) = inf−τ

∑

−τi∈τ

c(τi ) = dedit (G2,G1).

Sub-additivity follows a similar argument.

However, onemajor limitation, especially when considering algorithms to calculate
this distance, is that the edit distance may never be attained by a finite sequence of edit
operations. For instance, consider again our simple example of two graphs consisting
of single straight edges, shown in Fig. 13. As pointed out by [8], an optimal edit
sequence would be to alternate moving the vertices by an infinitesimal amount so as
to minimize the change in edge length incurred; see Fig. 13b. Taking the limit as that
infinitesmal amount decreases to zero, we get that the edit distance is exactly 2δ, but
that value can never be realized by any finite sequence of edits.

In order to get around this issue, [8] introduces an edit-like distance, which they call
the geometric graph distance, that makes a few notable changes to the edit distance
above. Rather than charging a unit for a vertex addition or deletion, vertex additions
and deletions are free. Also, they introduce two fixed parameters—an edge weight and
a vertex weight—which factor multiplicatively into the relevant edit operations.10 To
avoid pathological examples of infinite edit sequences as discussed above, instead of
charging costs for individual moves, they instead look at the total change in length
at the end of all edits. They then observe that edits can be required to be done in the
following order:

1. Edge Deletion Phase. The cost of removing an edge is the length of the edge times
the edge weight.

10 note that choosing both parameters as 1 results in the usual cost for deleting and inserting edges, and
moving vertices
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2. Vertex Deletion Phase. Deleting an isolated vertex is free. Non-isolated vertices
may not be deleted.

3. Vertex Moving Phase. The cost of moving a vertex is the distance that the vertex
is moved times the vertex weight, plus for all incident edges the change in edge
lengths times the edge weight.

4. Vertex Insertions Phase. The cost of adding vertices is free. In contrast to the
edit distance defined above, adding a vertex in the middle of an edge is not an
allowable edit operation. (However, it can be attained by removing the edge in the
Edge Deletion phase, then adding a vertex in this phase, and adding the two edges
in the next phase).

5. Edge Insertion Phase. The cost of inserting an edge is the length of the edge times
the edge weight.

Then, the geometric graph distance dggd : GM × GM → R≥0 is defined by

dggd(G1,G2) = inf
κ

∑

κi∈κ

c(κi ),

where κ ranges over all finite sequences of edit operations that start at G1 and end
at G2 and preserve the phases described above. As proven in [8], this distance is a
metric:

Theorem 9 (Metric Properties of Geometric Graph Distance) The geometric graph
distance dggd is a metric on the set of geometric graphs without isolated vertices for
positive edge and vertex weight.

However, as also shown in [8] the geometric graph distance is NP-complete to
compute when considering non-planar graphs or choosing the edge weight much
larger than the vertex weight. It is unknown if the problem remains NP-hard for planar
graphs, or if the original edit distance formulation is also NP-hard.

4 Conclusion

In this paper, we survey commonly used distance measures on graphs immersed or
embedded in a metric space. We also explored the metric properties induced on this
space of graphs. For this, we studied the immersed graphs up to homeomorphism.
If we did not consider graphs up to homeomorphism, then none of these distances
would satisfy the separability property, since adding a vertex in the middle of an edge
would result in a combinatorially different, yet homeomorphic, graph that has the same
collection of immersions. In circumstances where the combinatorics are important, the
proofs above can be adapted for studying immersions up to graph isomorphism instead
of up to homeomorphism, in which case separability would no longer hold.

Many future areas of study remain in this area, so we conclude by mentioning one
or two particularly natural questions. First, we are unsure if any of these metrics are
equivalent to each other, where by “equivalent" we mean bounded within constant
factors of each other. Another natural research path is to explore topological equiva-
lences of the spaces of graphs as well as other topological properties of these spaces,
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such as stability under certain types of perturbations. Finally, while we have briefly
mentioned computational complexity of a few of these where results exist, the exact
complexity or hardness of most remains open.
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21. Li, Y., Barbič, J.: Immersion of self-intersecting solids and surfaces. ACM Trans. Graph. 37(4), 1–14

(2018)
22. Michael, E.: Topologies on spaces of subsets. Trans. Am. Math. Soc. 71, 152–182 (1951)
23. Mukherjee, U., Gopi, M., Rossignac, J.: Immersion and embedding of self-crossing loops. In: Pro-

ceedings of the Eighth Eurographics Symposium on Sketch-Based Interfaces and Modeling, p. 31-38.
Association for ComputingMachinery, NewYork, NY, USA (2011). https://doi.org/10.1145/2021164.
2021170

24. Munkres, J.R.: Algebraic Topology. Prentice Hall, Upper Saddle River, NJ (1964)
25. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recogni-

tion. IEEE Trans. Syst. Man Cybernetics 13(3), 353–362 (1983). https://doi.org/10.1109/TSMC.1983.
6313167

26. Sullivan, J.M.: Curves of finite total curvature. In: Discrete Differential Geometry, pp. 137–161.
Springer (2008)

27. Sutherland, W.A.: Introduction to Metric and Topological Spaces. Oxford University Press, Oxford
(2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/BF03018603
https://doi.org/10.1007/s10044-008-0141-y
https://doi.org/10.1007/978-0-8176-4583-0.
https://cds.cern.ch/record/478079
https://cds.cern.ch/record/478079
https://doi.org/10.1016/j.dam.2016.06.027
https://doi.org/10.1016/j.dam.2016.06.027
https://doi.org/10.1145/2021164.2021170
https://doi.org/10.1145/2021164.2021170
https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1109/TSMC.1983.6313167


222 La Matematica (2023) 2:197–222

Authors and Affiliations

Maike Buchin1 · Erin Chambers2 · Pan Fang3 · Brittany Terese Fasy4 ·
Ellen Gasparovic5 · Elizabeth Munch6,7 · Carola Wenk3

Erin Chambers
erin.chambers@slu.edu

Pan Fang
pfang@tulane.edu

Brittany Terese Fasy
brittany.fasy@montana.edu

Ellen Gasparovic
gasparoe@union.edu

Elizabeth Munch
muncheli@msu.edu

Carola Wenk
cwenk@tulane.edu

1 Department of Computer Science, Ruhr University Bochum, 44780 Bochum, Germany

2 Department of Computer Science, Saint Louis University, Saint Louis, MO, USA

3 Department of Computer Science, Tulane University, New Orleans, LA, USA

4 School of Computing & Department of Mathematical Sciences, Montana State University,
Bozeman, MT, USA

5 Department of Mathematics, Union College, Schenectady, NY, USA

6 Department of Computational Mathematics, Science, and Engineering, Michigan State
University, East Lansing, MI, USA

7 Department of Mathematics, Michigan State University, East Lansing, MI, USA

123

http://orcid.org/0000-0002-3446-4343
https://orcid.org/0000-0001-8333-3676
http://orcid.org/0000-0003-1908-0154
http://orcid.org/0000-0003-3775-9785
http://orcid.org/0000-0002-9459-9493
http://orcid.org/0000-0001-9275-5336

	Distances Between Immersed Graphs: Metric Properties
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Distances and Metrics
	2.2 Correspondences and Matchings
	2.3 Open Balls and the Metric Topology
	2.4 The Space of Paths
	2.4.1 The Hausdorff Distance (General Form)
	2.4.2 Fréchet Distance Between Paths

	2.5 Immersions and Embeddings into Metric Spaces

	3 Comparisons on Immersed Graphs
	3.1 Hausdorff Distances
	3.2 Fréchet Distance
	3.3 Path-Based Distance
	3.4 Traversal Distance
	3.5 Strong and Weak Graph Distance
	3.6 Contour Tree Distance
	3.7 Local Persistent Homology Distance
	3.8 Graph Edit Distances

	4 Conclusion
	Acknowledgements
	References




