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Abstract. We say that arandom sequenceis spreadableif al subsequences of equal length
have the same distribution. For infinite sequences the notion is equival ent to exchangeability
but for finite sequencesit ismore general. The present paper is devoted to a systematic study
of finite spreadable sequences and of processeson [0, 1] with spreadable increments. In par-
ticular, we show how many basic resultsin the exchangeabl e case—notably the predictable
sampling theorem, the Wald-type identities, and various martingale and weak convergence
results—admit extensions to a spreadable setting. We also identify some additional condi-
tions that ensure the exchangeability of a spreadable sequence or process.

1. Introduction

A finite sequence of random elements & = (&1, .. ., &,) in some measurable space
(S, &) issaid to be spreading-invariant in distribution or simply spreadableif for
any m < n we have

Gy ) L Ere ), L<ki<- <y <n. @)

This should be compared with the stronger condition of exchangeability, where (1)
isrequired for al setsof distinct (but not necessarily increasing) indicesks, . . ., k;
€ {1, ..., n}. Notethat (1) follows by induction from the more primitive condition

Ere o1 Erte e E) L E1 B, k=1....n. (2

An infinite random sequence &€ = (&1, &2, ...) is said to be exchangeable or
spreadable if every finite subsequence has this property. Ryll-Nardzewski (1957)
showed that, in the infinite case, the two notions are in fact equivalent, so that
by de Finetti’s theorem an infinite spreadable sequence in a Borel space is mixed
i.i.d. (cf. Kallenberg (1997), Theorem 9.16). The mentioned equivalence fails the
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finite case, simply because (as Kingman (1978) first observed) the spreadability
of adistribution on S” puts restrictions only on the n — 1-dimensional marginals,
which do not determine the full distribution in general. Some interesting examples
are given below.

Thesituationin continuoustimeissimilar. Herethe exchangeability and spread-
ability are defined in terms of the increments. Thus, we say that an R¢-valued
process X on [0, 1] has exchangeable or spreadable increments if the sequence
&ij = Xjm — X(j—v/n J = 1,..., n, is exchangeable or spreadable for every
n € N. If we assume in addition that X is continuous in probability, then by The-
orem 4.7 below it has a version that is right-continuous with left-hand limits (rcll
for short). This justifies our definition of an exchangeable or spreadable process
on [0, 1] as one with exchangeable or spreadable increments, rcll paths, and initial
value 0. A process on R is said to be exchangeable or spreadable if the same
properties hold on every finite subinterval [0, ¢].

An alternative approach to spreadability in continuoustimeis suggested by (2).
Here we consider, for any timesa < b in [0, 1], the process

)?a,b(f) = Xina + Xpt+@-a), — Xp, 1t €[0,1=b+a], (©)]

and notethat X isspreadableiff itiscontinuousin probability and wtisfiesf(\a,b <4 x
on[0,1— b + a] for arbitrary a < b. Iterating (3) in finitely many stepsyields an
equivalent condition corresponding to (1).

For a more explicit statement of the latter condition, we may identify X with
the associated finitely additive set function on the class % of finite interval unions
U Gsi, i), given by X (s, t] = X; — Xs. Forany U € % weput Xy (1) = X (Uy)
and Ay (t) = A(Uy) where U =UnN (O t] and A denotes L ebesgue measure on
[0, 1]. Next we define Xy = Xy o AU or, inintegral notation,

)?U(t):/ Hry(s) <t}dX,, 0<t<aU, (4)
U

where 1{-} denotes the indicator function of the set within brackets. (Note that the
integral in (4) is elementary since U N 1{Ay < ¢} € % for al ¢.) In particular,
Xy = Xa when U = (0,a] U (b, 1]. We may now state the continuous-time
counterpart of (1) in the form Xu < X on [0, AU], where U € % isarbitrary.
Thepresent paper isdevoted to asystematic study of finite spreadable sequences
and of spreadableprocesseson [0, 1]. Such astudy isinteresting for several reasons.
1) Many results, previously known in a more special context, are best understood
in the present generality. This is especially true for some basic martingale prop-
erties, the optional skipping property, and the Wald-type identities, all known for
exchangeable processes. 2) The exchangeability of a sequence or process can be
deduced from the weaker hypothesis of spreadability together with a variety of
additional constraints. Thus, the present theory contributes to our understanding
of exchangeable objects (whose importance is more generally acknowledged). 3)
Many problems associated with spreadabl e sequences and processes are more chal -
lenging than their exchangeble counterparts (basically because fewer symmetries
are available in the spreadable case), and their solution often leads to results that
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are both attractive and surprising. (Here the weak convergence theory of Section 4
might qualify asan example.) Thus, the present theory has arguably a considerable
intrinsic interest. 4) Often the hard problems of the area force us to develop new
tools and techniques that may be of some independent interest. A casein point is
our construction in Section 5 of a new stochastic integral, which is needed aready
for the formulation of the predictable sampling theorem in continuous time.

Let us summarize briefly some highlights of the paper. We begin in Section 2
with an integral representation of the general spreadable distribution in terms of
extreme points. In the same section we examinetherel ationship between spreadable
seguences and processes. In Section 3 we show, under a moment condition, that
spreadable processes are specia semimartingales whose local characteristics are
themselves martingales. Here we also consider some additional conditions that
ensure the exchangeability of a spreadable process. Section 4 is devoted to the
weak convergencetheory of spreadable sequences and processes. Here our first key
result guarantees the existence, for every spreadable process, of an exchangeable
process with the same characteristics. This fundamental correspondence allows us
in the next step to extend the basic tightness criteria for exchangeable processes
to a spreadable context. With those two results as our main tools, we proceed
to derive the basic regularization theorem and various convergence criteria and
norm relations. Our final Sections 5 and 6 contain the ultimate versions of the
predictable sampling (or optional skipping) theorem and the Wald-type identities
for spreadabl e sequencesand processes. Thelatter are bothinteresting and powerful
results, whose history goes back to some classical statements for i.i.d. sequences
due to Doob (1936) and Wald (1945), respectively.

Since there is no general representation formula in the spreadable case, the
construction of nontrivial and interesting examples requires both ingenuity and
some calculation. To indicate the possibilities, we give two examples of extreme,
spreadable (but not exchangeable) distributions on {0, 1, 2}3. In other words, these
are distributions of spreadable sequences of length 3with valuesinthe set {0, 1, 2}:

001 012 020 102 120 122 200 202 210 221
2 2 2 1 1 1 2 1 1 1

012 021 101 102 110 120 122 202 210 211 221
2 2 2 1 2 1 1 1 1 2 1

In each table, the first row gives the possible configurations and the second one
shows the corresponding probabilities, up to anormalization. (Thus, the probabili-
tiesinthefirst exampleare1/7 or 1/14 and in the second example1/8 or 1/16.) To
verify the extremality, we note that every component, in the sense of convex combi-
nations, is supported by the same set of configurations. The associated probabilities
are then uniquely determined by the spreadability constraints. Other examples are
obtained by reversing the sequences or by permuting the symbols0, 1, and 2.

We are immediately struck by the peculiar lack of symmetry or simple pattern.
It isindeed remarkable that so many wondrous properties are hidden behind such
an apparent complexity and disorder. The present irregularity isin sharp contrast to
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the trite symmetry in the exchangeable case. Thus, the only ergodic exchangeable
distributions on {0, 1, 2}2 are of the form (apart from permutations of the digits)

000 001 010 100 012 021 102 120 201 210
1 1 1 1 1 1 1 1 1 1

Much of the present material is related to some earlier ideas and results of the
author, especially from Kallenberg (1973, 1982, 1988a, 1989). We may also call at-
tention to the crucial role of the spreadability concept in various other areas, such as
for the subsequence principle (cf. Aldous (1985), Section 8) and for certain higher-
dimensional symmetries (cf. Kallenberg (1992)). For ageneral introduction to ex-
changeability theory, we recommend Aldous (1985) lecture notes, supplemented
by the relevant portions of Kallenberg (1997), especialy the concluding pages of
Chapters 9 and 14. Constant use will be made of some basic notions and results
on weak convergence, semimartingales, and stochastic integration, for which we
refer to the relevant chaptersin Jacod and Shiryaev (1987) and Kallenberg (1997).

For the reader’s convenience, we review the basic representations in the ex-
changeable case (cf. Kallenberg (1997), Theorems 9.16-17, 9.21, 14.25). We have
already quoted the de Finetti—Ryll-Nardzewski theorem, the fact that any infi-
nite exchangeable or spreadable sequence in a Borel space is mixed i.i.d. The
continuous-time anal ogue is Buhimann's theorem, which states that any exchange-
able or spreadable processon R isamixture of Lévy processes. Next we note that
any finite exchangeable sequence is a mixture of so-called urn sequences, which
can be generated by drawing without replacement from an urn with finitely many
tickets.

The final and most difficult case is that of exchangeable processes X on [0, 1]
taking values in R?. Here the general distribution may be described through the
representation formula

X,=at+03;+2/ﬂj(l{1:jSt}—t), t €[0,1], (5)

where B isad-dimensional Brownian bridge, the variables t1, 1o, . . . areindepen-
dent of B andi.i.d. U(0, 1) (uniformly distributed on [0, 1]), and the vector- or
matrix-valued coefficients , o, and B1, B2, .. . are independent of (B, {r;}) and
such that Zj 1B8; |2 < oo as. The seriesin (5) then converges a.s., uniformly on
[0, 1], which ensures that X will have a.s. rcll paths.

The distribution of the process X in (5) (often written as % (X)) determines
(and is determined by) that of the triple («, 8, ¥), where the point process 8 on
R4 \ {0} and therandom d x d matrix y are given by

,3=Zj5,3j, )/ZUO'/+Zjﬂj,3}.

(Here §, denotes the unit mass at x and the prime denotes transposition.) The
correspondence £ (X) < Z(«, B, y) is even a homeomorphism with respect to
Skorohod’s J; topology on D(R., R?) and the vague topology on . (R4 \ {0}).
(Thosearethe spacesof rcll functions[0, 1] — R< and of locally finitemeasureson
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R4\ {0}, respectively.) Wefinally notethat X isasemimartingale with covariation
matrix [X]1 = y.

We conclude this section with some remarks on notation. All random objects
are assumed to be defined on some abstract probability space 2 with probability
measure P and associated expectation E, often also equipped with a discrete or
continuousfiltration # = (%) or (). Independenceisexpressed by the symbol

1l and equality in distribution by 2 Thearrows 5> and % indicate convergence

: . o . . fd
in probability or distribution, respectively, and we write — for convergence of
the finite-dimensional distributions. The space of all rcll maps T — S is denoted
by D(T, S), and we write .Z(S) for the space of localy finite measures on S
and ./ 1(S) for the subspace of probability measures on S. If nothing elseis said,
these spaces are endowed with the Skorohod J1 topology and the vague and weak
topologies, respectively. We also write Z(S) for the class of Borel setsin S.

For any R¢-valued process X, we define X = sup,, | Xsl and X* = sup, | X;|
= sup, X;. If X isasemimartingale, then [ X], denotes the matrix-valued covaria-
tion process with components [X?, X/]; for i, j < d. The symbol A will be used
both for symmetric differences of sets and for jumps of processes. We shall often
write V - X for the integral process [y VdX and put uf = [ fdu when uisa
measure. In Lebesgue integrals we may omit the integrator from our notation and
write [V as short for [ Vids or V - A. The symbol ® is used for both product
o-fields and product measures. Shift operators in discrete or continuous time are
written as 6, or 6,.

Superscriptswill often be employed asindices, rarely asexponents, and we may
occasionally write X, () as X for convenience. Therelation x <y or y = x means
by definition that x < cy for some constant c; if even x = y we may write x =< y.
Either relation is said to be uniformin a parameter ¢ if the relevant constants can
be chosen to be independent of ¢. Finally, we adopt the conventions Ry = [0, c0),
N=1{12,...},andZ; = {0, 1, ...}. Somemorespecial notationwill beexplained
when it first occurs.

2. Extremality and jump structure

In this section we prove some general integral representations of spreadable dis-
tributionsin terms of extreme points, examine the relationship between spreadable
sequences and processes, and consider some simple cases where the spreadability
of a sequence or process implies its exchangeability.

To motivate our first topic, we note that any mixture of spreadable distribu-
tionsis again spreadable. Here we address the reverse problem of decomposing a
spreadable distribution into extreme distributions of the same type. Recall that a
spreadable distribution u issaid to be extremeif any relation u = cu1 + (1 —c)u2
with ¢ € (0,1) and spreadable 1 and w2 implies w1 = u2 = . For infinite
spreadable sequences, a unique representation of the mentioned type is given by
the de Finetti—Ryll-Nardzewski theorem, wherethei.i.d. distributions play therole
of extremal elements. Similar representations for finite exchangeable sequences
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and for exchangeable processeson [0, 1] or R, areimplicitly given by the charac-
terizations described in Section 1.

In each of those four basic cases, the exchangeability may be characterized as
invariance in distribution under a suitable group of measurable transformations of
theunderlying space. In such asituation, ageneral theory isavailablethat guarantees
the existence of a unique integral representation (cf. Dynkin (1978) and Aldous
(1985), Section 12). Though there is no such description in the general spreadable
case, we can dtill prove the existence of a genera integral representation over
extreme points. However, the corresponding uniqueness fails in general, as we
shall seein Corollary 2.6 below.

Theorem 2.1. Ineach of thefollowing cases, thedistribution of £ or X isamixture
of extreme distributions of the same type:

(i) & isafinite, spreadable sequence in some Borel space S;
(i) X isan R¢-valued, spreadable process on [0, 1].

In the proof we shall refer to Lemma 4.5 below, which is permissible since no
subsequent results depend on the present theorem. A similar remark applies to the
use of Theorem 3.5 in the proof of Lemma 2.3 below.

Proof. (i) Embedding S as a Borel set in [0, 1], we may regard £ as a spread-
able random sequencein [0, 1]. The space .#1([0, 1]"*) of probability measureson
[0, 1] iscompact and metrizable (cf. Rogers and Williams (1994), Theorem 81.3),
and we also note that the subset K of spreadable distributionson [0, 1]" is convex
and closed, hence compact. By a standard form of Choquet’s theorem (cf. Alfsen
(1971)), the element # (&) has then an integral representation

P@em=/uwwwm,8e%@4m, (1)

in terms of some probability measure v on the set ex K of extreme elements of K.
Inparticular, weobtain v{u; uS" < 1} = 0. Letting v denote theimage of v under
therestriction map o +— u|s», we get for any B € £(S")

P%GM=/MW@W@M=/W@WMM- @

It remains to note that, if © € ex K isrestricted to ", then u|s» is an extreme,
spreadable distribution on S”.

(i) The space S = D([0, 1], RY) is Polish in the Skorohod topology (cf. Jacod
and Shiryaev (1987), Theorem V1.1.14), and so it may be embedded as a Borel
subset of a compact metric space J (cf. Rogers and Williams (1994), Theorem
82.5). The space .#1(J) is again compact and metrizable, and .#1(S) can be
identified with the subset {iw € .#1(J); uS = 1} (op. cit., Theorem 83.7).

Now let K denote the convex set of all spreadable distributions on S, and note
that K remains convex as a subset of .#1(J). The closure K in .#1(J) is again
convex and also compact. Thus, Choquet’ stheoremyieldsanintegral representation
asin (1), where B isnow an arbitrary Borel setin J and v isa probability measure
onexK.
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Since (X)) isrestricted to S, we may proceed as before to derive arepresenta-
tionasin (2), where v is now theimage of v under therestriction map i — us. It
remainsto show that, if .« € ex K with uS = 1, then u|s € ex K. But thisisclear,
since K isclosed in .#1(S) by Lemma4.5 below and therefore K N .#1(S) = K.

|

In Section 1 we saw that afinite, spreadabl e sequence need not be exchangeable.
The equivalence of the two notions will now be established under an additional
assumption. Further result of this type are given in Lemma 2.4 and Theorem 3.5
below. In the exchangeable case, we note that a distribution is extreme iff it is
ergodic, in the sense that the invariant o-field is trivial.

Lemma2.2. Leté = (&1, ..., &,) bea spreadable sequence in some measurable
space S such that the measure g = 3 j 0 is a.s. nonrandom. Then & is ergodic
exchangeable.

Proof. Introduce an exchangeable permutation &1, ..., &, of &1, ..., &, let ()
and (7 ;) be the filtrations induced by the two sequences, and put 8y = > <k O

and By =) 8, We shall prove by induction that

.80 LG E), k=00 ©)
Thisisvacuoudly truefor k = 0, and for k = n it implies the asserted statement.
Now assumethat (3) holdsfor somefixedk < n.Since (&1, ..., &, &) hasthe

same distribution for all m > k, we get for any measurable function g > 0on S

E[8EsD)|F k] = -+ = E[g(E) 7]
= —E[Y s
=(n—k~HB - Bug.

A similar relation holds for &1, 7, and fy, since the basic hypotheses remain
fulfilled for the sequence (&;) with the same nonrandom measure . Using the
induction hypothesis, we get for any measurable function f > 0 on ¥

ﬁk]

Ef(1,....808E+1) = E(f (€1, ..., 8 ElgErD)| Z k]
= -k Ef¢r ... 808 — BOg
= -k Ef¢EL ..., 80 - Bog
= E(f 1, ....8)ElgErD|F k]
= Ef (1, ..., &)8E+1),

which proves (3) with k replaced by k + 1. This completes the induction, and the
assertion follows. O

The notion of extremality clearly depends on the underlying symmetry. The
next result relates the exchangeable and spreadable versions.
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Lemma 2.3. The distribution of an exchangeable sequence or processis ergodic
iff it is extreme in the spreadabl e sense.

Proof. The sufficiency is obvious, since every exchangeable sequence or process
isalso spreadable. Now consider the distribution n of some ergodic, exchangeable
sequence &1, ..., &, in some space S, and note that  is a.s. restricted to the per-
mutations of some fixed sequence a1, ..., a, € S. If u isaconvex combination
of some spreadable distributions 1 and w2, then even the latter have the stated
property. From Lemma2.2 it followsthat 11 and 12 are exchangeable, and since i
is extreme in the exchangeabl e sense, we get 11 = 2. Thisshowsthat u remains
extreme in the spreadable sense.

Next consider the distribution . of some ergodic, exchangeable process X on
[0, 1], and notethat X hasfinitefirst momentsand a.s. fixed jump sizesand terminal
value. If u isaconvex combination of some spreadabledistributions «1 and w2, then
even thelatter measures have the stated properties. Hence, the u; are exchangeable
by Theorem 3.5 below, and since 1 isextremein the exchangeable sense, it follows
that w1 = u2. Thus, 1 isagain extreme in the spreadable sense. O

A random measure £ on [0, 1] is said to be spreadable if the corresponding
distribution function X, = &[0, 7] is a spreadable process on [0, 1]. By asimple
point processwemean apurely atomicrandommeasureé suchthat &£ {s} = Oor 1for
all s. Thenext result showsthat the notions of spreadability and exchangeability are
equivalent for simple point processes and diffuse random measures. This prepares
for our study of more general processes in Theorem 3.5. Parts (ii) and (iii) below
are in fact equivalent to Lemma 3.4 in Kallenberg (1982); they are restated here
with a short direct proof, for the convenience of the reader.

Lemma 2.4. In each of the following cases, a spreadable random sequence or
measure £ is exchangeable:

(i) & isafinite sequencein {0, 1};
(ii) & isasimple point processon [0, 1];
(iii) & isadiffuse random measureon [O, 1].

With subsequent applications in mind, we note that a diffuse random measure
& on [0, 1] isexchangeableiff £ = o) a.s. for some random variable « > 0. For a
simple point process & on [0, 1], exchangeability means that £ is a (homogeneous)
mixed binomial (or sample) process, sothat £ = ), _, 8, for somei.i.d. U(0, 1)
random variables 1, 77, . . . and some independent, Z_ -valued random variable « .
The revised terminology is motivated by the fact that, for any B € %([0, 1]) and
given «, the random variable & B is conditionally binomially distributed with pa-
rameters « and A B.

Proof. (i) Let &€ = (&1,..., &,) be spreadable in {0, 1}, fix any permutation p =
(p1,...,pp)of 1, ... n,andputn = (&,,, ..., &p,). Using the spreadability of &,
we get for any subset A C {1, ..., n}

Z./eA’” - Z./epflAgj < Z.jswsf < Z./eAgj'
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Hence, & 4 n by Theorem 10.9 in Kallenberg (1997), and the exchangeability
follows since p was arbitrary.

(in—(iii) Let & be aspreadable simple point process or diffuse random measure
on [0, 1]. Fix any n € N and apermutation p = (p1,..., pp) Of 1,..., n. Define
ameasure-preserving transformation f on (0, 1] by

fO)=x+ntpj—j), xelj=ntG-1j j=1....n
and introduce the random measure n = £ o £~ on (0, 1]. Using the spreadability
of &, we get
WU =E(fU) LE[0,2U]1 £ 6U, Ue,
and so & 4 n on (0, 1] by a version of Theorem 10.9 in Kallenberg (1997). In

particular, & has exchangeable increments over 1, 1, . . ., I, ,, and the asserted ex-
changeability follows since £{0} = O as. O

For a spreadable process on [0, 1], it is not clear whether the jump structure
can be described in terms of spreadable sequencesin general. The following result
gives auseful connection in a specia case.

Theorem 2.5. Let X be a step processin R? with a fixed number of jumps and let

& and n denote the associated jump size sequence and jump time process. Then
(i) X isspreadableiff & and  are independent and spreadable.

In that case

(ii) X and & are simultaneously extreme;
(iii) X and & are simultaneously exchangeable.

Proof. (i) Assumethat & and » areindependent and spreadable. Fixany U, V € %
with AU = AV, and let &, ..., &, and £/, ...,é,/]’v be the jump sizes of Xy

and Xy, respectively, enumerated from left to right. Since & is spreadable and
independent of », Fubini’s theorem yields

P[5y, ..., &) € Inl = P{(61,.... &) €} as.on{nU = k}.

Combining with the same relation for the 5;/ and noting that 7y 4 ny sincen is
spreadable, we obtain

i .
(B 1. ) S Gy 8 ),

which implies Xy £ Xy. Thus, X is spreadable.
Conversely, assume that X is spreadable with n jumps, and let U, V € % with

AU = V. Since Xy £ Xy and n[0, 1] = n, we get for any B € B(R")
P{& € B, nU° =0} = P{¢ € B, nU = n}
= P{ e B, nV =n}
— PiE € B, nV =0).
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Keeping B fixed with P{¢ € B} > 0 and using a version of Theorem 10.9 in
Kallenberg (1997), we conclude that » is conditionally spreadable, given the event
{¢ € B}. By Lemma2.4, n isthen exchangeable and hence abinomial processwith
n points. Since the conditional distribution isthe samefor all B, it followsthat 1, is
spreadable and independent of &.

To show that even & is spreadable, we may assumethat n > 0. Fixanya < b
in (0, 1) and put

I =(0,ada], U= (,a] U (@®,1], V=(0,1-b+d],
sothat AU = AV. By the spreadability of X we have Xy < Xy, and then also

Xy, nl.nU) £ Ryl qV),
In particular, weget forany k € {0, ..., n — 1}
G108 k2, - 8D Ul = kU =n — 1}
£ (@ gD Ul =k oV =n—1}.
Sinceé 1l n, and also
Pinl =k,nU=n-1}=P{nl =k,nV=n-1}>0
by the spreadability of n, we obtain

(élv"‘9§k7§k+27"'a$}1)i(él?'")éﬂ*l)v O§k<n’

which implies the required spreadability of &.

(i) Every distribution i = Z(¢£) on R™? determines uniquely acorresponding
distribution i = #(X) on D([0, 1], RY). Themapping . — i isclearly linear and
injective, and the measures 1« and 1 are simultaneously spreadable. Now assume
that i isextreme, and let u = cu1 + (1 — ¢) o for some spreadable probabilities
u1, 2 and some constant ¢ € (0,1). Then oo = cfi1 + (1 — ¢)ji2, and since
o isextreme and 11 and i are spreadable, we get 11 = 2. Thus, w1 = w2,
which showsthat even . is extreme. The converse implication follows by the same
argument since the inverse mapping 1 — w isagain linear.

(iii) Let & = (&, ..., &) beexchangeable. Since n isabinomial processinde-
pendent of &, thetransfer Theorem 5.10 in Kallenberg (1997) ensures the existence
of somei.i.d. U(0, 1) random variables o1, ..., 0, 1L.E with n = Zj 85, Writ-
ing t1, ..., 7, for the increasing enumeration of the o;, we have o; = Tz, for
some (o j)-measurable permutation (1, ..., mw,) of 1, ..., n. By exchangeability
and independence, the sequences £ and (&, . . ., &x,) areequally distributed, con-
ditionaly on (o), and therefore (¢7;)1L(o;). To see that X is exchangeable, it
remains to write

X = Zkfn &Uu <t} = ijn &, l{oj <1}, 1€[0,1].

Conversely, assumethat X isexchangeable. To show that thisisalso truefor &,
we may reduce by conditioning to the case when ) °, 8¢, isnonrandom. But then &
is exchangeable by Lemma 2.2. |
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The last result can be used to extend some counterexamples for spreadable
sequences to the continuous-time case.

Corollary 2.6. There exist some spreadable sequences & and processes X such
that

(i) & and X are not exchangeable;
(ii) the extremal representations of £ (&) and £ (X) are not unique.

Proof. Consider on {1, 2, 3}2 the extreme, spreadable distributions

[12 23 a1 [32 21 13
(122 [ = _[31 13
1=l 1 1] 2T 1 1/ 3=11 1|

and notethat 141 and w2 are not exchangeable. Furthermore, %(Ml +u2) = :—13(1)1 +
v2 + v3). To get a distribution of a spreadable sequence that satisfies both (i) and
(ii), wemay take u = %,(/Ll +2u2). By Theorem 2.5, conditions (i) and (ii) remain
fulfilled for the corresponding continuous-time distribution . |

When the space S isfinite, the distributions of all spreadable sequencesin S of
length n form a convex polyhedron in an appropriate affine subspace of S”. In fact,
the sample space is then finite and the spreadability condition yields finitely many
linear constraints on the corresponding probabilities. Hence, in this case there are
finitely many extremedistributions, each corresponding to avertex of the mentioned
polyhedron.

In the specia case of random pairs, we note that a distribution is extreme,
spreadable iff it gives equal weight m~* to all pairs (ax, ax,1) for some distinct
dementsay, ..., a, € S, wherea,,1 isinterpreted as a;. These distributions are
clearly exchangeable only for m = O and 1.

3. Martingale methods

I nthis sectionwe examine somebasi ¢ martingal e properties of spreadabl e processes
and exhibit conditions that ensure the exchangeability of a spreadable process.
Our results extend and improve some statements for exchangeable processes in
Kallenberg (1982, 1988a).

We may relate the spreadability of afinite or infinite sequence & = (&1, &2, ...)
to a discrete filtration # = (%o, #1,...). Then say that & is & -spreadable if
it is adapted to # and such that the shifted sequence 6§ = (&x11, Ekt2,...) IS
conditionally spreadablegiven % for every k > 0. To avoid requiring the existence
of conditional distributions, we may state our condition in terms of elementary
conditional probabilities, given any set A € % with PA > 0. Note that any
spreadable sequence £ is spreadable for theinduced filtration 7 = o {§;; j < k}.
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An infinite sequence & is said to be strongly stationary or % -stationary if

0:& 4 & for every finite optional (or stopping) time ¢ > 0. For finite sequences
& = (&1,...,&,), weinterpret the condition as

(Erit s Er) E (61 ... &) Whenever T + k < n as.

Wefinally consider the martingal e property of the so-called prediction sequence
wr = POk € | F ], k > 0. Again we may avoid regularity requirements by
stating our condition in terms of elementary conditional probabilities. Thus, for
infinite sequences, we say that the u; form an % -martingale if 6;41& 4 01 & over
F . fordl k > 0, in the sense that

Pl6r+16 € -; A] = P[6k§ € 5 A], A€ Ty, k>0.

For finite sequences & = (&1, ..., &,), the martingale condition is interpreted as

d
(Ek+2, -5 6n) = (Gkt1, -, Ep-1) OVEr F, k=0,....n -2

The mentioned conditions are related by the following result, which extendsthe
corresponding statement for infinite exchangeabl e sequences in Kallenberg (1982,
1988a) (cf. Kallenberg (1997), Proposition 9.18).

Lemma3.l. Let & = (&, &2,...) be a finite or infinite, # -adapted random
seguence in some measurable space S. Then these conditions are equivalent:

(i) & isZ -spreadable;
(i) & is 7 -dationary;,
(iii) wux = P[Ok& € | F ] formsan # -martingale.

Proof. The proof for infinite sequences carries over with obvious changes. O

Weturn to the continuous-time case. An R¢-val ued process X on[0, 1] or R is
said to be spreadablewith respect to afiltration # = () or simply % -spreadable
if it is # -adapted with Xo = 0 and such that the shifted process 6, X — X is
conditionally spreadable given 7 ; for every s > 0. Tojustify our use of martingale
theory and stochastic calculus, we may passto anew filtration ¢ that is both right-
continuous and complete, in the sensethat 4, = 4, = (,., %, fordlt > 0
and every ¢, contains the null setsin the P-completion of o{%9,; u > 0}. Recall
that every filtration & has a smallest right-continuous and complete extension, the

so-called usual augmentation of & (cf. Kallenberg (1997), Lemma 6.8).

Lemma 3.2. If aprocess X on [0, 1] or R is spreadable for some filtration &,
then it remains so for the usual augmentation of .#.

Proof. For every ¢, the shifted process9; X — X, is conditionally spreadable given
;. By the chain rule for conditional expectations, this remains true with %,
replaced by #, for any s < t. Since X is right-continuous, the latter version
extends for fixed s to ¢ = s, which means that X is spreadable with respect to the
right-continuousfiltration (%, .). It remainsto notethat any conditional probability
is unaffected by completion of the associated o -field. |
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For later needs, we record a continuous-time analogue of Lemma 3.1, which
follows from the earlier result by a straightforward approximation.

Lemma3.3. Let X be an R¢-valued, Z -adapted process on [0, 1] or R, with
Xo = 0 and rcll paths. Then these conditions are equivalent:
(i) X isZ -spreadable;
(ii) X has .Z -stationary increments;
(iii) us = P[6,X — X, € -|F,] formsan % -martingale.

We turn to the semimartingale properties of spreadable processes. Given an
rcll process X on [0, 1] or R, we define the associated jump point process 8 by
BiA =Y. 1a(AX,) forany A € Z(R¢\ {0}) and let 8 denote the compensator
of . When X isasemimartingale, wewrite X for the continuous local martingale
component of X. Finaly, if X isaspecia semimartingale, we define the compen-
sator X of X asthe as. unique predictable process of localy finite variation and
initial value O such that X — X isalocal martingale. The processes X, [X¢], and 8
are collectively referred to asthe local characteristics of X.

Given afiltration &, we say that a process X is # g-integrable if E[|X;||# ]
< oo as. foral . (If X isZ -spreadableon [0, 1], then by Theorem 4.10 it suffices
to assume this condition for a fixed ¢+ € (s, 1).) The stronger notion of uniform
F o-integrability may be defined in the obvious way in terms of the conditional
distributions P[ X € - |% o]. We say that X isaconditional . -martingale on some
interval I if X is Z;-integrable for all s € I and satisfies X; = E[X,|Z] as.
forall s < ¢ in 1. Notethat any conditional martingale on [0, 1) or R, isalocal
martingale.

We show under a moment condition that a spreadable processis a semimartin-
gale and describe the associated local characteristics. This extends and improves a
result for exchangeable processes in Theorem 4.1 of Kallenberg (1988a). We con-
jecturethat no moment conditionisactually needed for the semimartingal e property
in part (ii).

Proposition 3.4. Let X be an R?-valued, Z -spreadable process on [0, 1] with
jump point process 8. Then

(i) B admitsa conditional martingale density on (0, 1);

(it) if X is #o-integrable, it isa uniformly & g-integrable special semimartingale
on [0, 1], such that [X¢] isa.s. linear and X admits a conditional martingale
densityon [0, 1).

Proof. (ii) Define

E[X1— X;|F
M, = [11_tr| z],

t €[0,1). 1)
By the spreadability of X, weget for any timess < r < 1withrationally dependent
residualsl —sand1l—¢

EXy = X7 _ E[Xa- X7 _

E[M|F ] = .
[M;|F] 1 1_s s

@
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Approximating from the right in s, we may extend the formula to arbitrary s <
t < 1, which shows that M is a conditional martingale on [0, 1). Writing N, =
E[X1|Z ], we have

X[:N[_(l_l)M[, IG[O, 1), (3)
and integrating by parts gives
dX; =dN; — (1 — t)dM; + M,dt. 4

Thisshowsthat X isa special semimartingale on [0, 1) with compensator
t
X, = f Mgds, t€][0,1).
0

From (3) wenotethat X isuniformly # g-integrableon [0, %] , and the spreadability
of X allows usto extend this property to all of [0, 1]. The matrix-valued process
[X€] = [X]€ isagain spreadable, by the approximation property in Theorem 1.4.47
of Jacod and Shiryaev (1987). Sinceit is also continuous and of finite variation, it
isas. linear by Lemma 2.4.

To extend the semimartingal e property to the closed interval [0, 1], we may use
(1), Jensen’s inequality, the spreadability of X, and Theorem 4.10 below (whose
proof depends only on the semimartingale property on[0, 1)) towriteforany ¢t < 1

E%\X1— X/ _ E°X1| _ E%Xapo
1—¢ 1-¢+ ~ @A-nv2’
where EC is short for E[ - |#¢]. This gives

E°IM,| <

1 1 1
EO/ ldX,| :f EO|M,|dt§E0|X1/2|/ Q-2 dr < oo,
0 0 0

and shows that X has # g-integrable variation whereas X — X is a uniformly
F o-integrable local martingale on [0, 1].

(i) Combining Lemma 2.4 above with Lemma 4.2 in Kallenberg (1988a), we
notethat E[B{|x| > ¢}|7;] < oo as.fordl ¢t € (0,1] and ¢ > 0. We may then
define ameasure-valued process i on [0, 1) by

— 772
WA= E[ﬂlAl ﬁt’A"f’], te[0,1), A e %% (5)
The conditional martingale property of w follows asin (2), and proceeding as in
(3) and (4), we seethat 1« isa.s. adensity of S. ]

In Corollary 2.6 we saw that a spreadable process need not be exchangeable.
Herewe consider some additional conditionsthat ensure the equivalence of the two
properties. Our results extend and improve Theorem 3.3 in Kallenberg (1982) and
Lemmas 2.2 and 2.4 above.

Theorem 3.5. Let X be an R?-valued, 7 -spreadable process on [0, 1] with jump
point process 8. Then X is . -exchangeable under each of these conditions:
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(i) X isZg-integrable and the pair (X1, 1) is Z o-measurable;
(ii) X hasa.s. finite variation and 81 is % g-measurable.

We conjecture that every continuous spreadable process is exchangeable. The
proof of part (i) requires two lemmas.

Lemma 3.6. Let X besuchasin Theorem3.5 (i). Then X isa special semimartin-
galewith [X¢], = ¢[X]{ a.s, and for any ¢ € [0, 1) we haveas.

Bt _ ! ﬂl - ﬂs ds (6)

1—s 7
! Sd(X, — X,
/ ds / aXr — Xr) @
0 0 1—r
Proof. From Proposition 3.4 and itsproof we notethat X isaspecial semimartingale
such that [X¢] isas. linear, and also that 8 has the conditional martingale density

e = (B1— Br)/(1 —t). The latter statement implies (6). Furthermore, X has a
conditional martingale density M satisfying

0
X[ =tX]_—

Integration by parts gives
—(L—1)dM, + Mydt =dX, =d(X, — X,) +dX,,

and so, by the uniqueness of the canonical decomposition,

. d(X, — X
dXt :Mtdt, th :—M
1—1¢
Equation (7) follows as we integrate the | atter relations and note that Mp = X1 as.
inview of (8). ]

Lemma 3.7. For processes X as in Theorem 3.5 (i), the conditional distribution
P[X €| o] isaunique, measurable function of X1, [X]{, and f1.

Proof. Let Aq,..., A, € Z(R%) be digoint and bounded away from O, put x, =
B1Ay, andlet 7f < --- < 7, bethe points of the process BA,. Write 7; = 0 and

= BA, (<)), and put y] = 7 — 2/_,. By (6) we have

r

Ti-1 .
ﬁ , ] = Kp, T =N
j

yi=W—Jj+1 |09{

Solving recursively for rjr. gives
,

o Vi .
rj_l_eXp{_ZiSjKr——i—l—l}’ J = Kkr, T =0 ©)

By aversion of Theorem 11.6.6 in Jacod and Shiryaev (1987), the continuous mar-
tingale component X ¢ is conditionally a Brownian motion with covariance matrix
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[X]9, given # o, whereasthe y! arei.i.d. standard exponential random variablesin-
dependent of (# ¢, X°). Furthermore, (9) exhibitsthe processes 8 A, asmeasurable
functions of the variables , and y ]’ , Where the former are .7 o-measurable by hy-
pothesis. This specifies thejoint conditional distribution of X¢ and A1, ..., BA,
given 7. Since the sets A, were arbitrary and since (6) expresses 3 as a measur-
able function of g, the conditional distribution is then a.s. unique for the mar-
tingale component X — X. In view of (7), this is also true for the process X
itself. O

Proof of Theorem 3.5. (i) By the transfer Theorem 5.10 in Kallenberg (1997),
we may choose the process Y to be conditionally exchangeable, given 7, with
directing triple (X1, [X]{, B1). Let ¢ be the right-continuous, complete filtration
induced by Y and % o, and note that even Y satisfies the hypotheses of the theorem,
but now relative to the filtration 4. By Lemma 3.7, X and Y have then the same
conditional distributiongiven % o, andin particular X isconditionally exchangeable
on [0, 1]. Applyingthisresult totheshifted processd; X — X for arbitrary s € [0, 1),
we see more generally that X is . -exchangeable.

(ii) The continuous component X< of X—in the sense of functions of bounded
variation—is again spreadable, and so are the monotone componentsin the Jordan
decomposition of each coordinate process. By Lemma 2.4 it follows that X{ = ta
a.s. for some random vector « in R?. If . isright-continuous, as we may assume
by Lemma 3.2, then « is clearly # g-measurable. Since also a.s.

1
Xy — a4 / x Br(dx),
0

1 1
|Xf|s/0 |cm|=|<>z|+/0 x| 1(dx) < oo,

we conclude that X1 is % p-measurable and X is % g-integrable. The asserted
exchangeability of X now follows by part (i). O

We can also give the following alternative proof of part (ii), based on the more
elementary but less intuitive Theorem 2.5.

Second proof of (ii). For any ¢ > 0, let X¢ denote the sum of al jumps of modulus
> ¢, and denote the corresponding jump sizes by &1, ..., &,. Then X¢ is again
spreadable, and so the sequence (&) isspreadableby Theorem 2.5(i). Since ), 8¢,
isnonrandom by hypothesis, LemmaZ2.2 showsthat (&;) iseven exchangeable. Then
S0 is the process X¢ by Theorem 2.5 (iii), and the same thing is true for the jump
component X’ of X since ¢ was arbitrary.

Next Lemma 2.4 gives X, — X, = at as. for some random vector « in R?,
and by Lemma 3.2 we may assume that « is % o-measurable. Applying the pre-
vious argument to the conditional distributions, we note that X’ is conditionally
exchangeable on [z, 1] given %, for every ¢ € [0, 1]. The same thing is then true
for X itself, since X — X’ isas. linear and % ;-measurable. O
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4. Distributional properties

Inthissectionwe study someweak convergence and rel ated propertiesof spreadable
sequencesand processes. A comprehensiveweak convergencetheory for exchange-
able processes was developed in Kallenberg (1973, 1975, 1982, 1988b), and we
refer to Chapter 14 of Kallenberg (1997) for some basic ideas and results. Since
there is no general representation formula in the spreadable case, only a partial
extension of the exchangeable theory is possible.

Webeginwith alimit theorem for finite spreadabl e sequences, which extendsan
elementary result for exchangeable sequencesfrom Kallenberg (1973). The present
statement also contains Ryll-Nardzewski’s (1957) version of de Finetti’s theorem
(cf. Kalenberg (1997), Theorem 9.16), thefact that any infinite spreadabl e sequence
ismixedi.i.d.

Given a finite random sequence & = (£1,...,&,) in some Polish space S,
we define the associated empirical distribution as the random probability measure
v = mt Zj ¢, on S. Here v is regarded as a random element in the space

A 1(S) endowed with the weak topology. For sequences &, of lengths m,, 4 00,

the convergence &, 4 & is defined by the corresponding set of finite-dimensional
conditions.

Theorem 4.1. Let &1, &2, ... be spreadable sequences of finite lengths m1, mo,
. — oo inaPolish space S and let v1, v, . .. denote the associated empirical

distributions. Then &, 4 someé in S iff v, 4 some v in.#Z1(S), in which case
L) = Ev™.

We give a direct proof based on the following simple moment estimate.
Using the Ryll-Nardzewski theorem, one can also give a slightly shorter but more
sophisticated proof along the lines of Theorem 4.8 below.

Lemmad4.2. Let &, ..., &, be square-integrable random variables with constant
mean m, variance o2, and covariance o2 p, and fix any distributions (p;) and (¢,)
on{l,...,n}. Then

E(Y psti = Y i) = 2070 p) sy s — g5l
Proof. Writed; = p; —q;. Notingthat >~ d; =0and }_; |d;| < 2, weget
2 2
B(X06) = (S e -m)
= Zizjd,»dj cov(&;, &)
=0o?p (Zjdj)z +a%(1-p) Zjdjz

< 01— p) sup;ld;| ) 1]

< 20%(1— p) sup;1d;|. o
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Proof of Theorem 4.1. First assume that v, —d> v. Fix any continuous functions
fLoooo fii S = [0, 1. Write[m,/k] =rpand I,; ={(j — Dra + 1, ..., jra}.
Using the spreadability of &,, Jensen’sinequality, and Lemma 4.2, we get

‘E H/.Skfj(g:nj) —-E l_[jgkvnfj‘
B 2y, f160 = ET] s
= DBt 2, JiG) v

=< ijk r,:l Zielnjfj(‘i:ni) - anj

< 2 Y2 < 32712 0,

2

Since aso
El_[jgkvnfj — El—[jfkvfj,
by the continuity of the mappings . — wf; on.#1(S), we obtain
ETT, o fi) = ETT,_vfi =BT, _ fiop, (1)
where £ = (&p;) hasdistribution Ev®>°.

To deduce the required convergence &, < £, we note in particular that &, LY
&q; for each j. Hence, by Prohorov’s theorem, (&) is tight and any subsequence

N’ C N hasafurther subsequence N ¢ N’ suchthat &, LY someé&’ dlong N”. To
see that &' 4 &, we note that (1) remains true dlong N” with &o; replaced by ?;6].,

and therefore

E[],_ fiGn=E] _ fitt
forany k and f1, ..., fi. By asimple approximation, this extends to the indicator
functions of any open sets G1, ..., Gx C S, and by amonotone class argument it

follows that & 4 &', Hence, &, 4 & along N” and then also along N, since the
limit isindependent of the choice of subsegquence.
Conversely, assumethat &, LY &. The spreadability of the sequencesé, implies

the weak convergence Ev,, = £ (&,1) = % (&01), and by Prohorov’s theorem it
follows that the sequence (Ev,) is tight. By Lemma 7.14 in Aldous (1985), the
tightness carries over to the sequence of random probability measures v,,. Now let

Vn L along some subsequence N’ C N. The direct assertion gives &, LY 34

along N’ where Z(¢') = Ev®. Sinceaso &, 4 &, weget (&) = Ev™.
Toseethat Z(v) isuniquely determined by . (§), fix any bounded, measurable
function f on S and aconstant r € R. By the law of large numbers,

Pivf <r}= Evoo[limsupn nt Zj<nf(xj) < r}

= P{Iimsupn nt ijnf(so,/) < r} ,
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and the required uniqueness follows by the Cramér—Wold theorem. By Prohorov’s
theorem, the convergence v, < ) then extends to the original sequence. O

The continuous-time case is more difficult. Here our treatment is based on the
following key result, where for any spreadable sequence or process we associate
an exchangeabl e sequence or process with the same one-dimensional distributions.
This correspondence alows us to extend many statements for exchangeable pro-
cesses to the more general context of spreadability.

For any random sequence ¢ = (&1, ..., &,), we introduce the associated occu-
pation sequence fr = > ;0. k = 1,...,n. When X isan Re-valued semi-
martingale on [0, 1], the associated characteristics o, 8, and y, are given by

ar =X, Br= qufsAxp J/tij = [Xi, Xj];, t €0, 1]. (2

The definitions of «, and 8, continue to make sense without the semimartingale
property, as long asthe paths of X arercll.

Proposition 4.3.
(i) For any spreadable sequence § = (&1, ..., §,) in some measurable space S,

there exists an exchangeable sequence € = (&1, ... ., &,) such that the associ-
ated occupation sequences satisfy

d~
Bk=PBk, k=1,...,n

(ii) For any R? -valued, spreadable process X on [0, 1], there exists an exchange-
able process X such that the associated processes of characteristics satisfy

(. B) L @, ). tel01]. )

If X isasemimartingale, then (3) can be strengthened to

(alv ﬂlv J/l) i (&tv 511 )71)’ re [0$ 1] (4)

In particular, we note that ", |A X, 12 < oo as. for any R¢-valued, spreadable
process X on [0, 1]. In the semimartingale case we may taker = 1in (4) to see
that % (X) isunique. Itisnot clear whether uniquenessstill holds under the weaker
condition (3). In the following proof and throughout the remainder of the section,
we consider summation processes of the form

X, = ZjSmtg,, 1 €[0,1], (5)
where £y, ..., &, arerandom vectorsin R<.
Proof. (i) Let 71, ..., 7, form an exchangeable permutation of 1, ..., n indepen-
dent of & and consider the exchangeable sequence £ with elements &, = &, for
k=1,...,n.Foreachk € {1, ..., n} we enumerate the variables 71, ..., 7 in

increasing order as o1, . . ., oxx. The spreadability of & and exchangeability of &
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carry over to the random measures u; = 8¢, and i; = Béj, respectively, and for
any k < n weget

d o
Br = jgkﬂj = stk:uokj = stk,urj = jfku‘i = Bk.

(i) Here we put t,;=j2"" and &,; =X, —X,,,, for dl neN and
J < 2". For eachn € N we introduce an exchangeable permutation (é,,j) of the

increments &,,; and write X" and X" for the corresponding summation processes

on[0, 1]. Since X £ X = X, for dl n-dyadic times = taj, the sequence (X™)

is tight in D([0, 1], R?) by the exchangeable version of Proposition 4.4 below,
and therefore X" % X along a subsequence for some exchangeable process X on
[0, 1]. By ad-dimensional version of a convergence criterion in Kallenberg (1973)
(cf. Kallenberg (1997), Proposition 14.24), the corresponding characteristic triples
satisfy
~n gn ~ny 4 o~ 5~
(Olt,ﬂ;,)/t)% (al‘aﬂtv J/l)a tE[O, 1]’ (6)

where g, and f]" are regarded as random elementsin . (R¢ \ {0}) with the vague
topology.

If X isasemimartingale, we may use part (i) together with the approximation
property for the quadratic variation (cf. Jacod and Shiryaev (1987), Theorem1.4.47)
to write for dyadictimest € [0, 1]

~ ~n  ~ d P
a;l’ fn? J/ln) = (a;’l’ ﬁlns )’;n) - (alv ﬁt» Vt) (7)

Relation (4) followsfor dyadic ¢ by combination of (6) and (7), and then in general
by the right continuity of both sides. Without the semimartingale hypothesis, we
can only assert convergencein (7) for thefirst two components. Thisstill guarantees
the truth of (3). O

Our next key stepisto establish sometightnesscriteriafor spreadable processes,
originally stated for exchangeable processes in Kallenberg (1973) (though proved
more convincingly in Kallenberg (1997), Proposition 14.24 and Theorem 14.25).

Proposition 4.4. Let X1, X», ... be R?-valued, spreadable processes on [0, 1] or
summation processes on [0, 1] based on spreadable sequences in R? of lengths
m, — oo. Fix any relatively compact sequence t1, 72, ... € (0, 1). Then the fol-
lowing two conditions are equivalent:

(i) {X,}istightin D([0, 1], R%);

(i) {X,(t,)} istightin R9.

If the X,, are semimartingales, it is also equivalent that
(i) {(ctn, y)} istight in R x R,

Proof. Theimplication (i) = (ii) holdsgenerally in D([0, 1], R) by the continuity
of the mapping x — sup, |x;|. To prove the remaining assertions, we choose some
associated exchangeable processes X,, with characteristic triples (&, Ba, 7,) asin
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Proposition 4.3. By the criteria for exchangeable processes, the sequences {X,,},
{Xn(t2)}, and {(&x, 7»)} are simultaneously tight. In particular, Proposition 4.3
showsthat (ii) < (iii) whenever each process X, isasemimartingale.

Inthe general case, (ii) impliesthat {X,} istightin D([0, 1], R,.). Noting that
xn(hy) — x(0) whenever x,, — x in D([0, 1], RY) and i, — 0 and using Lemma
3.3 and Proposition 4.3, we get in the continuous-time case

d d & P
Xn(tn + hy) — Xu (1) = Xn(hy) = Xn(hy) = O,

for any X,-optional times z,, and positive constants #,, — Owith ¢, + h, < 1as.
Sincethesequence X, (t) 4 X, (1) istightin R? forevery r € [0, 1], thetightness of
{X,}inD([0, 1], R?) followsby Aldous criterion (cf. Kallenberg (1997), Theorem
14.11). Thus, (ii) = (i). The argument applies with obvious modifications to the
case of summation processes. ]

We also need the following closure properties for spreadable processes, which
again extend the exchangeable versions from Kallenberg (1973).

Lemma4.5. Let X1, X», ... be R?-valued, spreadable processeson [0, 1] or sum-
mation processes based on spreadable sequencesin R of lengths m,, — oo, and
assume that X, > X in D([0, 1], RY). Then X is again spreadable. A similar
result holds for spreadable random measures on [0, 1].

Proof. Writing X, as X", we havein the spreadable case X!} — X" 4 X5_, forany
u < v.Ifu,v,andv—u areas. continuity pointsfor X, weobtain X, — X, 4 Xo—u-
Similarly, X1 — X, 4 X1_, Whenever u and 1 — u area.s. continuity points. Fixing
anyr e (0,1],wemayletu 4 randv | r toget AX; £ 0. This shows that X has
no fixed discontinuities, and therefore X" LY X. In particular, the spreadability

of the X" carries over to X. A dlightly modified argument applies to the case of
summation processes.

Next let &1, &2, ... be spreadable random measures on [0, 1] with &, LY £.
The corresponding random distribution functions X} = &,[0, ¢] are then tight

in D([0, 1], RY) by Proposition 4.4, and we get convergence X" 4% along a
subsequence N’ c N for some spreadable process X. As before, it follows that

xn L4 % along N’, and s0 £, 4 E where £[0, 1] = X,. But then £ 2 ¢ and so
the spreadability of &, inherited from X, carries over to €. |

The preceding resultsallow usto show that thefunctional and finite-dimensional
modes of convergence are equivalent for spreadable processeson [0, 1]. Thisagain
extends a statement for exchangeable processesin Kallenberg (1973).

Corollary 4.6. Let X1, X», ... be R?-valued, spreadable processes on [0, 1] or

summation processes on [0, 1] based on spreadable sequences in R? of lengths

m, — oo.Thenfor anyprocess X in D([0, 1], RY) wehave X, 4 Xiff X, 4 x
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Proof. If X, 4 x , then X is spreadable by Lemma 4.5 and hence continuous
in probability. Since x, — x in D([0, 1], R?) implies x,, (1) — x(¢) at every

- . d d . .
continuity point ¢ of x, weconcludethat X, L> X.Corversaly, X,, L> X implies

that {X,} istight by Proposition 4.4, and so by Prohorov’s theorem X, 4 Xin
D([0, 1], RY). O

The necessary tools are now available to prove our fundamental regulariza-
tion theorem for spreadable processes. It shows in particular that a process with
spreadable increments has a right-continuous version with left-hand limitsiff it is
continuousin probability. In thisweaker form, theresult isknown for exchangeable
processes (cf. Kallenberg (1997), Theorem 14.25). The present statement justifies
our definition of spreadable processesin Section 1.

Theorem 4.7. Let X be an R?-valued process with spreadable increments and
Xo = 0, defined on the set of dyadic rationalsin [0, 1]. Then X extendsa.s. to a
spreadable process on [0, 1] with rcll paths.

Proof. For eachn € N weintroduce a summation process X" based on the incre-
ments of X on the n-dyadic set D,,. Since X" = X, foral m > n whent € D,,
the sequence (X") istightin D([0, 1], R) by Proposition 4.4. By Prohorov’stheo-
rem, we have convergence X" % Yin D([0, 1], R?) along a subsequence, and the

limiting process Y is spreadable by Lemma4.5. But then X" ELN Y by Corollary

46,andso X LyonD= \U,, Dn. Finally, we may use the transfer Theorem 5.10

in Kallenberg (1997) to construct a spreadable process X 2y with X = X as.
on D. mi

We turn to a partial continuous-time extension of Theorem 4.1. For any se-
guences (&,) and (n,) of random elements in a Polish space S, we write &, 4 M

to mean that &, 4 £ iff n, LY & for any random element £ in S. When ¢ isa
spreadabl e random measure on someinterval [0, «], we define the processes «; and
B, asin (2) from the associated distribution function X; = &[0, ¢]. Let us say that &
is a corresponding exchangeable random measure on [0, u] if the terminal values
o, and B, agreefor £ and &. If £ isinstead an exchangeable random measure on
R, so that the associated process X is a mixture of subordinators, we write v for
the random Lévy measure of X and p for the rate of increase of the linear drift
component.

Theorem 4.8. Let &1, &2, ... be spreadable random measures on some intervals
[0, u,] — Ry andlet&q, &, . . . be corresponding exchangeabl e random measures

on the same intervals. Then &, 4 £, in both .7 (R,) and D(R,, R,). A similar
result holds for summation processes based on spreadable sequencesin R, .

The result fails for processes on a common finite interval, since by Corollary
2.6 and Proposition 4.3 there exist some spreadable random measures on [0, 1]
with different distributions but the same characteristics at 1. We conjecture that the
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statement remains true, possibly under a moment condition, for any R-valued,
spreadable processes on someintervals [0, 7,] — R;.

Proof. First assume that £, > £ in .#(R,), and note that the convergence
extends to D(Ry, R;) by Corollary 4.6. By Proposition 4.3 and the continuity
in D(R4, Ry), the associated characteristics satisfy

o B L@ B L @By 120, ®)
under the vague topology on .# ((0, c0)). In particular, (&,) istightin D(R4, Ry)

by Proposition 4.4. Now assume that &, 4 & in D(Ry, R;) aong asubsequence.
Then & isspreadable by L emma 4.5 and hence exchangeable by Ryll-Nardzewski's
theorem. By continuity, we have

@ B S (. ). 1> 0,

and comparing with (8) gives («;, ;) 4 (&, B;) for al + > 0. Hence, the char-
acteristics of the limiting processes satisfy (o, v) 4 (p, v), by the law of large
numbers, and so & 4 €. Since the limiting distribution is independent of subse-
guence, Prohorov’s theorem yields €, LY £ along N.

Conversely, assume that &, LY &in 4 (Ry). Then Proposition 4.3 yields

~n d d
a =a > o, >0,

and so (&,) istight in D(Ry, Ry). If &, - along a subsequence, then £ < &
holds as before, and Prohorov’s theorem yields £, LY & aong N. O

We may next extend some one-dimensional convergence criteria from
Kallenberg (1988b).

Proposition 4.9. Let X1, X2, ... be R?-valued, spreadable processes or summa-
tion processeson someintervals[0, u,] — Ry, wherethelatter are based on some
spreadabl e sequences of lengthsm,, suchthat m,, /u, — oo. Consider amixed Lévy
process X in R? that is either continuous with finite means or ergodic with a finite

exponential moment. Then X" 4 X in D(R,, RY) iff X7 4 X, forallt > 0.
Again the statement failsfor processes on afixed interval, since by Proposition

4.3 the distribution of a spreadable process on [0, 1] may not be determined by its
one-dimensional projections.

Proof. Assumethat X} 4 x ¢ forall z > 0. Then, by Proposition 4.4, the sequence
(X") istight in D([O, r], RY) for every r > 0 and hencedsoin D(R,, R?). Now

assume that X” % v in D(R,, RY) dong a subsequence N’ ¢ N. Then Y is
spreadable by Lemma4.5, and by Ryll-Nardzewski’stheorem it is even exchange-

able. For any t > O we get X7 4 Y, dong N, and so X; 4 Y; for al z. Under the
stated conditions on X, we may conclude from Theorem 4.1 in Kallenberg (1988b)

that X £ . Since N’ was arbitrary, we obtain X" <4 x. O
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We conclude this section with some basic norm relations for spreadable
processes, which appear to be new even in the exchangeable case. Our proofs
depend on both the present distributional methods and the martingale methods of
Section 3.

Theorem 4.10. For any real, spreadable processes X on [0, 1] we have
X5, =< 1Xcll, <tYPY2)X],, s €0, p=1, ©

uniformlyin¢ € [0, %] and Z(X). Thesecond relation remainsvalid for all p > 0,
and both relations hold for p > 0 when X is exchangeable.

In particular, we note that
1 Xsllp =< IXellp, s,2€(0,1), p>0, (10)

uniformly in £ (X). Our proof of Theorem 4.10 relies on the following preliminary
result for exchangeable processes.

Lemma4.11. For anyreal, ergodic, exchangeable processes X on [0, 1] with char-
acteristicse and y we have, uniformly in £ (X),

X/, < 1X*)l, < lal +yY2, 1€(0,1), p>O0.

Proof. Here M, = (X; — at)/(1 — t) isamartingale on [0, 1). Noting that X has
guadratic variation y and using the BDG inequalities and the symmetry of X, — at
under reflection of [0, 1], wegetforanyt € [0,1]and p > 1

IXellp < IX*Np < la| + Y2, (11)

which extends by Jensen’s inequality to arbitrary p > O.

To prove the reverse relations, suppose that instead || X7 || , / (ot | + y,,l/z) -0
for some ergodic exchangeable processes X" with characteristics (o, y,) # O
and some ¢ € (0, 1). By scaling we may assume that || X}, < 1 and |o,| +

ynl/ 2 _ 0. But these conditions are mutually contradictory by Proposition 4.4.
Thus, || X, ||, = |a| + y*/2, and the assertion follows by combination with (11). O

Proof of Theorem 4.10. Relation (10) holds by Proposition 4.3 and Lemma 4.11.
Assuming || X, < oo for somefixed s € (0, 1) and p > 1, we conclude that X
isintegrable. By the proof of Proposition 3.4, we may write X; = (X; — X;) + X,
where the compensator X is absolutely continuous and admits the martingale den-
sity M; = E[X1 — X:|Z,]/(1 — t). By (10) and Jensen’s inequality, we have
M, < Xsll, for fixed s,z € (0,1). Using the continuous-time version of
Minkowski’s inequality, we get for any ¢ < 3

t
/ |M,|dr
0

Asan dternativefor p > 1, we may use Doob’s inequality to write

X710, <

t
s/o Ml dr < (M2l <61 Xsll,.  (12)
)4

IX7 1y < tMipollp <tlMyp2llp <t Xsllp.
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Next we conclude from the BDG inequalities that
5 1/2
X =071, <Ny 2N, P =1, (13)

uniformly in ¢ € [0, 1]. To estimate the right-hand side in terms of || X,]|,, we
may assume by Proposition 4.3 that X is ergodic exchangeable. Using Jensen’s
inequality, the spreadability of y,, and Lemma4.11, we get for p < 2

1/2 1/2
Iy 2102 < 1y 213 = Eve =ty <t X, )2 (14)
For p > 2 we haveinstead
1/2 2 _
1215 = Evl'? < y?PREy, = ty P2 < 1)1 X115 (15)

Combining (12)—(15) gives

IXF 1, < ICX = X%, + 1X71,
<t X;llp + Y P2 X01,
<tV x |,

In particular, ||Xf/2||p < | X2l uniformly in £ (X). Applying this for each
t €0, %] tothe spreadable process Y (s) = X (2s¢) s € [0, 1], weobtain || X7, <
| X:|l, uniformly inz € [0, %] and £ (X). This completes the proof of (9).

To extend the second relation in (9) to arbitrary p > 0, we may assume by
Proposition 4.3 that X is ergodic exchangeable. Then a ssimple calculation gives
EX? = o?? +1(1 — 1)y, and so for p < 2 we get by Jensen’s inequality and
Lemma4.11

I1X: 12 < EXZ < t(@® +y) = 1] X, 2.

Inthe exchangeabl e case, Lemma4.11yie|ds||XI/2||,, = || X212l , forevery p > 0,

which extends as before to || X[, =< [|X;[,, uniformly inz < [0, %] and Z(X).
]

5. Predictable sampling

The main purpose of this section is to extend the optional skipping or predictable
sampling property to spreadable sequences and processes. The result was origi-
nally proved by Doob (1936) for sequences of i.i.d. random variables (cf. Doob
(2953), Theorem 111.5.2, and the historical remarksin Halmos (1985), pp. 74-76).
It was extended in Kallenberg (1982) to exchangeabl e sequences and processes on
bounded or unbounded index sets.

We begin with the quite elementary discrete-time result.

Proposition 5.1. Let &€ = (&1,...,&,) be an & -spreadable sequence in some
measurable space S and let 11 < --- < 1 be #-predictabletimesin {1, ..., n}.

Then d
rps - 8g) = (1, 80 @
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This represents the ultimate extension for monotone sampling, since the stated
property trivially implies spreadability of the underlying sequenceor process. If £ is
exchangeable, then (1) remainstruefor any a.s. distinct, predictabletimeszy, ..., 7
in{1,...,n},regardlessof order (cf. Kallenberg (1988a) or (1997), Theorem 9.19).
The stronger version implies that ¢ is exchangeable and is therefore false in the
general spreadable case.

Proof. We proceed by induction on k, starting from the triviality for k = 0.
Assuming the statement to hold for less than k predictable times, we turn to the
case of k such times 1, ..., 7. For any measurable function f: ¥ — R, and
index j < n we get

E[f(éfrpn-’grk); 71 = ]] = E[f(%_j’érzv "'7$Tk); 1 = ]]
=E[f&j,&j+1, - Ejrr—1); 11 = J]
= E[fG—kt1, .-, &) T1 = Jl,

where the second equality holds by the induction hypothesis, applied to sequences
of theform (0;&, n) withn an.# ;-measurablerandom element, and thelast equality
holds by the # -spreadability of E and the predictability of t1. Summing over j and
using once more the spreadability of &, we obtain

Eryo oo Eo) L Enkrts o ) Z (B B0,

which completes the induction. O

To state the corresponding result in continuous time, consider any R¢-valued,
Z -spreadable process X on [0, 1]. If X isasemimartingale (which holdsby Propo-
sition 3.4 when X hasfinite first moments), then for any predictableset A c [0, 1]
we may form the processes iy = 14 - A and X4 = 14 - X, or more explicitly,

i+
AA(n:A(Am[o,r]),XA(r):/ L) dX,, 101, (2
0

where the second formulais understood in the sense of component-wise stochastic
integration (cf. Kallenberg (1997), Chapter 23). Introducing the right-continuous
inverse

=inf{r €[0,1]; Aa(r) > s}, s €]0,1A], 3)

we may define a process X4 on [0, LA] by
Xa(s) = Xa(zy), s €[0,rA]. (%)

For A in %/—the class of finite, nonrandom interval unions—this agrees with our

definition from Section 1. Thus, for spreadable processes X we have X4 £ 4 X on
[0, LA] for @l A € %. Our a@im is to extend this relation to any predictable set
A C|0,1].

Beforewe can state the general result, we need to make sense of X 4 for arbitrary
X and A. Thisrequiresustoextendtheintegral X, = 14-X in(2) toany spreadable
processes X and predictable sets A. Though the stochastic integration V - X of an
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arbitrary bounded, predictable process V requires X to be a semimartingale (cf.
Kallenberg (1997), Theorem 23.21), less may be needed when the integrand V
takesvaluesin {0, 1}. In any case, we shall see how therestriction map A — X4
can be defined with appropriate additivity and continuity properties when X isan
arbitrary spreadable processon [0, 1].

If Aisas. afiniteunion of intervals (s, ¢], we define X 4 asthe usua Stieltjes
integral 14 - X. Any predictable set of thisform can be written as

A = UjSm(O'j, 'L'j], (5)
where the interval endpoints are optional timesin [0, 1] satisfying
01=T1=02=- =0, = Tp-

The associated elementary predictable integral X 4 is given by
Xa) =3, _ King; = Xing), 1 €[0,1]. (®)

The following result gives the reguired extension to the predictable o-field % on
[0, 1]. Herewe say that amapping A — X 4 on Z isadditiveif X qup = X4 + X3
as. forany digointsets A, B € 2.

Theorem 5.2. Let X be an # -spreadable process on [0, 1]. Then the elementary
predictable integral in (6) extends a.s. uniquely to an additivemap A — X4 on 2

such that LA, £ Oimplies (X4,)f £ Ofor all t € [0, 1). The process X 4 isa.s.
rcllon[0, 1) withAX4 = 14AX,andwehave X4 = 14 - X a.s. whenever X isa
semimartingale on [0, 1).

Our proof is based on two lemmas. We say that A isasimple predictable set if
it can be written asin (5) for some optional timeso; and t; taking valuesin afixed
dyadicset D, = {k27"; k=0, ..., 2"}.

Lemma5.3. Let A beasimplepredictablesetin[0, 1] withAA > ¢ > 0a.s. Then
X4 < X ono,1].

Proof. Let A be given by (5), where the interval endpoints o; and t; take values
in the dyadic set D,. Fixing at € [0, 1] with7 < 1A as., we may assume that
AA = m27" as. for someinteger m < 2". Dividing A into m disjoint intervals
(a, b] of length 27", we may next assumethat 7; = o; + 27" forall j. By Lemma

3.2 we may take & to be right-continuous, in which case o1, ..., o, become
Z -optional.

Let usnow put 7 = k27" for k < 2" and introduce the processes
Yk(s):th—l“l‘S_th—l’ N E[O, 27}1], k=l,...,2".

The sequence (Y1, ..., Yon) is clearly spreadable with respect to the discrete
filtration 9, = 7, k = 0,...,2", and we note that the times x; = 2"r; =
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2'0; + 1 are integer-valued and %-predictable with k1 < --- < ;. Hence, by
Proposition 5.1,

Voo Yo ) L (V1,0 Vo),
which implies X4 < X on [0, m2~"] > [0, 1]. O
Lemmab5.4. Let A, Ap, ... be simple predictable setsin [0, 1] with A A, £
Then (X 4,)F £ Oforall r € [0, 1).
Proof. For any simple predictable set A C [0, 1] we have
(Xa)F = (Xaorn); =Xa). te[0.D), 7

where p; = A 4(¢). Fixing any dyadic time+ € [0, 1), we may choose for every
n € N some simple predictable set A, C [0, 1] with AA], = 1 — ¢ such that
A, = A, on[0,f] when LA, < 1—¢. Lettinge € (0,1 — 1), we get by (7) and
Lemmab.3

E[(X4)f A1) < E[(Xa):i A1l + P{AA, > &)
= E[X! A1+ P{rA, > &}.
Here the right-hand sidetendsto 0 asn — oc andthen ¢ — 0, since LA, £ 0

and X isright-continuous with Xo = 0. Thus, (X 4,)} £o. O

Proof of Theorem 5.2. Fix any predictable set A c [0, 1]. By a monotone class
argument, we may choose some simple predictable sets A1, A, ... C [0, 1] such

that A(AAA,) 5> 0. Then A(AnAA,) > Oasm, n — oo, and so by Lemma5.4
we havefor any r € [0, 1)

(Xa, —Xa)i = Xana, — Xa\an)r
P
S ()(Am\An);x< + (XAn\Am);k - o
Thus, there exists a process X 4 satisfying
(X4, —X)F 50, rel01). @)

Notethat X 4 isas. rcll on[0, 1), sincethis property holdstrivially for each process
Xa,-
To see that the limit X 4 is a.s. independent of approximating sequence (4,),

assumethat alsOL(AAA)) £ ofor some simple predictable sets A/,. Then

MAnAAL) < M(AAA,) +A(AAAL) S 0,

and so by (8) and Lemma 5.4,

P
(Xa—Xa){ < (Xa—Xa,); +Xa, —Xa)f = 0.
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To prove the general continuity, let A;, Ap, ... C [0, 1] be predictable with

AA, £ Oandfixanyr € [0, 1). Choosesomesimplepredictablesets A}, A%, ... C
[0, 1] such that

EM(AnAA)) + E[(Xa, — Xa)f All <™t neN.

Then
ZAL < LA, + M(AAAL) 50,

and so by Lemma5.4
P
(Xa,)f < (Xa); +Xa, — Xa)f — 0.

The additivity of the mapping A — X4 is obvious for simple predictable
sets A. To prove the general result, consider any digjoint, predictable sets A, B C

[0, 1]. Choose some simple predictable sets A, and B, with A(AAA,) £ 0 and
AM(BAB,) A 0, and note that the differences B, = B, \ A, satisfy
A(BAB.) < A(AAA,) + A(BAB,) + A(ANB) 5> 0.

We may then assumethat A, N B,, = ¢ for al n. Also note that

A(AU B)A(A, U By)) < M(AAA,) + A(BAB,) 2> 0.
Since X 4,uB, = Xa, + Xp, for every n, we get for ¢ € [0, 1)
(Xaup — X4 — Xp)}
< (Xaus — Xa,08,)} + (Xa, — X0} + (X5, — Xp)f 5 0.

which showsthat X up = X4 + X as.
Therelation AX, = 14AX isclearly true for simple predictable sets A. To
extend the formulato the general case, we choose some simple predictable sets A,

with A(AAA,) 5> 0and note that
(AX4, — AXF 50, re[0, ),
since (X4, — Xa)¥ £ 0.1t remainsto verify that
(14, AX — 1,AX) 50, 1e[0,1).

An equivalent claim isthat (14, AX)} A 0on |0, 1) for any predictable sets A,
with LA, £ 0. This follows if we can show that the jump point process & of X
satisfies

E(AL x B) 50, t<1 e>0,
where AL, = A, N[0, ] and B; = R\ (—¢, ¢). Tothisaim, put

7 = inf{r € [0,1]; £([0,¢] x B;) >k}, keN.
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By dual predictable projection followed by dominated convergenceasn — oo, we
have

Tk

T+ A~
E / Ly, (5, %) E(ds dx) = E / Lagp, (5, 2) E(ds d)
0 0

T
= E/ 141 (s) usBe ds — 0,
0

where (1) denotes the martingale density in Proposition 3.4 (i). Asn — oo, the
inner integral on the left tendsin probability to 0, and the assertion follows since k
isarbitrary.

If X is a semimartingale with decomposition M + V, we may choose the
approximating sets A, in (8) such that

t t
/ 1AAAn d[M] +/ 1AAA,1 |[dV| —P> 0, re[0,1).
0 0
For ¢ € [0, 1) we get

P
(Xa—14-X)] <(Xa—Xa)i +@Aa-X—Xyu,)f >0,
whichimplies X4 =14 - X as. O

We may now state the continuous-time version of our predictable sampling
theorem. Given any spreadable process X and predictable set A, we define the
process X 4 by (3) and (4), where X 4 is given by Theorem 5.2.

Theorem 5.5. Let X be an R¢-valued, .7 -spreadable process on [0, 1] and let
A C [0, 1] be # -predictable. Then
)A(A 2 X on [0,7), te]0,1] with AA >t as.

Again amuch more general version—essentially invariance in distribution un-
der arbitrary predictable and measure-preserving transformations—holds for ex-
changeable processes on [0, 1] or R4 (cf. Kallenberg (1988a) and the special case
in Kallenberg (1997), Proposition 16.9).

Proof. By a monotone class argument, we may choose some simple predictable

sets A1, Ao, ... Iin[0, 1] with A(AAA,) A 0. Fixing any dyadic numbers ¢, 1 ¢,
we note that the times

op =Inf{s <15 hac(s) >1—1t,}, neN,

are optiona and take values in some fixed dyadic sets D,,. Hence, the sets A), =
A, U (0y, 1] are again simple predictable, and we have

)‘Aiz = )\’An (on) +1—0y > t,
)"(AnAA:,) = )\(A; N (on, 1]) = (t, —AA,) VO

< MAAA,) S0,
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which showsthat L(AAA}) Lo Dropping the primes, we may henceforth assume
that LA, > t, as. for al n. Then Lemma5.3 yields

Xa, £X on[0,1,], neN. (9)
Now introduce as in (3) the right-continuous inverses r = (z,) and " = (t")
of the processes A 4 and 1.4, respectively. Asn — oo,
(oa, = 24)* < A(AyAA) 5 O,

and 0 (L4, — 24)* — O as. adong a subsequence N’ C N. Outside the same
P-null set, weobtain t' — 7, dlong N’ for every continuity point s < ¢ of =, and
so by Fubini’s theorem, with convergence along N’,

t
/ P{t! /A 15)ds = EMs < 15 1] 4 15} =0,
0
which implies
P{t] - 1,}=1 s<taenx. (20

We also note that a.s. AX 4(ty) = O for al but countably many s < r since X4 is
rcll and T is strictly increasing. By Fubini’s theorem, we obtain

t
/ P{AXA(ty) # 0} ds = E{s < : AXa(z;) # 0} = 0,
0

which gives
P{AXA(1) =0} =1, s<t aea. (1D

By Theorem 5.2 we have (X4, — X )} £ O for every r < 1, and so as.
(Xa, — Xa)f — Ofor dl r < 1 aong some further subsequence N” c N'.
Thus, with probability 1, X4, (r,) — Xa(r) for every sequencer, — r < 1 with
AX4(r) =0.Notingthat t; < 1as.forals < ¢, weget by (4), (10), and (11) for
amost every s < ¢

X4,(5) = Xa, (@) = Xa(ts) = Xa(s),

as. aong N”. Using (9) gives

d o~ o~
(XS]_’"°7X.Ym) = (XA,,(sl)v"'3XAn(Sm))
d ,~ ~
= (Xa(s1), ..., Xa(sm))
for s1, ..., s, <t outside some A-null set. Thus,

S S d
(XA(S]_)a L} XA(Sm)) = (X.S'lv R X‘Ym)a

whichextendstoarbitrary sy, . .., s, < t sinceboth X and X A areright-continuous,

the latter by the right continuity of X 4 and z. This shows that indeed Xa 2 X on
[0, 7). O
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6. Wald-typeidentities

Thisfinal section isdevoted to some general Wald-type or decoupling identitiesfor
spreadable sequences and processes. The topic originated with some elementary
relations by Wald (1945) for sums of i.i.d. random variables. In continuous time,
the earliest results are equivalent to some basic martingale properties of stochastic
integrals. General versions for exchangeable sequences and processes on bounded
or unbounded index sets were established in Kallenberg (1989). All these results
are based on the remarkable observation that certain product moments involving
stochastic sums or integrals can be computed as if the integrands and integrators
were independent. The general identities are powerful enough to imply the corre-
sponding versions of the predictable sampling theorem.

In the spreadabl e case, the basic results are identities involving certain tetrahe-
dral moments, from which identities for ordinary product moments can be derived
as easy corollaries. We begin with the basic relation in discrete time. To avoid dis-
tracting technicalities, we consider only bounded random variables. Binomial coef-
ficientsaredenoted by ¢, x = n!/k!(n—k)!, andweshall oftenwrlte(xy)k = xk yk
for convenience.

Proposition 6.1. Let & = (£1,..., &%) andn = (..., n%) be bounded ran-
dom sequences in R? of length n > d such that £ is #-spreadable and 7 is
7 -predictable, and assume that the sums

Z Zﬁk, g, j=1....4d, )
<---<kg

are . g-measurable. Then
EX - 2y - (En,
1< <Kkq

d 1 d
_CndEZ Zé:hl EhdZ"'anl'”nkaz'

k1<~~<<kt/

Before providing a proof, we state the corresponding identity for product mo-
ments. Here we write x” = [T;., x/ for convenience. By an ordered partition of
aset J we mean apartition of J into disjoint, nonempty subsets Jy, . .., Ju, listed
in a specified order.

Corollary 6.2. Let £ = (£1,.... 69 andn = (»L, ..., n?%) be finite, bounded
sequencesin RY such that £ is 7 -spreadableand n is # -predictable, and assume
that the sums

Z~-~mei“'mf£7v Ji, ..., I digointin {1,...,d},

ki< <ky

are 7 o-measurable. Then
E]T, Xueny
— J: I Im
ZZJ:L ,,,,, ]mcn’il;lEhZ ZE . Sm Z.”anl-.-nkm’

1< <hn kL < <Fkp
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wherethe outer summation on the right extends over all ordered partitions J1, . .
Jn OF{1,...,d}.

[

Thisextends aresult for exchangeabl e sequencesin Theorem 3.1 of Kallenberg
(1989). Note, however, that stronger hypotheses are needed in the spreadabl e case,
since we could otherwise proceed as in Section 6 of the same paper to show that
the sequenceisin fact exchangeable.

Proof. Combine Proposition 6.1 with the elementary decomposition

J_
1_[ ZkSn i _Zh,...,J Z” Zxkl : k,,,’

j<d

where the outer summation on the right extends over all ordered partitions Jy, . . .,
I of {1,....d}. O

For the proof of Proposition 6.1 we need asimple lemma.

Lemma6.3. Letn = (%, ..., n%) bean Z -predictable sequencein R? of length
n > d such that the sums S; in (1) are .7 o-measurable. Then the sequence

= Y...} n,}l-nnfd, r=0,....,n—d,

r<ki<---<kg

isagain # -predictable.

Proof. The statement is obvious for d = 1. Proceeding by induction, we assume
that the statement is true with d replaced by d — 1. Turning to the case of d, we
note that

2 d
T—Sl—ZTIk Z Moy Mhy» r=1...,n—d.
k<r <k2<"'<kd

Applying the induction hypothesisto the d — 1 -fold inner sum, we seethat the kth
term on theright is % _1-measurable. The assertion now followssince 7, C 7
forh < k. O

Proof of Proposition 6.1. Using repeatedly the . -spreadability of &, the
7 -predictability of , and Lemma 6.3, we get

EX REmyy - €,

=E&y ..y Emry - Enp il

k<. <kg

=E&l S ...y Emiy Gt >

ky < <kgoa ka>ka—1

=E&lfgl vy G, <sn>zd22n,§i,11 > i,

ki< <kg-1 ka>kq—1
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—Egl el sy @nh - Eni vy altd

ki< <kg2 ka > ka-1 > ka2

1 d 1 d
ZZEEn—d+1§nZanlnkd

-1 1 d 1 d
:c”,dEhlii'.';{?hl...éhdZ"'anl‘.‘nkd' O

ki< <kg

We turn to the basic tetrahedral identity in continuous time. Again we may
avoid some technical complications by considering only bounded integrands and
integrators of bounded variation. The tetrahedral regions Ay are given by

Ar ={(s1,...,80) € [0,1]k; s1<---<skh, keN.
Theorem 6.4. Consider on[0, 1] an .7 -spreadable process X = (X1, ..., X9) of

bounded variation and some bounded, .7 -predictable processes vy ..., v9such
that the integrals

”k:/“'f vkeved k=1,....d, 2
Ad—k+1

are 7 g-measurable. Then

E// viaxt...viax“
Ag

:d!E/.../Adxl...dXd/.../A vi...y9 ©)

As a consequence, we obtain the following product moment identity, which
extends Theorem 4.1 in Kallenberg (1989) for exchangeable processes. Again we
note that stronger hypotheses are needed in the spreadable case, since we could
otherwise use the result to prove that X is exchangeable.

For any two semimartingales X and Y wewrited XdY = d[X, Y]. Differentials
of higher order are defined recursively, so that for any semimartingales X1, ..., x4
we have

t
1 d __ 1 d
fodXS-ndXS_ZsftAXs-nAXx, t>0,d>3
If X3=---=Xx3d =0, weput
J ! j
— J
X; _/0 HjEJdXs, W=+JcC{l...,d).

Finally, we use V,/ to denote the product [T, Vi
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Corollary 6.5. Consider on[0, 1] an .7 -spreadableproceﬁsx (X1 ., X9 of
bounded variation and some bounded, Z -predictable processes V1, . .., V¥ such
that the integrals

/[ vitoovIn o, T, digointin {1, ..., d},

are 7 g-measurable. Then
1 . .
J J
E| |j§d/0 V9idX

:Z k!E/~-~/ dxfl...dxfkf...f vy
J1,e0Jk Ax Ay

where the summation extends over all ordered partitions Ji, ..., J; of the set
{1,...,d}.

Thisfollowsfrom Theorem 6.4 by means of thefollowing tetrahedral decompo-
sition, which generalizes the integration-by-parts formulafor general semimartin-
gales (cf. Kallenberg (1997), Theorem 23.6).

Lemma6.6. Let X1, ..., X4 bereal semimartingales starting at 0. Then

Xtoext= Y .. dXJl---dx}, =0,
Ty, Jks1<---<sk§l
where the summation extends over all ordered partitions Ji, ..., J; of the set

1,....d).

Proof. By the substitution rule for general semimartingales(cf. Kallenberg (1997),
Theorem 23.7), we have

x4 = Zfdxf]_[kw ., t>0,

where the summation extends over al nonempty subsets / C {1,...,d}. The
assertion now follows by iteration in finitely many steps. ]

Several lemmas are needed for the proof of Theorem 6.4. We begin with a
continuous-timeversion of Lemma6.3, which can be proved by asimilar argument.

Lemma6.7. Let V1, ..., V¥ bebounded, 7 -predictable processeson [0, 1] such
that the integralsin (2) are & o-measurable. Then the process

1
Y,:/ Védslf 14 ds2/ / Vddsq, te[0.1],
t

isagain 7 -predictable.

Theorem 6.4 will first be proved under a simplifying assumption.
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Lemma 6.8. The statement of Theorem 6.4 holdswhen V1, ..., V¢ are supported
by someinterval [0, 1 — ¢] withe > 0.

Proof. Though our formal argument is similar to the proof of Proposition 6.1, the
justification requiresalot more care. To explain thekey steps, consider aspreadable
process X of bounded variation and abounded, predictable process V. Recall from
Proposition 3.4 that X isaspecial semimartingale, whose compensator X admitsa
martingaledensity M on[0, 1). Using repeatedly thedefinition of M, themartingale
properties of X — X and M, and Fubini’s theorem, wegetforO <7 <t +h < 1

t t t
E/ VedX, = E/ VidX, = E/ V. M,ds
0 0 0
t t
=/ E(stS)ds=/ E(V,My)ds
0 0

t t
—E M,f Veds = h™YE(X;n — X,)/ Vids.
0 0

Letusnowputsy =1—¢e(d —k)/dfork =0,...,d and define

k k
pk=M, k=1 ....d.
Ik — k-1

Since X remains 7 -spreadable on [0, 1 — ¢] under the “probability” measures
E[pa - px; -], we obtain more generally

1-¢ 1-¢
Epd-~-pk+1/ VSdXXZE,Od---,Ok/ Vids, k=1,...,d. 4
0 0

To explain our second key step, consider asemimartingale X and two bounded,
predictable processes U and V where fol U,dt is F#o-measurable. Write A, =
fé Usds and Y, = [ VsdX,, and notethat [A, Y] = 0. Integrating by parts gives

1 1 1
/ Y[_dAtzA]_Yl—f AtdYtZ/ (A]_—At)dY[
0 0 0

1 t— 1 1
/ Udt / VedX; = / V,dX, f Uyds. (5)
0 0 0 t

Now to prove (3), we may imitate the discrete-time argument, alternating the
use of (4) and (5) asfollows:

1,;v1 d 1vd
E//A VSIan---VdeXSd
d
Yodvd [T ded g dt N
—E /0 véax? /0 vi-taxd-t... /0 vidax:

1 Sd— s2—
—Epy /0 Vi dsy /0 vi-laxd-t... /0 vidxt

or



Spreading-invariant sequences and processes 247

1 Sd-1—
d-1 d-1 d d-2 d—2
= E'Od/(; Via 19X, 1/ Vszldsd'/o Via 29X 5
Sd-1

1 1 Sd—1—
= Epdpd,1/ o ldsd 1/ Vsdddsd/ Vsi ZZdX?d i
0 Sd—1 0

1 1
= E papa-1 / vi-2gxd-2 / Vi-Tds, / Vidsy. -
0 Sd—2 Sd—1

1 1 1
= E,Odpdflpde'/c; S zd?d 2/ Vs’fl llde 1/ V_fide"-
Sd—2

1
=~-~=E,Od-~-,01/ Vsjidslf Vdszf / d?d
0

1 _
= Epl---pd/ V;;dsd/ v lldsd,lf f Vidsa
0 0
:d!E/-~-/ dX,ll...dXd/ f Vidsy - Vids,.
Ag Ag

Here the first equality holds by definitions, equalities 2, 4, 6, . .. hold by (4), and
equalities3, 5, 7, . . . hold by (5) together with Lemma®6.7. The processiscontinued
recursively until all stochastic integrals are converted into associated Lebesgue

integrals.

The second relation from the end holds by Fubini’s theorem. Finally, the last
equality follows by the same computations, in the special case when Vsl, RV 744
are 7 og-measurable and independent of s. O

For the extension to the general case, we need to employ ameasurabl e selection
based on the following lemma.

Lemma6.9. Let & and n be random elementsin some spaces S and T where T is
Borel, and assumethat f (¢, n) = Oa.s. for somemeasurablefunction f: Sx T —
R. Then there exists a £-measurable random element 7 of T suchthat f (&, i) =
as.

Proof. Put A = f~1{0} andlet v A denotethe projection of A on S. By the general
section theorem (cf. Dellacherie (1972), Theorem T37) there exists a measurable
function g: S — T such that

(&£,g()) e Aason{&emA}.
Since (¢, n) € Aimpliesé € w A, we also note that
P{§ enA} = P{(§,n) e A} =1
Thus, the assertion holds with 7 = g(&). |

Thefollowing truncation lemmawill be needed to reduce the proof of Theorem
6.4 to the specia case of Lemma6.8.
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Lemma6.10. Let V2, ..., V¢ be # -predictable processes on [0, 1] such that
|V¥| < 1andtheintegrals ; in (2) are % o-measurable. Then for every ¢ € (0, %]
there exist some predictable processes V1, . . ., V¢ with a.s. the same values of the
integralsin (2), such that for any k < d wehave V¥ = V¥ on[0, 1—2¢], |V¥| < 2
on(1—2¢1—¢],and VK =0o0on (1—¢,1].

Proof. Define the random signed measures &y, ..., &, on [0, 1] by
£B — / vids, Be#(0,1]), 1<k<d.
B

Sincethe V* are predictable and hence progressively measurable, we note that the
£, are adapted to .. Equation (2) and the conditions | V| < 1 trandate into

Gk ® - ®EDAd—k+1 = Nk, 1<k <=d, (6)
&la.b]l <b—a, O<a<b<l l<k<d. @)

Approximating the region Ay_x+1 by finite unions of rectangles, we see by
dominated convergence that (6) defines a measurable constraint on the random
measures &1, . .., &; and variables iy, . . ., ng. The same thing istrue for (7) since
it suffices to consider rational a and b. The whole collection of conditions (6) and
(7) may then be summarized by an equation

F(51,....8n1,....,ma) =0 as.

for some measurable function F.

Now fix any ¢ € (0, %] andlet &, ..., &) denotetherestrictions of &1, ..., &g
to [0, 1— 2¢]. By Lemma 6.9 there exist some sighed random measuresé, . . . , &,
each measurable with respect to &7, ..., & and n, ..., ng4, such that & = & on
[0, 1 — 2¢] for all kK and

F(él,...,éd; n1,...,nq) =0 as.

In other words, the & are 7 1_,,-measurable and satisfy (6) and (7) as.

From the version of (7) for &1, ..., &; we note that these measures are as.
absol utely continuouswithdensities V2, . . ., V¢ bounded by +1. By themartingale
approach to the Radon—Nikodym theorem (cf. Doob (1953), Section V11.8), we
may choose the V¥ to be 71 _5. ® % -measurable on (1 — 2¢, 1]. Completing the
definition by taking V¥ = V¥ on[0, 1 — 2¢] for all k, we note that the V¥ become
a.s. bounded by £1 and satisfy (2).

We now introduce the function

f)=t—3t—1+2¢);, te[01], (8)
and consider for each k € {1, ..., d} the signed random measure & = & o f1
on [0,1 — ¢]. Since f is strictly increasing, we have f(r1) < --- < f(x) iff

1n<---<t,andso
(fE1Ar = Ay, keN.
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Thus, (6) remainsa.s. fulfilled for &, . .., ;. Alsonotethat & = & on[0, 1 — 2¢]
for al k.

Inverting (8), we note that on (1 — 2¢, 1 — ¢] the random measures &y, . ..., &;
have a.s. the densities

VE=2Vk@2r —1+2), e<l-1<2, 1l<k<d. 9

We may complete the construction by setting V¥ = V¥ on[0, 1 — 2¢] and V¥ = 0
on (1—¢,1]. The V¥ areagain #1_». ® % -measurable and hence predictable on
(1—2¢, 1—¢]. Thepredictability also holdstrivially ontheintervals[0, 1—2¢] and

(1 — &, 1]. Furthermore, (2) remains as. true for vl ..., V4 since the measures
£1, ..., & satisfy (6) as. Finaly, (9) showsthat the processes VK are as. bounded
by j:2 ]

Proof of Theorem 6.4. For any e € (0, 1], let V2,..., V¢ denote the truncated
processes constructed in Lemma 6.10, and conclude from Lemma 6.8 that (3)
holdswith V1, ..., V¥ replaced by V!, ..., V4. Ase — Owehave V¥ — V¥ on
[0, 1) for all k, and (3) follows in the stated form by dominated convergence. 0O

We may use the present results to give alternative proofs of the predictable
sampling theorems of Section 5, at least under some simplifying assumptions.

Second proof of Proposition 5.1. We may assume that the &; take valuesin [0, 1].
By the Cramér—Wold theorem, it suffices to show for any c1,...,¢ € R that

> ciby L > ¢j&;- Since both sides are bounded, it is equivalent that

E(chjg,j) - E(ch,-g,-) . neN. (10)
To see this, we introduce the predictabl e sequence
o =inf{j; t; =i}, i=1...,1,

and note that j ik = > i ca; & Where co, = 0 by convention. Equations (10)
now follow from Corollary 6.2 if we can only show that

Z Z catl o alh Z Z C

i1 <. <l J1<:<n
for any positiveintegers 2 < k and r1, ..., rp. Here the product on the left van-
ishes unless (iy, ..., ix) = (tj,..., Tj,) forsome ji < ... < jz. Applying the
corresponding substitution and noting that o, = j for al j, we see that the two
sums agree. |

Second (partial) proof of Theorem 5.5. We consider only the case when X has
bounded variation. Asin the case of (10), we need to show that

([ ran) =e([ rax) wen
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for any function f: [0, 1] — R of theform
§) = s <t;}, se€l[0,1],
f(s) ngmcj {s <1}, s€[01]

wherecy,....cn € Rand0 <1 < -+ <t < 1A as. By the definition of X4
wehave [ fdX, = [ VdX where V denotes the predictable process

Vi=la®) _ ejls =7}, se[01],

defined in terms of the right-continuousinverse t of A 4. By Corollary 6.5 it isthen
enough, for any k and r1, ..., rr in N, to show that

/.../Akvfll...vék:/.../Akﬂll...mk.

But this follows easily from the substitution rule [(f o g)du = [ fd(n o g
for Lebesgue-Stieltjesintegrals. O
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