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Abstract. We say that a random sequence is spreadable if all subsequences of equal length
have the same distribution. For infinite sequences the notion is equivalent to exchangeability
but for finite sequences it is more general. The present paper is devoted to a systematic study
of finite spreadable sequences and of processes on [0, 1] with spreadable increments. In par-
ticular, we show how many basic results in the exchangeable case—notably the predictable
sampling theorem, the Wald-type identities, and various martingale and weak convergence
results—admit extensions to a spreadable setting. We also identify some additional condi-
tions that ensure the exchangeability of a spreadable sequence or process.

1. Introduction

A finite sequence of random elements ξ = (ξ1, . . . , ξn) in some measurable space
(S,S) is said to be spreading-invariant in distribution or simply spreadable if for
any m < n we have

(ξk1 , . . . , ξkm)
d= (ξ1, . . . , ξm), 1 ≤ k1 < · · · < km ≤ n. (1)

This should be compared with the stronger condition of exchangeability, where (1)
is required for all sets of distinct (but not necessarily increasing) indices k1, . . . , km
∈ {1, . . . , n}. Note that (1) follows by induction from the more primitive condition

(ξ1, . . . , ξk−1, ξk+1, . . . , ξn)
d= (ξ1, . . . , ξn−1), k = 1, . . . , n. (2)

An infinite random sequence ξ = (ξ1, ξ2, . . .) is said to be exchangeable or
spreadable if every finite subsequence has this property. Ryll-Nardzewski (1957)
showed that, in the infinite case, the two notions are in fact equivalent, so that
by de Finetti’s theorem an infinite spreadable sequence in a Borel space is mixed
i.i.d. (cf. Kallenberg (1997), Theorem 9.16). The mentioned equivalence fails the
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finite case, simply because (as Kingman (1978) first observed) the spreadability
of a distribution on Sn puts restrictions only on the n − 1-dimensional marginals,
which do not determine the full distribution in general. Some interesting examples
are given below.

The situation in continuous time is similar. Here the exchangeability and spread-
ability are defined in terms of the increments. Thus, we say that an Rd -valued
process X on [0, 1] has exchangeable or spreadable increments if the sequence
ξnj = Xj/n − X(j−1)/n, j = 1, . . . , n, is exchangeable or spreadable for every
n ∈ N. If we assume in addition that X is continuous in probability, then by The-
orem 4.7 below it has a version that is right-continuous with left-hand limits (rcll
for short). This justifies our definition of an exchangeable or spreadable process
on [0, 1] as one with exchangeable or spreadable increments, rcll paths, and initial
value 0. A process on R+ is said to be exchangeable or spreadable if the same
properties hold on every finite subinterval [0, t].

An alternative approach to spreadability in continuous time is suggested by (2).
Here we consider, for any times a < b in [0, 1], the process

X̂a,b(t) = Xt∧a +Xb+(t−a)+ −Xb, t ∈ [0, 1 − b + a], (3)

and note thatX is spreadable iff it is continuous in probability and satisfies X̂a,b
d= X

on [0, 1 − b + a] for arbitrary a < b. Iterating (3) in finitely many steps yields an
equivalent condition corresponding to (1).

For a more explicit statement of the latter condition, we may identify X with
the associated finitely additive set function on the class U of finite interval unions⋃
i (si , ti], given by X(s, t] = Xt − Xs . For any U ∈ U we put XU(t) = X(Ut)

and λU(t) = λ(Ut ) where Ut = U ∩ (0, t] and λ denotes Lebesgue measure on
[0, 1]. Next we define X̂U = XU ◦ λ−1

U or, in integral notation,

X̂U (t) =
∫
U

1{λU(s) ≤ t} dXs, 0 ≤ t ≤ λU, (4)

where 1{·} denotes the indicator function of the set within brackets. (Note that the
integral in (4) is elementary since U ∩ 1{λU ≤ t} ∈ U for all t .) In particular,
X̂U = X̂a,b when U = (0, a] ∪ (b, 1]. We may now state the continuous-time

counterpart of (1) in the form X̂U
d= X on [0, λU ], where U ∈ U is arbitrary.

The present paper is devoted to a systematic study of finite spreadable sequences
and of spreadable processes on [0, 1]. Such a study is interesting for several reasons:
1) Many results, previously known in a more special context, are best understood
in the present generality. This is especially true for some basic martingale prop-
erties, the optional skipping property, and the Wald-type identities, all known for
exchangeable processes. 2) The exchangeability of a sequence or process can be
deduced from the weaker hypothesis of spreadability together with a variety of
additional constraints. Thus, the present theory contributes to our understanding
of exchangeable objects (whose importance is more generally acknowledged). 3)
Many problems associated with spreadable sequences and processes are more chal-
lenging than their exchangeble counterparts (basically because fewer symmetries
are available in the spreadable case), and their solution often leads to results that
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are both attractive and surprising. (Here the weak convergence theory of Section 4
might qualify as an example.) Thus, the present theory has arguably a considerable
intrinsic interest. 4) Often the hard problems of the area force us to develop new
tools and techniques that may be of some independent interest. A case in point is
our construction in Section 5 of a new stochastic integral, which is needed already
for the formulation of the predictable sampling theorem in continuous time.

Let us summarize briefly some highlights of the paper. We begin in Section 2
with an integral representation of the general spreadable distribution in terms of
extreme points. In the same section we examine the relationship between spreadable
sequences and processes. In Section 3 we show, under a moment condition, that
spreadable processes are special semimartingales whose local characteristics are
themselves martingales. Here we also consider some additional conditions that
ensure the exchangeability of a spreadable process. Section 4 is devoted to the
weak convergence theory of spreadable sequences and processes. Here our first key
result guarantees the existence, for every spreadable process, of an exchangeable
process with the same characteristics. This fundamental correspondence allows us
in the next step to extend the basic tightness criteria for exchangeable processes
to a spreadable context. With those two results as our main tools, we proceed
to derive the basic regularization theorem and various convergence criteria and
norm relations. Our final Sections 5 and 6 contain the ultimate versions of the
predictable sampling (or optional skipping) theorem and the Wald-type identities
for spreadable sequences and processes. The latter are both interesting and powerful
results, whose history goes back to some classical statements for i.i.d. sequences
due to Doob (1936) and Wald (1945), respectively.

Since there is no general representation formula in the spreadable case, the
construction of nontrivial and interesting examples requires both ingenuity and
some calculation. To indicate the possibilities, we give two examples of extreme,
spreadable (but not exchangeable) distributions on {0, 1, 2}3. In other words, these
are distributions of spreadable sequences of length 3 with values in the set {0, 1, 2}:

001 012 020 102 120 122 200 202 210 221
2 2 2 1 1 1 2 1 1 1

012 021 101 102 110 120 122 202 210 211 221
2 2 2 1 2 1 1 1 1 2 1

In each table, the first row gives the possible configurations and the second one
shows the corresponding probabilities, up to a normalization. (Thus, the probabili-
ties in the first example are 1/7 or 1/14 and in the second example 1/8 or 1/16.) To
verify the extremality, we note that every component, in the sense of convex combi-
nations, is supported by the same set of configurations. The associated probabilities
are then uniquely determined by the spreadability constraints. Other examples are
obtained by reversing the sequences or by permuting the symbols 0, 1, and 2.

We are immediately struck by the peculiar lack of symmetry or simple pattern.
It is indeed remarkable that so many wondrous properties are hidden behind such
an apparent complexity and disorder. The present irregularity is in sharp contrast to
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the trite symmetry in the exchangeable case. Thus, the only ergodic exchangeable
distributions on {0, 1, 2}3 are of the form (apart from permutations of the digits)

000
1

001 010 100
1 1 1

012 021 102 120 201 210
1 1 1 1 1 1

Much of the present material is related to some earlier ideas and results of the
author, especially from Kallenberg (1973, 1982, 1988a, 1989). We may also call at-
tention to the crucial role of the spreadability concept in various other areas, such as
for the subsequence principle (cf. Aldous (1985), Section 8) and for certain higher-
dimensional symmetries (cf. Kallenberg (1992)). For a general introduction to ex-
changeability theory, we recommend Aldous’ (1985) lecture notes, supplemented
by the relevant portions of Kallenberg (1997), especially the concluding pages of
Chapters 9 and 14. Constant use will be made of some basic notions and results
on weak convergence, semimartingales, and stochastic integration, for which we
refer to the relevant chapters in Jacod and Shiryaev (1987) and Kallenberg (1997).

For the reader’s convenience, we review the basic representations in the ex-
changeable case (cf. Kallenberg (1997), Theorems 9.16–17, 9.21, 14.25). We have
already quoted the de Finetti–Ryll-Nardzewski theorem, the fact that any infi-
nite exchangeable or spreadable sequence in a Borel space is mixed i.i.d. The
continuous-time analogue is Bühlmann’s theorem, which states that any exchange-
able or spreadable process on R+ is a mixture of Lévy processes. Next we note that
any finite exchangeable sequence is a mixture of so-called urn sequences, which
can be generated by drawing without replacement from an urn with finitely many
tickets.

The final and most difficult case is that of exchangeable processes X on [0, 1]
taking values in Rd . Here the general distribution may be described through the
representation formula

Xt = αt + σBt +
∑

j
βj (1{τj ≤ t} − t), t ∈ [0, 1], (5)

where B is a d-dimensional Brownian bridge, the variables τ1, τ2, . . . are indepen-
dent of B and i.i.d. U(0, 1) (uniformly distributed on [0, 1]), and the vector- or
matrix-valued coefficients α, σ , and β1, β2, . . . are independent of (B, {τj }) and
such that

∑
j |βj |2 < ∞ a.s. The series in (5) then converges a.s., uniformly on

[0, 1], which ensures that X will have a.s. rcll paths.
The distribution of the process X in (5) (often written as L(X)) determines

(and is determined by) that of the triple (α, β, γ ), where the point process β on
Rd \ {0} and the random d × d matrix γ are given by

β =
∑

j
δβj , γ = σσ ′ +

∑
j
βjβ

′
j .

(Here δx denotes the unit mass at x and the prime denotes transposition.) The
correspondence L(X) ↔ L(α, β, γ ) is even a homeomorphism with respect to
Skorohod’s J1 topology on D(R+,Rd) and the vague topology on M(Rd \ {0}).
(Those are the spaces of rcll functions [0, 1] → Rd and of locally finite measures on
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Rd \ {0}, respectively.) We finally note thatX is a semimartingale with covariation
matrix [X]1 = γ .

We conclude this section with some remarks on notation. All random objects
are assumed to be defined on some abstract probability space  with probability
measure P and associated expectation E, often also equipped with a discrete or
continuous filtration F = (Fk) or (Ft ). Independence is expressed by the symbol

⊥⊥ and equality in distribution by
d=. The arrows

P→ and
d→ indicate convergence

in probability or distribution, respectively, and we write
f d−→ for convergence of

the finite-dimensional distributions. The space of all rcll maps T → S is denoted
by D(T , S), and we write M(S) for the space of locally finite measures on S
and M1(S) for the subspace of probability measures on S. If nothing else is said,
these spaces are endowed with the Skorohod J1 topology and the vague and weak
topologies, respectively. We also write B(S) for the class of Borel sets in S.

For any Rd -valued processX, we defineX∗
t = sups≤t |Xs | andX∗ = supt |Xt |

= supt X
∗
t . If X is a semimartingale, then [X]t denotes the matrix-valued covaria-

tion process with components [Xi,Xj ]t for i, j ≤ d. The symbol % will be used
both for symmetric differences of sets and for jumps of processes. We shall often
write V · X for the integral process

∫ t
0 V dX and put µf = ∫

f dµ when µ is a
measure. In Lebesgue integrals we may omit the integrator from our notation and
write

∫
V as short for

∫
Vsds or V · λ. The symbol ⊗ is used for both product

σ -fields and product measures. Shift operators in discrete or continuous time are
written as θk or θt .

Superscripts will often be employed as indices, rarely as exponents, and we may
occasionally writeXn(t) asXnt for convenience. The relation x <) y or y >) x means
by definition that x ≤ cy for some constant c; if even x >) y we may write x � y.
Either relation is said to be uniform in a parameter t if the relevant constants can
be chosen to be independent of t . Finally, we adopt the conventions R+ = [0,∞),
N = {1, 2, . . .}, and Z+ = {0, 1, . . .}. Some more special notation will be explained
when it first occurs.

2. Extremality and jump structure

In this section we prove some general integral representations of spreadable dis-
tributions in terms of extreme points, examine the relationship between spreadable
sequences and processes, and consider some simple cases where the spreadability
of a sequence or process implies its exchangeability.

To motivate our first topic, we note that any mixture of spreadable distribu-
tions is again spreadable. Here we address the reverse problem of decomposing a
spreadable distribution into extreme distributions of the same type. Recall that a
spreadable distribution µ is said to be extreme if any relation µ = cµ1 + (1 − c)µ2
with c ∈ (0, 1) and spreadable µ1 and µ2 implies µ1 = µ2 = µ. For infinite
spreadable sequences, a unique representation of the mentioned type is given by
the de Finetti–Ryll-Nardzewski theorem, where the i.i.d. distributions play the role
of extremal elements. Similar representations for finite exchangeable sequences
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and for exchangeable processes on [0, 1] or R+ are implicitly given by the charac-
terizations described in Section 1.

In each of those four basic cases, the exchangeability may be characterized as
invariance in distribution under a suitable group of measurable transformations of
the underlying space. In such a situation, a general theory is available that guarantees
the existence of a unique integral representation (cf. Dynkin (1978) and Aldous
(1985), Section 12). Though there is no such description in the general spreadable
case, we can still prove the existence of a general integral representation over
extreme points. However, the corresponding uniqueness fails in general, as we
shall see in Corollary 2.6 below.

Theorem 2.1. In each of the following cases, the distribution of ξ orX is a mixture
of extreme distributions of the same type:

(i) ξ is a finite, spreadable sequence in some Borel space S;
(ii) X is an Rd -valued, spreadable process on [0, 1].

In the proof we shall refer to Lemma 4.5 below, which is permissible since no
subsequent results depend on the present theorem. A similar remark applies to the
use of Theorem 3.5 in the proof of Lemma 2.3 below.

Proof. (i) Embedding S as a Borel set in [0, 1], we may regard ξ as a spread-
able random sequence in [0, 1]. The space M1([0, 1]n) of probability measures on
[0, 1]n is compact and metrizable (cf. Rogers and Williams (1994), Theorem 81.3),
and we also note that the subset K of spreadable distributions on [0, 1]n is convex
and closed, hence compact. By a standard form of Choquet’s theorem (cf. Alfsen
(1971)), the element L(ξ) has then an integral representation

P {ξ ∈ B} =
∫
µ(B) ν(dµ), B ∈ B([0, 1]n), (1)

in terms of some probability measure ν on the set exK of extreme elements of K .
In particular, we obtain ν{µ; µSn < 1} = 0. Letting ν̃ denote the image of ν under
the restriction map µ �→ µ|Sn , we get for any B ∈ B(Sn)

P {ξ ∈ B} =
∫
µ|Sn(B) ν(dµ) =

∫
µ′(B) ν̃(dµ′). (2)

It remains to note that, if µ ∈ exK is restricted to Sn, then µ|Sn is an extreme,
spreadable distribution on Sn.

(ii) The space S = D([0, 1],Rd) is Polish in the Skorohod topology (cf. Jacod
and Shiryaev (1987), Theorem VI.1.14), and so it may be embedded as a Borel
subset of a compact metric space J (cf. Rogers and Williams (1994), Theorem
82.5). The space M1(J ) is again compact and metrizable, and M1(S) can be
identified with the subset {µ ∈ M1(J ); µS = 1} (op. cit., Theorem 83.7).

Now let K denote the convex set of all spreadable distributions on S, and note
that K remains convex as a subset of M1(J ). The closure K in M1(J ) is again
convex and also compact. Thus, Choquet’s theorem yields an integral representation
as in (1), where B is now an arbitrary Borel set in J and ν is a probability measure
on exK .
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Since L(X) is restricted to S, we may proceed as before to derive a representa-
tion as in (2), where ν̃ is now the image of ν under the restriction map µ �→ µ|S . It
remains to show that, if µ ∈ exK with µS = 1, then µ|S ∈ exK . But this is clear,
since K is closed in M1(S) by Lemma 4.5 below and therefore K ∩M1(S) = K .

��
In Section 1 we saw that a finite, spreadable sequence need not be exchangeable.

The equivalence of the two notions will now be established under an additional
assumption. Further result of this type are given in Lemma 2.4 and Theorem 3.5
below. In the exchangeable case, we note that a distribution is extreme iff it is
ergodic, in the sense that the invariant σ -field is trivial.

Lemma 2.2. Let ξ = (ξ1, . . . , ξn) be a spreadable sequence in some measurable
space S such that the measure β = ∑

j δξj is a.s. nonrandom. Then ξ is ergodic
exchangeable.

Proof. Introduce an exchangeable permutation ξ̃1, . . . , ξ̃n of ξ1, . . . , ξn, let (Fk)

and (F̃k) be the filtrations induced by the two sequences, and put βk = ∑
j≤k δξj

and β̃k = ∑
j≤k δξ̃j . We shall prove by induction that

(ξ1, . . . , ξk)
d= (ξ̃1, . . . , ξ̃k), k = 0, . . . , n. (3)

This is vacuously true for k = 0, and for k = n it implies the asserted statement.
Now assume that (3) holds for some fixed k < n. Since (ξ1, . . . , ξk, ξm) has the

same distribution for all m > k, we get for any measurable function g ≥ 0 on S

E[g(ξk+1)|Fk] = · · · = E[g(ξn)|Fk]

= (n− k)−1E
[∑

m>k
g(ξm)

∣∣∣Fk

]
= (n− k)−1(β − βk)g.

A similar relation holds for ξ̃k+1, F̃k , and β̃k , since the basic hypotheses remain
fulfilled for the sequence (ξ̃j ) with the same nonrandom measure β. Using the
induction hypothesis, we get for any measurable function f ≥ 0 on Sk

Ef (ξ1, . . . , ξk)g(ξk+1) = E(f (ξ1, . . . , ξk)E[g(ξk+1)|Fk])

= (n− k)−1Ef (ξ1, . . . , ξk)(β − βk)g
= (n− k)−1Ef (ξ̃1, . . . , ξ̃k)(β − β̃k)g
= E(f (ξ̃1, . . . , ξ̃k)E[g(ξ̃k+1)|F̃k])

= Ef (ξ̃1, . . . , ξ̃k)g(ξ̃k+1),

which proves (3) with k replaced by k + 1. This completes the induction, and the
assertion follows. ��

The notion of extremality clearly depends on the underlying symmetry. The
next result relates the exchangeable and spreadable versions.
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Lemma 2.3. The distribution of an exchangeable sequence or process is ergodic
iff it is extreme in the spreadable sense.

Proof. The sufficiency is obvious, since every exchangeable sequence or process
is also spreadable. Now consider the distribution µ of some ergodic, exchangeable
sequence ξ1, . . . , ξn in some space S, and note that µ is a.s. restricted to the per-
mutations of some fixed sequence a1, . . . , an ∈ S. If µ is a convex combination
of some spreadable distributions µ1 and µ2, then even the latter have the stated
property. From Lemma 2.2 it follows thatµ1 andµ2 are exchangeable, and sinceµ
is extreme in the exchangeable sense, we get µ1 = µ2. This shows that µ remains
extreme in the spreadable sense.

Next consider the distribution µ of some ergodic, exchangeable process X on
[0, 1], and note thatX has finite first moments and a.s. fixed jump sizes and terminal
value. Ifµ is a convex combination of some spreadable distributionsµ1 andµ2, then
even the latter measures have the stated properties. Hence, the µi are exchangeable
by Theorem 3.5 below, and sinceµ is extreme in the exchangeable sense, it follows
that µ1 = µ2. Thus, µ is again extreme in the spreadable sense. ��

A random measure ξ on [0, 1] is said to be spreadable if the corresponding
distribution function Xt = ξ [0, t] is a spreadable process on [0, 1]. By a simple
point process we mean a purely atomic random measure ξ such that ξ{s} = 0 or 1 for
all s. The next result shows that the notions of spreadability and exchangeability are
equivalent for simple point processes and diffuse random measures. This prepares
for our study of more general processes in Theorem 3.5. Parts (ii) and (iii) below
are in fact equivalent to Lemma 3.4 in Kallenberg (1982); they are restated here
with a short direct proof, for the convenience of the reader.

Lemma 2.4. In each of the following cases, a spreadable random sequence or
measure ξ is exchangeable:

(i) ξ is a finite sequence in {0, 1};
(ii) ξ is a simple point process on [0, 1];

(iii) ξ is a diffuse random measure on [0, 1].

With subsequent applications in mind, we note that a diffuse random measure
ξ on [0, 1] is exchangeable iff ξ = αλ a.s. for some random variable α ≥ 0. For a
simple point process ξ on [0, 1], exchangeability means that ξ is a (homogeneous)
mixed binomial (or sample) process, so that ξ = ∑

k≤κ δτk for some i.i.d. U(0, 1)
random variables τ1, τ2, . . . and some independent, Z+-valued random variable κ .
The revised terminology is motivated by the fact that, for any B ∈ B([0, 1]) and
given κ , the random variable ξB is conditionally binomially distributed with pa-
rameters κ and λB.

Proof. (i) Let ξ = (ξ1, . . . , ξn) be spreadable in {0, 1}, fix any permutation p =
(p1, . . . , pn) of 1, . . . , n, and put η = (ξp1 , . . . , ξpn). Using the spreadability of ξ ,
we get for any subset A ⊂ {1, . . . , n}∑

j∈Aηj =
∑

j∈p−1A
ξj

d=
∑

j≤|A|ξj
d=

∑
j∈Aξj .
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Hence, ξ
d= η by Theorem 10.9 in Kallenberg (1997), and the exchangeability

follows since p was arbitrary.
(ii)–(iii) Let ξ be a spreadable simple point process or diffuse random measure

on [0, 1]. Fix any n ∈ N and a permutation p = (p1, . . . , pn) of 1, . . . , n. Define
a measure-preserving transformation f on (0, 1] by

f (x) = x + n−1(pj − j), x ∈ Inj ≡ n−1(j − 1, j ], j = 1, . . . , n,

and introduce the random measure η = ξ ◦ f−1 on (0, 1]. Using the spreadability
of ξ , we get

ηU = ξ(f−1U)
d= ξ [0, λU ]

d= ξU, U ∈ U,

and so ξ
d= η on (0, 1] by a version of Theorem 10.9 in Kallenberg (1997). In

particular, ξ has exchangeable increments over In,1, . . . , In,n, and the asserted ex-
changeability follows since ξ{0} = 0 a.s. ��

For a spreadable process on [0, 1], it is not clear whether the jump structure
can be described in terms of spreadable sequences in general. The following result
gives a useful connection in a special case.

Theorem 2.5. Let X be a step process in Rd with a fixed number of jumps and let
ξ and η denote the associated jump size sequence and jump time process. Then

(i) X is spreadable iff ξ and η are independent and spreadable.

In that case

(ii) X and ξ are simultaneously extreme;
(iii) X and ξ are simultaneously exchangeable.

Proof. (i) Assume that ξ and η are independent and spreadable. Fix any U,V ∈ U
with λU = λV , and let ξ ′

1, . . . , ξ
′
ηU and ξ ′′

1 , . . . , ξ
′′
ηV be the jump sizes of X̂U

and X̂V , respectively, enumerated from left to right. Since ξ is spreadable and
independent of η, Fubini’s theorem yields

P [(ξ ′
1, . . . , ξ

′
k) ∈ ·| η] = P {(ξ1, . . . , ξk) ∈ ·} a.s. on {ηU = k}.

Combining with the same relation for the ξ ′′
j and noting that η̂U

d= η̂V since η is
spreadable, we obtain

(η̂U , ξ
′
1, . . . , ξ

′
ηU )

d= (η̂V , ξ
′′
1 , . . . , ξ

′′
ηV ),

which implies X̂U
d= X̂V . Thus, X is spreadable.

Conversely, assume that X is spreadable with n jumps, and let U,V ∈ U with

λU = λV . Since X̂U
d= X̂V and η[0, 1] = n, we get for any B ∈ B(Rnd)

P {ξ ∈ B, ηUc = 0} = P {ξ ∈ B, ηU = n}
= P {ξ ∈ B, ηV = n}
= P {ξ ∈ B, ηV c = 0}.
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Keeping B fixed with P {ξ ∈ B} > 0 and using a version of Theorem 10.9 in
Kallenberg (1997), we conclude that η is conditionally spreadable, given the event
{ξ ∈ B}. By Lemma 2.4, η is then exchangeable and hence a binomial process with
n points. Since the conditional distribution is the same for all B, it follows that η is
spreadable and independent of ξ .

To show that even ξ is spreadable, we may assume that n > 0. Fix any a < b
in (0, 1) and put

I = (0, a], U = (0, a] ∪ (b, 1], V = (0, 1 − b + a],

so that λU = λV . By the spreadability of X we have X̂U
d= X̂V , and then also

(X̂U , ηI, ηU)
d= (X̂V , ηI, ηV ),

In particular, we get for any k ∈ {0, . . . , n− 1}
(ξ1, . . . , ξk, ξk+2, . . . , ξn) 1{ηI = k, ηU = n− 1}

d= (ξ1, . . . , ξn−1) 1{ηI = k, ηV = n− 1}.
Since ξ⊥⊥η, and also

P {ηI = k, ηU = n− 1} = P {ηI = k, ηV = n− 1} > 0

by the spreadability of η, we obtain

(ξ1, . . . , ξk, ξk+2, . . . , ξn)
d= (ξ1, . . . , ξn−1), 0 ≤ k < n,

which implies the required spreadability of ξ .
(ii) Every distribution µ = L(ξ) on Rnd determines uniquely a corresponding

distribution µ̃ = L(X) onD([0, 1],Rd). The mappingµ �→ µ̃ is clearly linear and
injective, and the measures µ and µ̃ are simultaneously spreadable. Now assume
that µ̃ is extreme, and let µ = cµ1 + (1 − c)µ2 for some spreadable probabilities
µ1, µ2 and some constant c ∈ (0, 1). Then µ̃ = cµ̃1 + (1 − c)µ̃2, and since
µ̃ is extreme and µ̃1 and µ̃2 are spreadable, we get µ̃1 = µ̃2. Thus, µ1 = µ2,
which shows that even µ is extreme. The converse implication follows by the same
argument since the inverse mapping µ̃ �→ µ is again linear.

(iii) Let ξ = (ξ1, . . . , ξn) be exchangeable. Since η is a binomial process inde-
pendent of ξ , the transfer Theorem 5.10 in Kallenberg (1997) ensures the existence
of some i.i.d. U(0, 1) random variables σ1, . . . , σn⊥⊥ξ with η = ∑

j δσj . Writ-
ing τ1, . . . , τn for the increasing enumeration of the σj , we have σj ≡ τπj for
some (σj )-measurable permutation (π1, . . . , πn) of 1, . . . , n. By exchangeability
and independence, the sequences ξ and (ξπ1 , . . . , ξπn) are equally distributed, con-
ditionally on (σj ), and therefore (ξπj )⊥⊥(σj ). To see that X is exchangeable, it
remains to write

Xt =
∑

k≤n ξk1{τk ≤ t} =
∑

j≤n ξπj 1{σj ≤ t}, t ∈ [0, 1].

Conversely, assume thatX is exchangeable. To show that this is also true for ξ ,
we may reduce by conditioning to the case when

∑
k δξk is nonrandom. But then ξ

is exchangeable by Lemma 2.2. ��
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The last result can be used to extend some counterexamples for spreadable
sequences to the continuous-time case.

Corollary 2.6. There exist some spreadable sequences ξ and processes X such
that
(i) ξ and X are not exchangeable;

(ii) the extremal representations of L(ξ) and L(X) are not unique.

Proof. Consider on {1, 2, 3}2 the extreme, spreadable distributions

µ1 = 12 23 31
1 1 1

, µ2 = 32 21 13
1 1 1

,

ν1 = 12 21
1 1

, ν2 = 23 32
1 1

, ν3 = 31 13
1 1

,

and note that µ1 and µ2 are not exchangeable. Furthermore, 1
2 (µ1 +µ2) = 1

3 (ν1 +
ν2 + ν3). To get a distribution of a spreadable sequence that satisfies both (i) and
(ii), we may takeµ = 1

3 (µ1 +2µ2). By Theorem 2.5, conditions (i) and (ii) remain
fulfilled for the corresponding continuous-time distribution µ̃. ��

When the space S is finite, the distributions of all spreadable sequences in S of
length n form a convex polyhedron in an appropriate affine subspace of Sn. In fact,
the sample space is then finite and the spreadability condition yields finitely many
linear constraints on the corresponding probabilities. Hence, in this case there are
finitely many extreme distributions, each corresponding to a vertex of the mentioned
polyhedron.

In the special case of random pairs, we note that a distribution is extreme,
spreadable iff it gives equal weight m−1 to all pairs (ak, ak+1) for some distinct
elements a1, . . . , am ∈ S, where am+1 is interpreted as a1. These distributions are
clearly exchangeable only for m = 0 and 1.

3. Martingale methods

In this section we examine some basic martingale properties of spreadable processes
and exhibit conditions that ensure the exchangeability of a spreadable process.
Our results extend and improve some statements for exchangeable processes in
Kallenberg (1982, 1988a).

We may relate the spreadability of a finite or infinite sequence ξ = (ξ1, ξ2, . . .)

to a discrete filtration F = (F0,F1, . . .). Then say that ξ is F-spreadable if
it is adapted to F and such that the shifted sequence θkξ = (ξk+1, ξk+2, . . .) is
conditionally spreadable givenFk for every k ≥ 0. To avoid requiring the existence
of conditional distributions, we may state our condition in terms of elementary
conditional probabilities, given any set A ∈ Fk with PA > 0. Note that any
spreadable sequence ξ is spreadable for the induced filtration Fk = σ {ξj ; j ≤ k}.
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An infinite sequence ξ is said to be strongly stationary or F-stationary if

θτ ξ
d= ξ for every finite optional (or stopping) time τ ≥ 0. For finite sequences

ξ = (ξ1, . . . , ξn), we interpret the condition as

(ξτ+1, . . . , ξτ+k)
d= (ξ1, . . . , ξk) whenever τ + k ≤ n a.s.

We finally consider the martingale property of the so-called prediction sequence
µk = P [θkξ ∈ ·|Fk], k ≥ 0. Again we may avoid regularity requirements by
stating our condition in terms of elementary conditional probabilities. Thus, for

infinite sequences, we say that the µk form an F-martingale if θk+1ξ
d= θkξ over

Fk for all k ≥ 0, in the sense that

P [θk+1ξ ∈ ·;A] = P [θkξ ∈ ·;A], A ∈ Fk, k ≥ 0.

For finite sequences ξ = (ξ1, . . . , ξn), the martingale condition is interpreted as

(ξk+2, . . . , ξn)
d= (ξk+1, . . . , ξn−1) over Fk, k = 0, . . . , n− 2.

The mentioned conditions are related by the following result, which extends the
corresponding statement for infinite exchangeable sequences in Kallenberg (1982,
1988a) (cf. Kallenberg (1997), Proposition 9.18).

Lemma 3.1. Let ξ = (ξ1, ξ2, . . .) be a finite or infinite, F-adapted random
sequence in some measurable space S. Then these conditions are equivalent:

(i) ξ is F-spreadable;
(ii) ξ is F-stationary;

(iii) µk = P [θkξ ∈ ·|Fk] forms an F-martingale.

Proof. The proof for infinite sequences carries over with obvious changes. ��
We turn to the continuous-time case. An Rd -valued processX on [0, 1] or R+ is

said to be spreadable with respect to a filtrationF = (Ft ) or simplyF-spreadable
if it is F-adapted with X0 = 0 and such that the shifted process θsX − Xs is
conditionally spreadable given Fs for every s ≥ 0. To justify our use of martingale
theory and stochastic calculus, we may pass to a new filtration G that is both right-
continuous and complete, in the sense that Gt = Gt+ ≡ ⋂

u>t Gu for all t ≥ 0
and every Gt contains the null sets in the P -completion of σ {Gu; u ≥ 0}. Recall
that every filtration F has a smallest right-continuous and complete extension, the
so-called usual augmentation of F (cf. Kallenberg (1997), Lemma 6.8).

Lemma 3.2. If a process X on [0, 1] or R+ is spreadable for some filtration F,
then it remains so for the usual augmentation of F.

Proof. For every t , the shifted process θtX−Xt is conditionally spreadable given
Ft . By the chain rule for conditional expectations, this remains true with Ft

replaced by Fs+ for any s < t . Since X is right-continuous, the latter version
extends for fixed s to t = s, which means that X is spreadable with respect to the
right-continuous filtration (Ft+). It remains to note that any conditional probability
is unaffected by completion of the associated σ -field. ��
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For later needs, we record a continuous-time analogue of Lemma 3.1, which
follows from the earlier result by a straightforward approximation.

Lemma 3.3. Let X be an Rd -valued, F-adapted process on [0, 1] or R+ with
X0 = 0 and rcll paths. Then these conditions are equivalent:

(i) X is F-spreadable;
(ii) X has F-stationary increments;

(iii) µt = P [θtX −Xt ∈ ·|Ft ] forms an F-martingale.

We turn to the semimartingale properties of spreadable processes. Given an
rcll process X on [0, 1] or R+, we define the associated jump point process β by
βtA = ∑

s≤t 1A(%Xs) for any A ∈ B(Rd \ {0}) and let β̂ denote the compensator
of β. WhenX is a semimartingale, we writeXc for the continuous local martingale
component of X. Finally, if X is a special semimartingale, we define the compen-
sator X̂ of X as the a.s. unique predictable process of locally finite variation and
initial value 0 such that X− X̂ is a local martingale. The processes X̂, [Xc], and β̂
are collectively referred to as the local characteristics of X.

Given a filtration F, we say that a process X is Fs-integrable if E[|Xt ||Fs]
< ∞ a.s. for all t . (IfX is F-spreadable on [0, 1], then by Theorem 4.10 it suffices
to assume this condition for a fixed t ∈ (s, 1).) The stronger notion of uniform
F0-integrability may be defined in the obvious way in terms of the conditional
distributions P [X∈ · |F0]. We say that X is a conditional F-martingale on some
interval I if X is Fs-integrable for all s ∈ I and satisfies Xs = E[Xt |Fs] a.s.
for all s < t in I . Note that any conditional martingale on [0, 1) or R+ is a local
martingale.

We show under a moment condition that a spreadable process is a semimartin-
gale and describe the associated local characteristics. This extends and improves a
result for exchangeable processes in Theorem 4.1 of Kallenberg (1988a). We con-
jecture that no moment condition is actually needed for the semimartingale property
in part (ii).

Proposition 3.4. Let X be an Rd -valued, F-spreadable process on [0, 1] with
jump point process β. Then

(i) β̂ admits a conditional martingale density on (0, 1);
(ii) if X is F0-integrable, it is a uniformly F0-integrable special semimartingale

on [0, 1], such that [Xc] is a.s. linear and X̂ admits a conditional martingale
density on [0, 1).

Proof. (ii) Define

Mt = E[X1 −Xt |Ft ]

1 − t , t ∈ [0, 1). (1)

By the spreadability ofX, we get for any times s ≤ t < 1 with rationally dependent
residuals 1 − s and 1 − t

E[Mt |Fs] = E[X1 −Xt |Fs]

1 − t = E[X1 −Xs |Fs]

1 − s = Ms. (2)
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Approximating from the right in s, we may extend the formula to arbitrary s ≤
t < 1, which shows that M is a conditional martingale on [0, 1). Writing Nt =
E[X1|Ft ], we have

Xt = Nt − (1 − t)Mt , t ∈ [0, 1), (3)

and integrating by parts gives

dXt = dNt − (1 − t)dMt +Mtdt. (4)

This shows that X is a special semimartingale on [0, 1) with compensator

X̂t =
∫ t

0
Msds, t ∈ [0, 1).

From (3) we note thatX is uniformlyF0-integrable on [0, 1
2 ], and the spreadability

of X allows us to extend this property to all of [0, 1]. The matrix-valued process
[Xc] = [X]c is again spreadable, by the approximation property in Theorem I.4.47
of Jacod and Shiryaev (1987). Since it is also continuous and of finite variation, it
is a.s. linear by Lemma 2.4.

To extend the semimartingale property to the closed interval [0, 1], we may use
(1), Jensen’s inequality, the spreadability of X, and Theorem 4.10 below (whose
proof depends only on the semimartingale property on [0, 1)) to write for any t < 1

E0|Mt | ≤ E0|X1 −Xt |
1 − t = E0|X1−t |

1 − t <)
E0|X1/2|
(1 − t)1/2 ,

where E0 is short for E[ · |F0]. This gives

E0
∫ 1

0
|dX̂t | =

∫ 1

0
E0|Mt | dt <) E0|X1/2|

∫ 1

0
(1 − t)−1/2 dt < ∞,

and shows that X̂ has F0-integrable variation whereas X − X̂ is a uniformly
F0-integrable local martingale on [0, 1].

(i) Combining Lemma 2.4 above with Lemma 4.2 in Kallenberg (1988a), we
note that E[β{|x| > ε}|Ft ] < ∞ a.s. for all t ∈ (0, 1] and ε > 0. We may then
define a measure-valued process µ on [0, 1) by

µtA = E[β1A− βtA|Ft ]

1 − t , t ∈ [0, 1), A ∈ Bd . (5)

The conditional martingale property of µ follows as in (2), and proceeding as in
(3) and (4), we see that µ is a.s. a density of β̂. ��

In Corollary 2.6 we saw that a spreadable process need not be exchangeable.
Here we consider some additional conditions that ensure the equivalence of the two
properties. Our results extend and improve Theorem 3.3 in Kallenberg (1982) and
Lemmas 2.2 and 2.4 above.

Theorem 3.5. Let X be an Rd -valued, F-spreadable process on [0, 1] with jump
point process β. Then X is F-exchangeable under each of these conditions:
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(i) X is F0-integrable and the pair (X1, β1) is F0-measurable;
(ii) X has a.s. finite variation and β1 is F0-measurable.

We conjecture that every continuous spreadable process is exchangeable. The
proof of part (i) requires two lemmas.

Lemma 3.6. LetX be such as in Theorem 3.5 (i). ThenX is a special semimartin-
gale with [Xc]t ≡ t[X]c1 a.s., and for any t ∈ [0, 1) we have a.s.

β̂t =
∫ t

0

β1 − βs
1 − s ds, (6)

X̂t = tX1 −
∫ t

0
ds

∫ s

0

d(Xr − X̂r )
1 − r . (7)

Proof. From Proposition 3.4 and its proof we note thatX is a special semimartingale
such that [Xc] is a.s. linear, and also that β̂ has the conditional martingale density
µt = (β1 − βt )/(1 − t). The latter statement implies (6). Furthermore, X̂ has a
conditional martingale densityM satisfying

X1 −Xt = (1 − t)Mt , t ∈ [0, 1]. (8)

Integration by parts gives

−(1 − t)dMt +Mtdt = dXt = d(Xt − X̂t )+ dX̂t ,
and so, by the uniqueness of the canonical decomposition,

dX̂t = Mtdt, dMt = − d(Xt − X̂t )
1 − t .

Equation (7) follows as we integrate the latter relations and note thatM0 = X1 a.s.
in view of (8). ��
Lemma 3.7. For processes X as in Theorem 3.5 (i), the conditional distribution
P [X∈· |F0] is a unique, measurable function of X1, [X]c1, and β1.

Proof. Let A1, . . . , An ∈ B(Rd) be disjoint and bounded away from 0, put κr =
β1Ar , and let τ r1 < · · · < τrκr be the points of the process βAr . Write τ̂ r0 = 0 and

τ̂ rj = β̂Ar(τ
r
j ), and put γ rj = τ̂ rj − τ̂ rj−1. By (6) we have

γ rj = (κr − j + 1) log

{
1 − τ rj−1

1 − τ rj

}
, j ≤ κr , r ≤ n.

Solving recursively for τ rj gives

τ rj = 1 − exp

{
−

∑
i≤j

γ ri

κr − i + 1

}
, j ≤ κr , r ≤ n. (9)

By a version of Theorem II.6.6 in Jacod and Shiryaev (1987), the continuous mar-
tingale component Xc is conditionally a Brownian motion with covariance matrix
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[X]c1, given F0, whereas the γ rj are i.i.d. standard exponential random variables in-
dependent of (F0, X

c). Furthermore, (9) exhibits the processes βAr as measurable
functions of the variables κr and γ rj , where the former are F0-measurable by hy-
pothesis. This specifies the joint conditional distribution of Xc and βA1, . . . , βAn
given F0. Since the sets Ar were arbitrary and since (6) expresses β̂ as a measur-
able function of β, the conditional distribution is then a.s. unique for the mar-
tingale component X − X̂. In view of (7), this is also true for the process X
itself. ��

Proof of Theorem 3.5. (i) By the transfer Theorem 5.10 in Kallenberg (1997),
we may choose the process Y to be conditionally exchangeable, given F0, with
directing triple (X1, [X]c1, β1). Let G be the right-continuous, complete filtration
induced by Y and F0, and note that even Y satisfies the hypotheses of the theorem,
but now relative to the filtration G. By Lemma 3.7, X and Y have then the same
conditional distribution givenF0, and in particularX is conditionally exchangeable
on [0, 1]. Applying this result to the shifted process θsX−Xs for arbitrary s ∈ [0, 1),
we see more generally that X is F-exchangeable.

(ii) The continuous component Xc of X—in the sense of functions of bounded
variation—is again spreadable, and so are the monotone components in the Jordan
decomposition of each coordinate process. By Lemma 2.4 it follows that Xct ≡ tα

a.s. for some random vector α in Rd . If F is right-continuous, as we may assume
by Lemma 3.2, then α is clearly F0-measurable. Since also a.s.

X1 = α +
∫ 1

0
x β1(dx),

|Xt | ≤
∫ 1

0
|dXs | = |α| +

∫ 1

0
|x|β1(dx) < ∞,

we conclude that X1 is F0-measurable and X is F0-integrable. The asserted
exchangeability of X now follows by part (i). ��

We can also give the following alternative proof of part (ii), based on the more
elementary but less intuitive Theorem 2.5.

Second proof of (ii). For any ε > 0, letXε denote the sum of all jumps of modulus
> ε, and denote the corresponding jump sizes by ξ1, . . . , ξn. Then Xε is again
spreadable, and so the sequence (ξk) is spreadable by Theorem 2.5 (i). Since

∑
k δξk

is nonrandom by hypothesis, Lemma 2.2 shows that (ξk) is even exchangeable. Then
so is the process Xε by Theorem 2.5 (iii), and the same thing is true for the jump
component X′ of X since ε was arbitrary.

Next Lemma 2.4 gives Xt − X′
t ≡ αt a.s. for some random vector α in Rd ,

and by Lemma 3.2 we may assume that α is F0-measurable. Applying the pre-
vious argument to the conditional distributions, we note that X′ is conditionally
exchangeable on [t, 1] given Ft for every t ∈ [0, 1]. The same thing is then true
for X itself, since X −X′ is a.s. linear and Ft -measurable. ��
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4. Distributional properties

In this section we study some weak convergence and related properties of spreadable
sequences and processes. A comprehensive weak convergence theory for exchange-
able processes was developed in Kallenberg (1973, 1975, 1982, 1988b), and we
refer to Chapter 14 of Kallenberg (1997) for some basic ideas and results. Since
there is no general representation formula in the spreadable case, only a partial
extension of the exchangeable theory is possible.

We begin with a limit theorem for finite spreadable sequences, which extends an
elementary result for exchangeable sequences from Kallenberg (1973). The present
statement also contains Ryll-Nardzewski’s (1957) version of de Finetti’s theorem
(cf. Kallenberg (1997), Theorem 9.16), the fact that any infinite spreadable sequence
is mixed i.i.d.

Given a finite random sequence ξ = (ξ1, . . . , ξm) in some Polish space S,
we define the associated empirical distribution as the random probability measure
ν = m−1 ∑

j δξj on S. Here ν is regarded as a random element in the space

M1(S) endowed with the weak topology. For sequences ξn of lengths mn
d→ ∞,

the convergence ξn
d→ ξ is defined by the corresponding set of finite-dimensional

conditions.

Theorem 4.1. Let ξ1, ξ2, . . . be spreadable sequences of finite lengths m1,m2,

. . . → ∞ in a Polish space S and let ν1, ν2, . . . denote the associated empirical

distributions. Then ξn
d→ some ξ in S∞ iff νn

d→ some ν in M1(S), in which case
L(ξ) = Eν∞.

We give a direct proof based on the following simple moment estimate.
Using the Ryll-Nardzewski theorem, one can also give a slightly shorter but more
sophisticated proof along the lines of Theorem 4.8 below.

Lemma 4.2. Let ξ1, . . . , ξn be square-integrable random variables with constant
meanm, variance σ 2, and covariance σ 2ρ, and fix any distributions (pj ) and (qj )
on {1, . . . , n}. Then

E
( ∑

j
pj ξj −

∑
j
qj ξj

)2 ≤ 2σ 2(1 − ρ) supj |pj − qj |.

Proof. Write dj = pj − qj . Noting that
∑
j dj = 0 and

∑
j |dj | ≤ 2, we get

E
( ∑

j
dj ξj

)2 = E
( ∑

j
dj (ξj −m)

)2

=
∑

i

∑
j
didj cov(ξi, ξj )

= σ 2ρ
( ∑

j
dj

)2 + σ 2(1 − ρ)
∑

j
d2
j

≤ σ 2(1 − ρ) supi |di |
∑

j
|dj |

≤ 2σ 2(1 − ρ) supj |dj |. ��



228 O. Kallenberg

Proof of Theorem 4.1. First assume that νn
d→ ν. Fix any continuous functions

f1, . . . , fk : S → [0, 1]. Write [mn/k] = rn and Inj = {(j − 1)rn + 1, . . . , jrn}.
Using the spreadability of ξn, Jensen’s inequality, and Lemma 4.2, we get∣∣∣E∏

j≤kfj (ξnj )− E
∏

j≤kνnfj
∣∣∣

=
∣∣∣∣r−kn E∏

j≤k
∑

i∈Inj
fj (ξni)− E

∏
j≤kνnfj

∣∣∣∣
≤

∑
j≤kE

∣∣∣∣r−1
n

∑
i∈Inj

fj (ξni)− νnfj
∣∣∣∣

≤
∑

j≤k

∥∥∥∥r−1
n

∑
i∈Inj

fj (ξni)− νnfj
∥∥∥∥

2

≤ 2kr−1/2
n ∼ 2k3/2m

−1/2
n → 0.

Since also
E

∏
j≤kνnfj → E

∏
j≤kνfj ,

by the continuity of the mappings µ �→ µfj on M1(S), we obtain

E
∏

j≤kfj (ξnj ) → E
∏

j≤kνfj = E
∏

j≤kfj (ξ0j ), (1)

where ξ = (ξ0j ) has distribution Eν∞.

To deduce the required convergence ξn
d→ ξ , we note in particular that ξnj

d→
ξ0j for each j . Hence, by Prohorov’s theorem, (ξn) is tight and any subsequence

N ′ ⊂ N has a further subsequenceN ′′ ⊂ N ′ such that ξn
d→ some ξ ′ alongN ′′. To

see that ξ ′ d= ξ , we note that (1) remains true along N ′′ with ξ0j replaced by ξ ′
0j ,

and therefore
E

∏
j≤kfj (ξ0j ) = E

∏
j≤kfj (ξ

′
0j )

for any k and f1, . . . , fk . By a simple approximation, this extends to the indicator
functions of any open sets G1, . . . ,Gk ⊂ S, and by a monotone class argument it

follows that ξ
d= ξ ′. Hence, ξn

d→ ξ along N ′′ and then also along N, since the
limit is independent of the choice of subsequence.

Conversely, assume that ξn
d→ ξ . The spreadability of the sequences ξn implies

the weak convergence Eνn = L(ξn1)
w→ L(ξ01), and by Prohorov’s theorem it

follows that the sequence (Eνn) is tight. By Lemma 7.14 in Aldous (1985), the
tightness carries over to the sequence of random probability measures νn. Now let

νn
d→ ν along some subsequence N ′ ⊂ N. The direct assertion gives ξn

d→ ξ ′

along N ′ where L(ξ ′) = Eν∞. Since also ξn
d→ ξ , we get L(ξ) = Eν∞.

To see thatL(ν) is uniquely determined byL(ξ), fix any bounded, measurable
function f on S and a constant r ∈ R. By the law of large numbers,

P {νf ≤ r} = Eν∞
{

lim supn n
−1

∑
j≤nf (xj ) ≤ r

}
= P

{
lim supn n

−1
∑

j≤nf (ξ0j ) ≤ r
}
,
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and the required uniqueness follows by the Cramér–Wold theorem. By Prohorov’s

theorem, the convergence νn
d→ ν then extends to the original sequence. ��

The continuous-time case is more difficult. Here our treatment is based on the
following key result, where for any spreadable sequence or process we associate
an exchangeable sequence or process with the same one-dimensional distributions.
This correspondence allows us to extend many statements for exchangeable pro-
cesses to the more general context of spreadability.

For any random sequence ξ = (ξ1, . . . , ξn), we introduce the associated occu-
pation sequence βk = ∑

j≤k δξj , k = 1, . . . , n. When X is an Rd -valued semi-
martingale on [0, 1], the associated characteristics αt , βt , and γt are given by

αt = Xt, βt =
∑

s≤t δ%Xs , γ
ij
t = [Xi,Xj ]t , t ∈ [0, 1]. (2)

The definitions of αt and βt continue to make sense without the semimartingale
property, as long as the paths of X are rcll.

Proposition 4.3.
(i) For any spreadable sequence ξ = (ξ1, . . . , ξn) in some measurable space S,

there exists an exchangeable sequence ξ̃ = (ξ̃1, . . . , ξ̃n) such that the associ-
ated occupation sequences satisfy

βk
d= β̃k, k = 1, . . . , n.

(ii) For any Rd -valued, spreadable process X on [0, 1], there exists an exchange-
able process X̃ such that the associated processes of characteristics satisfy

(αt , βt )
d= (α̃t , β̃t ), t ∈ [0, 1]. (3)

If X is a semimartingale, then (3) can be strengthened to

(αt , βt , γt )
d= (α̃t , β̃t , γ̃t ), t ∈ [0, 1]. (4)

In particular, we note that
∑
t |%Xt |2 < ∞ a.s. for any Rd -valued, spreadable

process X on [0, 1]. In the semimartingale case we may take t = 1 in (4) to see
that L(X̃) is unique. It is not clear whether uniqueness still holds under the weaker
condition (3). In the following proof and throughout the remainder of the section,
we consider summation processes of the form

Xt =
∑

j≤mtξj , t ∈ [0, 1], (5)

where ξ1, . . . , ξm are random vectors in Rd .

Proof. (i) Let τ1, . . . , τn form an exchangeable permutation of 1, . . . , n indepen-
dent of ξ and consider the exchangeable sequence ξ̃ with elements ξ̃k = ξτk for
k = 1, . . . , n. For each k ∈ {1, . . . , n} we enumerate the variables τ1, . . . , τk in
increasing order as σk1, . . . , σkk . The spreadability of ξ and exchangeability of ξ̃
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carry over to the random measures µj = δξj and µ̃j = δξ̃j
, respectively, and for

any k ≤ n we get

βk =
∑

j≤kµj
d=

∑
j≤kµσkj =

∑
j≤kµτj =

∑
j≤kµ̃j = β̃k.

(ii) Here we put tnj = j2−n and ξnj =Xtnj −Xtn,k−1 for all n∈ N and

j ≤ 2n. For each n ∈ N we introduce an exchangeable permutation (ξ̃nj ) of the
increments ξnj and write Xn and X̃n for the corresponding summation processes

on [0, 1]. Since X̃nt
d= Xnt = Xt for all n-dyadic times t = tnj , the sequence (X̃n)

is tight in D([0, 1],Rd) by the exchangeable version of Proposition 4.4 below,

and therefore X̃n
d→ X̃ along a subsequence for some exchangeable process X̃ on

[0, 1]. By a d-dimensional version of a convergence criterion in Kallenberg (1973)
(cf. Kallenberg (1997), Proposition 14.24), the corresponding characteristic triples
satisfy

(α̃nt , β̃
n
t , γ̃

n
t )

d→ (α̃t , β̃t , γ̃t ), t ∈ [0, 1], (6)

where β̃t and β̃nt are regarded as random elements in M(Rd \ {0}) with the vague
topology.

If X is a semimartingale, we may use part (i) together with the approximation
property for the quadratic variation (cf. Jacod and Shiryaev (1987), Theorem I.4.47)
to write for dyadic times t ∈ [0, 1]

(α̃nt , β̃
n
t , γ̃

n
t )

d= (αnt , β
n
t , γ

n
t )

P→ (αt , βt , γt ). (7)

Relation (4) follows for dyadic t by combination of (6) and (7), and then in general
by the right continuity of both sides. Without the semimartingale hypothesis, we
can only assert convergence in (7) for the first two components. This still guarantees
the truth of (3). ��

Our next key step is to establish some tightness criteria for spreadable processes,
originally stated for exchangeable processes in Kallenberg (1973) (though proved
more convincingly in Kallenberg (1997), Proposition 14.24 and Theorem 14.25).

Proposition 4.4. Let X1, X2, . . . be Rd -valued, spreadable processes on [0, 1] or
summation processes on [0, 1] based on spreadable sequences in Rd of lengths
mn → ∞. Fix any relatively compact sequence t1, t2, . . . ∈ (0, 1). Then the fol-
lowing two conditions are equivalent:

(i) {Xn} is tight in D([0, 1],Rd);
(ii) {Xn(tn)} is tight in Rd .

If the Xn are semimartingales, it is also equivalent that

(iii) {(αn, γn)} is tight in Rd × Rd
2
.

Proof. The implication (i) ⇒ (ii) holds generally inD([0, 1],Rd) by the continuity
of the mapping x �→ supt |xt |. To prove the remaining assertions, we choose some
associated exchangeable processes X̃n with characteristic triples (α̃n, β̃n, γ̃n) as in
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Proposition 4.3. By the criteria for exchangeable processes, the sequences {X̃n},
{X̃n(tn)}, and {(α̃n, γ̃n)} are simultaneously tight. In particular, Proposition 4.3
shows that (ii) ⇔ (iii) whenever each process Xn is a semimartingale.

In the general case, (ii) implies that {X̃n} is tight in D([0, 1],R+). Noting that
xn(hn) → x(0)whenever xn → x inD([0, 1],Rd) and hn → 0 and using Lemma
3.3 and Proposition 4.3, we get in the continuous-time case

Xn(τn + hn)−Xn(τn) d= Xn(hn)
d= X̃n(hn)

P→ 0,

for any Xn-optional times τn and positive constants hn → 0 with τn + hn ≤ 1 a.s.

Since the sequenceXn(t)
d= X̃n(t) is tight in Rd for every t ∈ [0, 1], the tightness of

{Xn} inD([0, 1],Rd) follows by Aldous’ criterion (cf. Kallenberg (1997), Theorem
14.11). Thus, (ii) ⇒ (i). The argument applies with obvious modifications to the
case of summation processes. ��

We also need the following closure properties for spreadable processes, which
again extend the exchangeable versions from Kallenberg (1973).

Lemma 4.5. LetX1, X2, . . . be Rd -valued, spreadable processes on [0, 1] or sum-
mation processes based on spreadable sequences in Rd of lengths mn → ∞, and

assume that Xn
d→ X in D([0, 1],Rd). Then X is again spreadable. A similar

result holds for spreadable random measures on [0, 1].

Proof. WritingXn asXn, we have in the spreadable caseXnv −Xnu d= Xnv−u for any

u < v. Ifu, v, and v−u are a.s. continuity points forX, we obtainXv−Xu d= Xv−u.

Similarly,X1 −Xu d= X1−u whenever u and 1−u are a.s. continuity points. Fixing

any t ∈ (0, 1], we may let u ↑ t and v ↓ t to get %Xt
d= 0. This shows that X has

no fixed discontinuities, and therefore Xn
fd−→ X. In particular, the spreadability

of the Xn carries over to X. A slightly modified argument applies to the case of
summation processes.

Next let ξ1, ξ2, . . . be spreadable random measures on [0, 1] with ξn
d→ ξ .

The corresponding random distribution functions Xnt = ξn[0, t] are then tight

in D([0, 1],Rd) by Proposition 4.4, and we get convergence Xn
d→ X̃ along a

subsequence N ′ ⊂ N for some spreadable process X̃. As before, it follows that

Xn
fd−→ X̃ along N ′, and so ξn

d→ ξ̃ where ξ̃ [0, t] = X̃t . But then ξ̃
d= ξ , and so

the spreadability of ξ̃ , inherited from X̃, carries over to ξ . ��
The preceding results allow us to show that the functional and finite-dimensional

modes of convergence are equivalent for spreadable processes on [0, 1]. This again
extends a statement for exchangeable processes in Kallenberg (1973).

Corollary 4.6. Let X1, X2, . . . be Rd -valued, spreadable processes on [0, 1] or
summation processes on [0, 1] based on spreadable sequences in Rd of lengths

mn → ∞. Then for any processX inD([0, 1],Rd)we haveXn
d→ X iffXn

fd−→ X.
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Proof. If Xn
d→ X, then X is spreadable by Lemma 4.5 and hence continuous

in probability. Since xn → x in D([0, 1],Rd) implies xn(t) → x(t) at every

continuity point t of x, we conclude thatXn
fd−→ X. Conversely,Xn

fd−→ X implies

that {Xn} is tight by Proposition 4.4, and so by Prohorov’s theorem Xn
d→ X in

D([0, 1],Rd). ��
The necessary tools are now available to prove our fundamental regulariza-

tion theorem for spreadable processes. It shows in particular that a process with
spreadable increments has a right-continuous version with left-hand limits iff it is
continuous in probability. In this weaker form, the result is known for exchangeable
processes (cf. Kallenberg (1997), Theorem 14.25). The present statement justifies
our definition of spreadable processes in Section 1.

Theorem 4.7. Let X be an Rd -valued process with spreadable increments and
X0 = 0, defined on the set of dyadic rationals in [0, 1]. Then X extends a.s. to a
spreadable process on [0, 1] with rcll paths.

Proof. For each n ∈ N we introduce a summation process Xn based on the incre-
ments of X on the n-dyadic set Dn. Since Xmt = Xt for all m ≥ n when t ∈ Dn,
the sequence (Xn) is tight inD([0, 1],Rd) by Proposition 4.4. By Prohorov’s theo-

rem, we have convergenceXn
d→ Y inD([0, 1],Rd) along a subsequence, and the

limiting process Y is spreadable by Lemma 4.5. But then Xn
fd−→ Y by Corollary

4.6, and soX
d= Y onD = ⋃

n Dn. Finally, we may use the transfer Theorem 5.10

in Kallenberg (1997) to construct a spreadable process X̃
d= Y with X = X̃ a.s.

on D. ��
We turn to a partial continuous-time extension of Theorem 4.1. For any se-

quences (ξn) and (ηn) of random elements in a Polish space S, we write ξn
d∼ ηn

to mean that ξn
d→ ξ iff ηn

d→ ξ for any random element ξ in S. When ξ is a
spreadable random measure on some interval [0, u], we define the processes αt and
βt as in (2) from the associated distribution functionXt = ξ [0, t]. Let us say that ξ̃
is a corresponding exchangeable random measure on [0, u] if the terminal values
αu and βu agree for ξ and ξ̃ . If ξ is instead an exchangeable random measure on
R+, so that the associated process X is a mixture of subordinators, we write ν for
the random Lévy measure of X and ρ for the rate of increase of the linear drift
component.

Theorem 4.8. Let ξ1, ξ2, . . . be spreadable random measures on some intervals
[0, un] → R+ and let ξ̃1, ξ̃2, . . . be corresponding exchangeable random measures

on the same intervals. Then ξn
d∼ ξ̃n in both M(R+) and D(R+,R+). A similar

result holds for summation processes based on spreadable sequences in R+.

The result fails for processes on a common finite interval, since by Corollary
2.6 and Proposition 4.3 there exist some spreadable random measures on [0, 1]
with different distributions but the same characteristics at 1. We conjecture that the
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statement remains true, possibly under a moment condition, for any Rd -valued,
spreadable processes on some intervals [0, tn] → R+.

Proof. First assume that ξ̃n
d→ ξ̃ in M(R+), and note that the convergence

extends to D(R+,R+) by Corollary 4.6. By Proposition 4.3 and the continuity
in D(R+,R+), the associated characteristics satisfy

(αnt , β
n
t )

d= (α̃nt , β̃
n
t )

d→ (α̃t , β̃t ), t ≥ 0, (8)

under the vague topology on M((0,∞)). In particular, (ξn) is tight inD(R+,R+)
by Proposition 4.4. Now assume that ξn

d→ ξ inD(R+,R+) along a subsequence.
Then ξ is spreadable by Lemma 4.5 and hence exchangeable by Ryll-Nardzewski’s
theorem. By continuity, we have

(αnt , β
n
t )

d→ (αt , βt ), t ≥ 0,

and comparing with (8) gives (αt , βt )
d= (α̃t , β̃t ) for all t ≥ 0. Hence, the char-

acteristics of the limiting processes satisfy (ρ, ν)
d= (ρ̃, ν̃), by the law of large

numbers, and so ξ
d= ξ̃ . Since the limiting distribution is independent of subse-

quence, Prohorov’s theorem yields ξn
d→ ξ̃ along N.

Conversely, assume that ξn
d→ ξ in M(R+). Then Proposition 4.3 yields

α̃nt
d= αnt

d→ αt , t ≥ 0,

and so (ξ̃n) is tight in D(R+,R+). If ξ̃n
d→ ξ̃ along a subsequence, then ξ̃

d= ξ

holds as before, and Prohorov’s theorem yields ξ̃n
d→ ξ along N. ��

We may next extend some one-dimensional convergence criteria from
Kallenberg (1988b).

Proposition 4.9. Let X1, X2, . . . be Rd -valued, spreadable processes or summa-
tion processes on some intervals [0, un] → R+, where the latter are based on some
spreadable sequences of lengthsmn such thatmn/un → ∞. Consider a mixed Lévy
process X in Rd that is either continuous with finite means or ergodic with a finite

exponential moment. Then Xn
d→ X in D(R+,Rd) iff Xnt

d→ Xt for all t ≥ 0.

Again the statement fails for processes on a fixed interval, since by Proposition
4.3 the distribution of a spreadable process on [0, 1] may not be determined by its
one-dimensional projections.

Proof. Assume thatXnt
d→ Xt for all t ≥ 0. Then, by Proposition 4.4, the sequence

(Xn) is tight in D([0, r],Rd) for every r > 0 and hence also in D(R+,Rd). Now

assume that Xn
d→ Y in D(R+,Rd) along a subsequence N ′ ⊂ N. Then Y is

spreadable by Lemma 4.5, and by Ryll-Nardzewski’s theorem it is even exchange-

able. For any t ≥ 0 we get Xnt
d→ Yt along N ′, and so Xt

d= Yt for all t . Under the
stated conditions onX, we may conclude from Theorem 4.1 in Kallenberg (1988b)

that X
d= Y . Since N ′ was arbitrary, we obtain Xn

d→ X. ��
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We conclude this section with some basic norm relations for spreadable
processes, which appear to be new even in the exchangeable case. Our proofs
depend on both the present distributional methods and the martingale methods of
Section 3.

Theorem 4.10. For any real, spreadable processes X on [0, 1] we have

‖X∗
t ‖p � ‖Xt‖p <) t1/(p∨2)‖Xs‖p, s ∈ (0, 1), p ≥ 1, (9)

uniformly in t ∈ [0, 1
2 ] and L(X). The second relation remains valid for all p > 0,

and both relations hold for p > 0 when X is exchangeable.

In particular, we note that

‖Xs‖p � ‖Xt‖p, s, t ∈ (0, 1), p > 0, (10)

uniformly in L(X). Our proof of Theorem 4.10 relies on the following preliminary
result for exchangeable processes.

Lemma 4.11. For any real, ergodic, exchangeable processesX on [0, 1] with char-
acteristics α and γ we have, uniformly in L(X),

‖Xt‖p � ‖X∗‖p � |α| + γ 1/2, t ∈ (0, 1), p > 0.

Proof. Here Mt = (Xt − αt)/(1 − t) is a martingale on [0, 1). Noting that X has
quadratic variation γ and using the BDG inequalities and the symmetry ofXt −αt
under reflection of [0, 1], we get for any t ∈ [0, 1] and p ≥ 1

‖Xt‖p ≤ ‖X∗‖p <) |α| + γ 1/2, (11)

which extends by Jensen’s inequality to arbitrary p > 0.
To prove the reverse relations, suppose that instead ‖Xnt ‖p/(|αn| + γ 1/2

n ) → 0
for some ergodic exchangeable processes Xn with characteristics (αn, γn) (= 0
and some t ∈ (0, 1). By scaling we may assume that ‖Xnt ‖p ≤ 1 and |αn| +
γ

1/2
n → ∞. But these conditions are mutually contradictory by Proposition 4.4.

Thus, ‖Xt‖p >) |α| + γ 1/2, and the assertion follows by combination with (11). ��
Proof of Theorem 4.10. Relation (10) holds by Proposition 4.3 and Lemma 4.11.
Assuming ‖Xs‖p < ∞ for some fixed s ∈ (0, 1) and p ≥ 1, we conclude that X
is integrable. By the proof of Proposition 3.4, we may write Xt = (Xt − X̂t )+ X̂t
where the compensator X̂ is absolutely continuous and admits the martingale den-
sity Mt = E[X1 − Xt |Ft ]/(1 − t). By (10) and Jensen’s inequality, we have
‖Mt‖p <) ‖Xs‖p for fixed s, t ∈ (0, 1). Using the continuous-time version of
Minkowski’s inequality, we get for any t ≤ 1

2

‖X̂∗
t ‖p ≤

∥∥∥∥∫ t

0
|Mr | dr

∥∥∥∥
p

≤
∫ t

0
‖Mr‖p dr ≤ t‖M1/2‖p <) t‖Xs‖p. (12)

As an alternative for p > 1, we may use Doob’s inequality to write

‖X̂∗
t ‖p ≤ t‖M∗

1/2‖p <) t‖M1/2‖p <) t‖Xs‖p.
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Next we conclude from the BDG inequalities that

‖(X − X̂)∗t ‖p <) ‖γ 1/2
t ‖p, p ≥ 1, (13)

uniformly in t ∈ [0, 1]. To estimate the right-hand side in terms of ‖Xs‖p, we
may assume by Proposition 4.3 that X is ergodic exchangeable. Using Jensen’s
inequality, the spreadability of γt , and Lemma 4.11, we get for p ≤ 2

‖γ 1/2
t ‖2

p ≤ ‖γ 1/2
t ‖2

2 = Eγt = tγ <) t‖Xs‖2
p. (14)

For p > 2 we have instead

‖γ 1/2
t ‖pp = Eγ

p/2
t ≤ γ p/2−1Eγt = tγ p/2<) t‖Xs‖pp. (15)

Combining (12)–(15) gives

‖X∗
t ‖p ≤ ‖(X − X̂)∗t ‖p + ‖X̂∗

t ‖p
<) t‖Xs‖p + t1/(p∨2)‖Xs‖p
<) t

1/(p∨2)‖Xs‖p.
In particular, ‖X∗

1/2‖p � ‖X1/2‖p uniformly in L(X). Applying this for each

t ∈ [0, 1
2 ] to the spreadable process Y (s) = X(2st) s ∈ [0, 1], we obtain ‖X∗

t ‖p �
‖Xt‖p uniformly in t ∈ [0, 1

2 ] and L(X). This completes the proof of (9).
To extend the second relation in (9) to arbitrary p > 0, we may assume by

Proposition 4.3 that X is ergodic exchangeable. Then a simple calculation gives
EX2

t = α2t2 + t (1 − t)γ , and so for p ≤ 2 we get by Jensen’s inequality and
Lemma 4.11

‖Xt‖2
p ≤ EX2

t ≤ t (α2 + γ ) � t‖Xs‖2
p.

In the exchangeable case, Lemma 4.11 yields ‖X∗
1/2‖p � ‖X1/2‖p for everyp > 0,

which extends as before to ‖X∗
t ‖p � ‖Xt‖p, uniformly in t ∈ [0, 1

2 ] and L(X).
��

5. Predictable sampling

The main purpose of this section is to extend the optional skipping or predictable
sampling property to spreadable sequences and processes. The result was origi-
nally proved by Doob (1936) for sequences of i.i.d. random variables (cf. Doob
(1953), Theorem III.5.2, and the historical remarks in Halmos (1985), pp. 74–76).
It was extended in Kallenberg (1982) to exchangeable sequences and processes on
bounded or unbounded index sets.

We begin with the quite elementary discrete-time result.

Proposition 5.1. Let ξ = (ξ1, . . . , ξn) be an F-spreadable sequence in some
measurable space S and let τ1 < · · · < τk be F-predictable times in {1, . . . , n}.
Then

(ξτ1 , . . . , ξτk )
d= (ξ1, . . . , ξk). (1)
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This represents the ultimate extension for monotone sampling, since the stated
property trivially implies spreadability of the underlying sequence or process. If ξ is
exchangeable, then (1) remains true for any a.s. distinct, predictable times τ1, . . . , τk
in {1, . . . , n}, regardless of order (cf. Kallenberg (1988a) or (1997), Theorem 9.19).
The stronger version implies that ξ is exchangeable and is therefore false in the
general spreadable case.

Proof. We proceed by induction on k, starting from the triviality for k = 0.
Assuming the statement to hold for less than k predictable times, we turn to the
case of k such times τ1, . . . , τk . For any measurable function f : Sk → R+ and
index j ≤ n we get

E[f (ξτ1 , . . . , ξτk ); τ1 = j ] = E[f (ξj , ξτ2 , . . . , ξτk ); τ1 = j ]

= E[f (ξj , ξj+1, . . . , ξj+k−1); τ1 = j ]

= E[f (ξn−k+1, . . . , ξn); τ1 = j ],

where the second equality holds by the induction hypothesis, applied to sequences
of the form (θj ξ, η)with η anFj -measurable random element, and the last equality
holds by the F-spreadability of ξ and the predictability of τ1. Summing over j and
using once more the spreadability of ξ , we obtain

(ξτ1 , . . . , ξτk )
d= (ξn−k+1, . . . , ξn)

d= (ξ1, . . . , ξk),

which completes the induction. ��
To state the corresponding result in continuous time, consider any Rd -valued,

F-spreadable processX on [0, 1]. IfX is a semimartingale (which holds by Propo-
sition 3.4 when X has finite first moments), then for any predictable set A ⊂ [0, 1]
we may form the processes λA = 1A · λ and XA = 1A ·X, or more explicitly,

λA(t) = λ(A ∩ [0, t]),XA(t) =
∫ t+

0
1A(s) dXs, t ∈ [0, 1], (2)

where the second formula is understood in the sense of component-wise stochastic
integration (cf. Kallenberg (1997), Chapter 23). Introducing the right-continuous
inverse

τs = inf{t ∈ [0, 1]; λA(t) > s}, s ∈ [0, λA], (3)

we may define a process X̂A on [0, λA] by

X̂A(s) = XA(τs), s ∈ [0, λA]. (4)

For A in U—the class of finite, nonrandom interval unions—this agrees with our

definition from Section 1. Thus, for spreadable processes X we have X̂A
d= X on

[0, λA] for all A ∈ U. Our aim is to extend this relation to any predictable set
A ⊂ [0, 1].

Before we can state the general result, we need to make sense of X̂A for arbitrary
X andA. This requires us to extend the integralXA = 1A ·X in (2) to any spreadable
processes X and predictable sets A. Though the stochastic integration V ·X of an
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arbitrary bounded, predictable process V requires X to be a semimartingale (cf.
Kallenberg (1997), Theorem 23.21), less may be needed when the integrand V
takes values in {0, 1}. In any case, we shall see how the restriction map A �→ XA
can be defined with appropriate additivity and continuity properties when X is an
arbitrary spreadable process on [0, 1].

If A is a.s. a finite union of intervals (s, t], we define XA as the usual Stieltjes
integral 1A ·X. Any predictable set of this form can be written as

A =
⋃

j≤m(σj , τj ], (5)

where the interval endpoints are optional times in [0, 1] satisfying

σ1 ≤ τ1 ≤ σ2 ≤ · · · ≤ σm ≤ τm.

The associated elementary predictable integral XA is given by

XA(t) =
∑

j≤m(Xt∧τj −Xt∧σj ), t ∈ [0, 1]. (6)

The following result gives the required extension to the predictable σ -field P on
[0, 1]. Here we say that a mappingA �→ XA on P is additive ifXA∪B = XA+XB
a.s. for any disjoint sets A,B ∈ P.

Theorem 5.2. Let X be an F-spreadable process on [0, 1]. Then the elementary
predictable integral in (6) extends a.s. uniquely to an additive map A �→ XA on P

such that λAn
P→ 0 implies (XAn)

∗
t

P→ 0 for all t ∈ [0, 1). The process XA is a.s.
rcll on [0, 1) with%XA = 1A%X, and we have XA = 1A ·X a.s. whenever X is a
semimartingale on [0, 1).

Our proof is based on two lemmas. We say that A is a simple predictable set if
it can be written as in (5) for some optional times σj and τj taking values in a fixed
dyadic set Dn = {k2−n; k = 0, . . . , 2n}.
Lemma 5.3. Let A be a simple predictable set in [0, 1] with λA ≥ t ≥ 0 a.s. Then

X̂A
d= X on [0, t].

Proof. Let A be given by (5), where the interval endpoints σj and τj take values
in the dyadic set Dn. Fixing a t ∈ [0, 1] with t ≤ λA a.s., we may assume that
λA = m2−n a.s. for some integer m ≤ 2n. Dividing A into m disjoint intervals
(a, b] of length 2−n, we may next assume that τj = σj + 2−n for all j . By Lemma
3.2 we may take F to be right-continuous, in which case σ1, . . . , σm become
F-optional.

Let us now put tk = k2−n for k ≤ 2n and introduce the processes

Yk(s) = Xtk−1+s −Xtk−1 , s ∈ [0, 2−n], k = 1, . . . , 2n.

The sequence (Y1, . . . , Y2n) is clearly spreadable with respect to the discrete
filtration Gk = Ftk , k = 0, . . . , 2n, and we note that the times κj = 2nτj =
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2nσj + 1 are integer-valued and G-predictable with κ1 < · · · < κm. Hence, by
Proposition 5.1,

(Yκ1 , . . . , Yκm)
d= (Y1, . . . , Ym),

which implies X̂A
d= X on [0,m2−n] ⊃ [0, t]. ��

Lemma 5.4. Let A1, A2, . . . be simple predictable sets in [0, 1] with λAn
P→ 0.

Then (XAn)
∗
t

P→ 0 for all t ∈ [0, 1).

Proof. For any simple predictable set A ⊂ [0, 1] we have

(XA)
∗
t = (X̂A ◦ λA)∗t = (X̂A)

∗
ρt
, t ∈ [0, 1), (7)

where ρt = λA(t). Fixing any dyadic time t ∈ [0, 1), we may choose for every
n ∈ N some simple predictable set A′

n ⊂ [0, 1] with λA′
n = 1 − t such that

An = A′
n on [0, t] when λAn ≤ 1 − t . Letting ε ∈ (0, 1 − t), we get by (7) and

Lemma 5.3

E[(XAn)
∗
t ∧ 1] ≤ E[(X̂A′

n
)∗ε ∧ 1] + P {λAn > ε}

= E[X∗
ε ∧ 1] + P {λAn > ε}.

Here the right-hand side tends to 0 as n → ∞ and then ε → 0, since λAn
P→ 0

and X is right-continuous with X0 = 0. Thus, (XAn)
∗
t

P→ 0. ��
Proof of Theorem 5.2. Fix any predictable set A ⊂ [0, 1]. By a monotone class
argument, we may choose some simple predictable sets A1, A2, . . . ⊂ [0, 1] such

that λ(A%An)
P→ 0. Then λ(Am%An)

P→ 0 as m, n → ∞, and so by Lemma 5.4
we have for any t ∈ [0, 1)

(XAm −XAn)∗t = (XAm\An −XAn\Am)∗t
≤ (XAm\An)

∗
t + (XAn\Am)∗t

P→ 0.

Thus, there exists a process XA satisfying

(XAn −XA)∗t
P→ 0, t ∈ [0, 1). (8)

Note thatXA is a.s. rcll on [0, 1), since this property holds trivially for each process
XAn .

To see that the limit XA is a.s. independent of approximating sequence (An),

assume that also λ(A%A′
n)

P→ 0 for some simple predictable sets A′
n. Then

λ(An%A
′
n) ≤ λ(A%An)+ λ(A%A′

n)
P→ 0,

and so by (8) and Lemma 5.4,

(XA −XA′
n
)∗t ≤ (XA −XAn)∗t + (XAn −XA′

n
)∗t

P→ 0.
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To prove the general continuity, let A1, A2, . . . ⊂ [0, 1] be predictable with

λAn
P→ 0 and fix any t ∈ [0, 1). Choose some simple predictable setsA′

1, A
′
2, . . . ⊂

[0, 1] such that

Eλ(An%A
′
n)+ E[(XAn −XA′

n
)∗t ∧ 1] ≤ n−1, n ∈ N.

Then
λA′

n ≤ λAn + λ(An%A′
n)

P→ 0,

and so by Lemma 5.4

(XAn)
∗
t ≤ (XA′

n
)∗t + (XAn −XA′

n
)∗t

P→ 0.

The additivity of the mapping A �→ XA is obvious for simple predictable
sets A. To prove the general result, consider any disjoint, predictable sets A,B ⊂
[0, 1]. Choose some simple predictable sets An and Bn with λ(A%An)

P→ 0 and

λ(B%Bn)
P→ 0, and note that the differences B ′

n = Bn \ An satisfy

λ(B%B ′
n) ≤ λ(A%An)+ λ(B%Bn)+ λ(A ∩ B) P→ 0.

We may then assume that An ∩ Bn = ∅ for all n. Also note that

λ((A ∪ B)%(An ∪ Bn)) ≤ λ(A%An)+ λ(B%Bn) P→ 0.

Since XAn∪Bn = XAn +XBn for every n, we get for t ∈ [0, 1)

(XA∪B −XA −XB)∗t
≤ (XA∪B −XAn∪Bn)∗t + (XAn −XA)∗t + (XBn −XB)∗t

P→ 0,

which shows that XA∪B = XA +XB a.s.
The relation %XA = 1A%X is clearly true for simple predictable sets A. To

extend the formula to the general case, we choose some simple predictable sets An

with λ(A%An)
P→ 0 and note that

(%XAn −%XA)∗t
P→ 0, t ∈ [0, 1),

since (XAn −XA)∗t
P→ 0. It remains to verify that

(1An%X − 1A%X)
∗
t

P→ 0, t ∈ [0, 1).

An equivalent claim is that (1An%X)
∗
t

P→ 0 on [0, 1) for any predictable sets An

with λAn
P→ 0. This follows if we can show that the jump point process ξ of X

satisfies
ξ(Atn × Bε) P→ 0, t < 1, ε > 0,

where Atn = An ∩ [0, t] and Bε = R \ (−ε, ε). To this aim, put

τk = inf{t ∈ [0, 1]; ξ([0, t] × Bε) ≥ k}, k ∈ N.
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By dual predictable projection followed by dominated convergence as n → ∞, we
have

E

∫ τk+

0
1Atn×Bε (s, x) ξ(ds dx) = E

∫ τk

0
1Atn×Bε (s, x) ξ̂ (ds dx)

= E

∫ τk

0
1Atn(s) µsBε ds → 0,

where (µs) denotes the martingale density in Proposition 3.4 (i). As n → ∞, the
inner integral on the left tends in probability to 0, and the assertion follows since k
is arbitrary.

If X is a semimartingale with decomposition M + V , we may choose the
approximating sets An in (8) such that∫ t

0
1A%An d[M] +

∫ t

0
1A%An |dV | P→ 0, t ∈ [0, 1).

For t ∈ [0, 1) we get

(XA − 1A ·X)∗t ≤ (XA −XAn)∗t + (1A ·X −XAn)∗t
P→ 0,

which implies XA = 1A ·X a.s. ��
We may now state the continuous-time version of our predictable sampling

theorem. Given any spreadable process X and predictable set A, we define the
process X̂A by (3) and (4), where XA is given by Theorem 5.2.

Theorem 5.5. Let X be an Rd -valued, F-spreadable process on [0, 1] and let
A ⊂ [0, 1] be F-predictable. Then

X̂A
d= X on [0, t), t ∈ [0, 1] with λA ≥ t a.s.

Again a much more general version—essentially invariance in distribution un-
der arbitrary predictable and measure-preserving transformations—holds for ex-
changeable processes on [0, 1] or R+ (cf. Kallenberg (1988a) and the special case
in Kallenberg (1997), Proposition 16.9).

Proof. By a monotone class argument, we may choose some simple predictable

sets A1, A2, . . . in [0, 1] with λ(A%An)
P→ 0. Fixing any dyadic numbers tn ↑ t ,

we note that the times

σn = inf{s ≤ 1; λAcn(s) > 1 − tn}, n ∈ N,

are optional and take values in some fixed dyadic sets Dm. Hence, the sets A′
n =

An ∪ (σn, 1] are again simple predictable, and we have

λA′
n = λAn(σn)+ 1 − σn ≥ tn,

λ(An%A
′
n) = λ(Acn ∩ (σn, 1]) = (tn − λAn) ∨ 0

≤ λ(A%An)
P→ 0,
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which shows that λ(A%A′
n)

P→ 0. Dropping the primes, we may henceforth assume
that λAn ≥ tn a.s. for all n. Then Lemma 5.3 yields

X̂An
d= X on [0, tn], n ∈ N. (9)

Now introduce as in (3) the right-continuous inverses τ = (τs) and τn = (τns )

of the processes λA and λAn , respectively. As n → ∞,

(λAn − λA)∗ ≤ λ(An%A) P→ 0,

and so (λAn − λA)
∗ → 0 a.s. along a subsequence N ′ ⊂ N. Outside the same

P -null set, we obtain τns → τs along N ′ for every continuity point s < t of τ , and
so by Fubini’s theorem, with convergence along N ′,∫ t

0
P {τns (→ τs} ds = Eλ{s < t; τns (→ τs} = 0,

which implies
P {τns → τs} = 1, s < t a.e. λ. (10)

We also note that a.s. %XA(τs) = 0 for all but countably many s < t since XA is
rcll and τ is strictly increasing. By Fubini’s theorem, we obtain∫ t

0
P {%XA(τs) (= 0} ds = Eλ{s < t; %XA(τs) (= 0} = 0,

which gives
P {%XA(τs) = 0} = 1, s < t a.e. λ. (11)

By Theorem 5.2 we have (XAn − XA)
∗
r

P→ 0 for every r < 1, and so a.s.
(XAn − XA)

∗
r → 0 for all r < 1 along some further subsequence N ′′ ⊂ N ′.

Thus, with probability 1, XAn(rn) → XA(r) for every sequence rn → r < 1 with
%XA(r) = 0. Noting that τs < 1 a.s. for all s < t , we get by (4), (10), and (11) for
almost every s < t

X̂An(s) = XAn(τ
n
s ) → XA(τs) = X̂A(s),

a.s. along N ′′. Using (9) gives

(Xs1 , . . . , Xsm)
d= (
X̂An(s1), . . . , X̂An(sm)

)
d→ (
X̂A(s1), . . . , X̂A(sm)

)
for s1, . . . , sm < t outside some λ-null set. Thus,(

X̂A(s1), . . . , X̂A(sm)
) d= (Xs1 , . . . , Xsm),

which extends to arbitrary s1, . . . , sm < t since bothX and X̂A are right-continuous,

the latter by the right continuity of XA and τ . This shows that indeed X̂A
d= X on

[0, t). ��
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6. Wald-type identities

This final section is devoted to some general Wald-type or decoupling identities for
spreadable sequences and processes. The topic originated with some elementary
relations by Wald (1945) for sums of i.i.d. random variables. In continuous time,
the earliest results are equivalent to some basic martingale properties of stochastic
integrals. General versions for exchangeable sequences and processes on bounded
or unbounded index sets were established in Kallenberg (1989). All these results
are based on the remarkable observation that certain product moments involving
stochastic sums or integrals can be computed as if the integrands and integrators
were independent. The general identities are powerful enough to imply the corre-
sponding versions of the predictable sampling theorem.

In the spreadable case, the basic results are identities involving certain tetrahe-
dral moments, from which identities for ordinary product moments can be derived
as easy corollaries. We begin with the basic relation in discrete time. To avoid dis-
tracting technicalities, we consider only bounded random variables. Binomial coef-
ficients are denoted by cn,k = n!/k!(n−k)!, and we shall often write (xy)jk = x

j
k y
j
k

for convenience.

Proposition 6.1. Let ξ = (ξ1, . . . , ξd) and η = (η1, . . . , ηd) be bounded ran-
dom sequences in Rd of length n ≥ d such that ξ is F-spreadable and η is
F-predictable, and assume that the sums

Sj = ∑ · · · ∑
kj < · · · < kd

η
j
kj

· · · ηdkd , j = 1, . . . , d, (1)

are F0-measurable. Then

E
∑ · · · ∑
k1 < · · · < kd

(ξη)1k1
· · · (ξη)dkd

= c−1
n,d E

∑ · · · ∑
h1 < · · · < hd

ξ1
h1

· · · ξdhd
∑ · · · ∑
k1 < · · · < kd

η1
k1

· · · ηdkd .

Before providing a proof, we state the corresponding identity for product mo-
ments. Here we write xJ = ∏

j∈J xj for convenience. By an ordered partition of
a set J we mean a partition of J into disjoint, nonempty subsets J1, . . . , Jm, listed
in a specified order.

Corollary 6.2. Let ξ = (ξ1, . . . , ξd) and η = (η1, . . . , ηd) be finite, bounded
sequences in Rd such that ξ is F-spreadable and η is F-predictable, and assume
that the sums∑ · · · ∑

k1 < · · · < km
η
J1
k1

· · · ηJmkm , J1, . . . , Jm disjoint in {1, . . . , d},

are F0-measurable. Then

E
∏

j

∑
k(ξη)

j
k

=∑
J1,...,Jm

c−1
n,m E

∑ · · · ∑
h1 < · · · < hm

ξ
J1
h1

· · · ξJmhm
∑ · · · ∑
k1 < · · · < km

η
J1
k1

· · · ηJmkm ,
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where the outer summation on the right extends over all ordered partitions J1, . . . ,

Jm of {1, . . . , d}.
This extends a result for exchangeable sequences in Theorem 3.1 of Kallenberg

(1989). Note, however, that stronger hypotheses are needed in the spreadable case,
since we could otherwise proceed as in Section 6 of the same paper to show that
the sequence is in fact exchangeable.

Proof. Combine Proposition 6.1 with the elementary decomposition∏
j≤d

∑
k≤n x

j
k =

∑
J1,...,Jm

∑ · · · ∑
k1 < · · · < km

x
J1
k1

· · · xJmkm ,

where the outer summation on the right extends over all ordered partitions J1, . . . ,

Jm of {1, . . . , d}. ��
For the proof of Proposition 6.1 we need a simple lemma.

Lemma 6.3. Let η = (η1, . . . , ηd) be an F-predictable sequence in Rd of length
n ≥ d such that the sums Sj in (1) are F0-measurable. Then the sequence

Tr = ∑ · · · ∑
r < k1 < · · · < kd

η1
k1

· · · ηdkd , r = 0, . . . , n− d,

is again F-predictable.

Proof. The statement is obvious for d = 1. Proceeding by induction, we assume
that the statement is true with d replaced by d − 1. Turning to the case of d, we
note that

Tr = S1 −
∑
k≤r
η1
k

∑ · · · ∑
k < k2 < · · · < kd

η2
k2

· · · ηdkd , r = 1, . . . , n− d.

Applying the induction hypothesis to the d − 1 -fold inner sum, we see that the kth
term on the right is Fk−1-measurable. The assertion now follows since Fh ⊂ Fk

for h ≤ k. ��
Proof of Proposition 6.1. Using repeatedly the F-spreadability of ξ , the
F-predictability of η, and Lemma 6.3, we get

E
∑ · · · ∑
k1 < · · · < kd

(ξη)1k1
· · · (ξη)dkd

= E ξdn
∑ · · · ∑
k1 < · · · < kd

(ξη)1k1
· · · (ξη)d−1

kd−1
ηdkd

= E ξdn
∑ · · · ∑
k1 < · · · < kd−1

(ξη)1k1
· · · (ξη)d−1

kd−1

∑
kd>kd−1

ηdkd

= E ξd−1
n−1 ξ

d
n

∑ · · · ∑
k1 < · · · < kd−1

(ξη)1k1
· · · (ξη)d−2

kd−2
ηd−1
kd−1

∑
kd>kd−1

ηdkd
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= E ξd−1
n−1 ξ

d
n

∑ · · · ∑
k1 < · · · < kd−2

(ξη)1k1
· · · (ξη)d−2

kd−2

∑ ∑
kd > kd−1 > kd−2

ηd−1
kd−1

ηdkd

= · · · = E ξ1
n−d+1 · · · ξdn∑ · · · ∑

k1 < · · · < kd
η1
k1

· · · ηdkd

= c−1
n,d E

∑ · · · ∑
h1 < · · · < hd

ξ1
h1

· · · ξdhd
∑ · · · ∑
k1 < · · · < kd

η1
k1

· · · ηdkd . ��

We turn to the basic tetrahedral identity in continuous time. Again we may
avoid some technical complications by considering only bounded integrands and
integrators of bounded variation. The tetrahedral regions %k are given by

%k = {(s1, . . . , sk) ∈ [0, 1]k; s1 < · · · < sk}, k ∈ N.

Theorem 6.4. Consider on [0, 1] an F-spreadable processX = (X1, . . . , Xd) of
bounded variation and some bounded, F-predictable processes V 1, . . . , V d such
that the integrals

ηk =
∫

· · ·
∫
%d−k+1

V k · · ·V d, k = 1, . . . , d, (2)

are F0-measurable. Then

E

∫
· · ·

∫
%d

V 1dX1 · · ·V ddXd

= d!E
∫

· · ·
∫
%d

dX1 · · · dXd
∫

· · ·
∫
%d

V 1 · · ·V d. (3)

As a consequence, we obtain the following product moment identity, which
extends Theorem 4.1 in Kallenberg (1989) for exchangeable processes. Again we
note that stronger hypotheses are needed in the spreadable case, since we could
otherwise use the result to prove that X is exchangeable.

For any two semimartingalesX and Y we write dXdY = d[X, Y ]. Differentials
of higher order are defined recursively, so that for any semimartingalesX1, . . . , Xd

we have ∫ t

0
dX1

s · · · dXds =
∑

s≤t%X
1
s · · ·%Xds , t ≥ 0, d ≥ 3.

If X1
0 = · · · = Xd0 = 0, we put

XJt =
∫ t

0

∏
j∈J dX

j
s , ∅ (= J ⊂ {1, . . . , d}.

Finally, we use V Js to denote the product
∏
j∈J V

j
s .
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Corollary 6.5. Consider on [0, 1] anF-spreadable processX = (X1, . . . , Xd) of
bounded variation and some bounded, F-predictable processes V 1, . . . , V d such
that the integrals∫

· · ·
∫
%m

V J1 · · ·V Jm, J1, . . . , Jm disjoint in {1, . . . , d},

are F0-measurable. Then

E
∏

j≤d

∫ 1

0
V jdXj

=
∑

J1,...,Jk
k!E

∫
· · ·

∫
%k

dXJ1 · · · dXJk
∫

· · ·
∫
%k

V J1 · · ·V Jk ,

where the summation extends over all ordered partitions J1, . . . , Jk of the set
{1, . . . , d}.

This follows from Theorem 6.4 by means of the following tetrahedral decompo-
sition, which generalizes the integration-by-parts formula for general semimartin-
gales (cf. Kallenberg (1997), Theorem 23.6).

Lemma 6.6. Let X1, . . . , Xd be real semimartingales starting at 0. Then

X1
t · · ·Xdt =

∑
J1,...,Jk

∫ · · · ∫
s1 < · · · < sk ≤ t

dXJ1
s1

· · · dXJksk , t ≥ 0,

where the summation extends over all ordered partitions J1, . . . , Jk of the set
{1, . . . , d}.
Proof. By the substitution rule for general semimartingales (cf. Kallenberg (1997),
Theorem 23.7), we have

X1
t · · ·Xdt =

∑
J

∫ t

0
dXJs

∏
k /∈JX

k
s−, t ≥ 0,

where the summation extends over all nonempty subsets J ⊂ {1, . . . , d}. The
assertion now follows by iteration in finitely many steps. ��

Several lemmas are needed for the proof of Theorem 6.4. We begin with a
continuous-time version of Lemma 6.3, which can be proved by a similar argument.

Lemma 6.7. Let V 1, . . . , V d be bounded, F-predictable processes on [0, 1] such
that the integrals in (2) are F0-measurable. Then the process

Yt =
∫ 1

t

V 1
s1
ds1

∫ 1

s1

V 2
s2
ds2

∫ 1

s2

· · ·
∫ 1

sd−1

V dsd dsd, t ∈ [0, 1],

is again F-predictable.

Theorem 6.4 will first be proved under a simplifying assumption.
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Lemma 6.8. The statement of Theorem 6.4 holds when V 1, . . . , V d are supported
by some interval [0, 1 − ε] with ε > 0.

Proof. Though our formal argument is similar to the proof of Proposition 6.1, the
justification requires a lot more care. To explain the key steps, consider a spreadable
processX of bounded variation and a bounded, predictable process V . Recall from
Proposition 3.4 thatX is a special semimartingale, whose compensator X̂ admits a
martingale densityM on [0, 1). Using repeatedly the definition ofM , the martingale
properties of X − X̂ andM , and Fubini’s theorem, we get for 0 < t < t + h ≤ 1

E

∫ t

0
VsdXs = E

∫ t

0
VsdX̂s = E

∫ t

0
VsMsds

=
∫ t

0
E(VsMs)ds =

∫ t

0
E(VsMt)ds

= EMt

∫ t

0
Vsds = h−1E(Xt+h −Xt)

∫ t

0
Vsds.

Let us now put tk = 1 − ε(d − k)/d for k = 0, . . . , d and define

ρk = Xktk −Xktk−1

tk − tk−1
, k = 1, . . . , d.

Since X remains F-spreadable on [0, 1 − ε] under the “probability” measures
E[ρd · · · ρk; ·], we obtain more generally

E ρd · · · ρk+1

∫ 1−ε

0
VsdXs = E ρd · · · ρk

∫ 1−ε

0
Vsds, k = 1, . . . , d. (4)

To explain our second key step, consider a semimartingaleX and two bounded,
predictable processes U and V where

∫ 1
0 Utdt is F0-measurable. Write At =∫ t

0 Usds and Yt = ∫ t
0 VsdXs , and note that [A, Y ] = 0. Integrating by parts gives∫ 1

0
Yt−dAt = A1Y1 −

∫ 1

0
AtdYt =

∫ 1

0
(A1 − At)dYt

or ∫ 1

0
Utdt

∫ t−

0
VsdXs =

∫ 1

0
VtdXt

∫ 1

t

Usds. (5)

Now to prove (3), we may imitate the discrete-time argument, alternating the
use of (4) and (5) as follows:

E

∫
· · ·

∫
%d

V 1
s1
dX1

s1
· · ·V dsd dXdsd

= E

∫ 1

0
V dsd dX

d
sd

∫ sd−

0
V d−1
sd−1

dXd−1
sd−1

· · ·
∫ s2−

0
V 1
s1
dX1

s1

= E ρd

∫ 1

0
V dsd dsd

∫ sd−

0
V d−1
sd−1

dXd−1
sd−1

· · ·
∫ s2−

0
V 1
s1
dX1

s1
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= E ρd

∫ 1

0
V d−1
sd−1

dXd−1
sd−1

∫ 1

sd−1

V dsd dsd

∫ sd−1−

0
V d−2
sd−2

dXd−2
sd−2

· · ·

= E ρdρd−1

∫ 1

0
V d−1
sd−1

dsd−1

∫ 1

sd−1

V dsd dsd

∫ sd−1−

0
V d−2
sd−2

dXd−2
sd−2

· · ·

= E ρdρd−1

∫ 1

0
V d−2
sd−2

dXd−2
sd−2

∫ 1

sd−2

V d−1
sd−1

dsd−1

∫ 1

sd−1

V dsd dsd · · ·

= E ρdρd−1ρd−2

∫ 1

0
V d−2
sd−2

dsd−2

∫ 1

sd−2

V d−1
sd−1

dsd−1

∫ 1

sd−1

V dsd dsd · · ·

= · · · = E ρd · · · ρ1

∫ 1

0
V 1
s1
ds1

∫ 1

s1

V 2
s2
ds2

∫ 1

s2

· · ·
∫ 1

sd−1

V dsd dsd

= E ρ1 · · · ρd
∫ 1

0
V dsd dsd

∫ sd

0
V d−1
sd−1

dsd−1

∫ sd−1

0
· · ·

∫ s2

0
V 1
s1
ds1

= d!E
∫

· · ·
∫
%d

dX1
r1
. . . dXdrd

∫
· · ·

∫
%d

V 1
s1
ds1 · · ·V dsd dsd .

Here the first equality holds by definitions, equalities 2, 4, 6, . . . hold by (4), and
equalities 3, 5, 7, . . . hold by (5) together with Lemma 6.7. The process is continued
recursively until all stochastic integrals are converted into associated Lebesgue
integrals.

The second relation from the end holds by Fubini’s theorem. Finally, the last
equality follows by the same computations, in the special case when V 1

s , . . . , V
n
s

are F0-measurable and independent of s. ��
For the extension to the general case, we need to employ a measurable selection

based on the following lemma.

Lemma 6.9. Let ξ and η be random elements in some spaces S and T where T is
Borel, and assume that f (ξ, η) = 0 a.s. for some measurable function f : S×T →
R. Then there exists a ξ -measurable random element η̂ of T such that f (ξ, η̂) = 0
a.s.

Proof. PutA = f−1{0} and let πA denote the projection ofA on S. By the general
section theorem (cf. Dellacherie (1972), Theorem T37) there exists a measurable
function g : S → T such that

(ξ, g(ξ)) ∈ A a.s. on {ξ ∈ πA}.
Since (ξ, η) ∈ A implies ξ ∈ πA, we also note that

P {ξ ∈ πA} ≥ P {(ξ, η) ∈ A} = 1.

Thus, the assertion holds with η̂ = g(ξ). ��
The following truncation lemma will be needed to reduce the proof of Theorem

6.4 to the special case of Lemma 6.8.
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Lemma 6.10. Let V 1, . . . , V d be F-predictable processes on [0, 1] such that
|V k| ≤ 1 and the integrals ηk in (2) are F0-measurable. Then for every ε ∈ (0, 1

2 ]
there exist some predictable processes Ṽ 1, . . . , Ṽ d with a.s. the same values of the
integrals in (2), such that for any k ≤ d we have Ṽ k = V k on [0, 1 − 2ε], |Ṽ k| ≤ 2
on (1 − 2ε, 1 − ε], and Ṽ k = 0 on (1 − ε, 1].

Proof. Define the random signed measures ξ1, . . . , ξn on [0, 1] by

ξkB =
∫
B

V ks ds, B ∈ B([0, 1]), 1 ≤ k ≤ d.

Since the V k are predictable and hence progressively measurable, we note that the
ξk are adapted to F. Equation (2) and the conditions |V k| ≤ 1 translate into

(ξk ⊗ · · · ⊗ ξd)%d−k+1 = ηk, 1 ≤ k ≤ d, (6)

|ξk[a, b]| ≤ b − a, 0 ≤ a ≤ b ≤ 1, 1 ≤ k ≤ d. (7)

Approximating the region %d−k+1 by finite unions of rectangles, we see by
dominated convergence that (6) defines a measurable constraint on the random
measures ξ1, . . . , ξd and variables η1, . . . , ηd . The same thing is true for (7) since
it suffices to consider rational a and b. The whole collection of conditions (6) and
(7) may then be summarized by an equation

F(ξ1, . . . , ξd; η1, . . . , ηd) = 0 a.s.

for some measurable function F .
Now fix any ε ∈ (0, 1

2 ] and let ξ ′
1, . . . , ξ

′
d denote the restrictions of ξ1, . . . , ξd

to [0, 1−2ε]. By Lemma 6.9 there exist some signed random measures ξ̂1, . . . , ξ̂d ,
each measurable with respect to ξ ′

1, . . . , ξ
′
d and η1, . . . , ηd , such that ξ̂k = ξk on

[0, 1 − 2ε] for all k and

F(ξ̂1, . . . , ξ̂d; η1, . . . , ηd) = 0 a.s.

In other words, the ξ̂k are F1−2ε-measurable and satisfy (6) and (7) a.s.
From the version of (7) for ξ̂1, . . . , ξ̂d we note that these measures are a.s.

absolutely continuous with densities V̂ 1, . . . , V̂ d bounded by ±1. By the martingale
approach to the Radon–Nikodym theorem (cf. Doob (1953), Section VII.8), we
may choose the V̂ k to be F1−2ε ⊗ B -measurable on (1 − 2ε, 1]. Completing the
definition by taking V̂ k = V k on [0, 1 − 2ε] for all k, we note that the V̂ k become
a.s. bounded by ±1 and satisfy (2).

We now introduce the function

f (t) = t − 1
2 (t − 1 + 2ε)+, t ∈ [0, 1], (8)

and consider for each k ∈ {1, . . . , d} the signed random measure ξ̃k = ξ̂k ◦ f−1

on [0, 1 − ε]. Since f is strictly increasing, we have f (t1) < · · · < f (tk) iff
t1 < · · · < tk , and so

(f⊗k)−1%k = %k, k ∈ N.
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Thus, (6) remains a.s. fulfilled for ξ̃1, . . . , ξ̃d . Also note that ξ̃k = ξk on [0, 1 − 2ε]
for all k.

Inverting (8), we note that on (1 − 2ε, 1 − ε] the random measures ξ̃1, . . . , ξ̃d
have a.s. the densities

Ṽ kt = 2V̂ k(2t − 1 + 2ε), ε ≤ 1 − t < 2ε, 1 ≤ k ≤ d. (9)

We may complete the construction by setting Ṽ k = V k on [0, 1 − 2ε] and Ṽ k = 0
on (1 − ε, 1]. The Ṽ k are again F1−2ε ⊗B -measurable and hence predictable on
(1−2ε, 1−ε]. The predictability also holds trivially on the intervals [0, 1−2ε] and
(1 − ε, 1]. Furthermore, (2) remains a.s. true for Ṽ 1, . . . , Ṽ d since the measures
ξ̃1, . . . , ξ̃d satisfy (6) a.s. Finally, (9) shows that the processes Ṽ k are a.s. bounded
by ±2. ��
Proof of Theorem 6.4. For any ε ∈ (0, 1

2 ], let V 1
ε , . . . , V

d
ε denote the truncated

processes constructed in Lemma 6.10, and conclude from Lemma 6.8 that (3)
holds with V 1, . . . , V d replaced by V 1

ε , . . . , V
d
ε . As ε → 0 we have V kε → V k on

[0, 1) for all k, and (3) follows in the stated form by dominated convergence. ��
We may use the present results to give alternative proofs of the predictable

sampling theorems of Section 5, at least under some simplifying assumptions.

Second proof of Proposition 5.1. We may assume that the ξj take values in [0, 1].
By the Cramér–Wold theorem, it suffices to show for any c1, . . . , ck ∈ R that∑
j cj ξτj

d= ∑
j cj ξj . Since both sides are bounded, it is equivalent that

E
(∑

j
cj ξτj

)n = E
(∑

j
cj ξj

)n
, n ∈ N. (10)

To see this, we introduce the predictable sequence

αi = inf{j ; τj = i}, i = 1, . . . , l,

and note that
∑
j cj ξτj = ∑

i cαi ξi where c∞ = 0 by convention. Equations (10)
now follow from Corollary 6.2 if we can only show that∑ · · · ∑

i1 < · · · < ih
cr1αi1

· · · crhαih = ∑ · · · ∑
j1 < · · · < jh

c
r1
j1

· · · crhjh

for any positive integers h ≤ k and r1, . . . , rh. Here the product on the left van-
ishes unless (i1, . . . , ih) = (τj1 , . . . , τjh) for some j1 < . . . < jh. Applying the
corresponding substitution and noting that ατj = j for all j , we see that the two
sums agree. ��

Second (partial) proof of Theorem 5.5. We consider only the case when X has
bounded variation. As in the case of (10), we need to show that

E

(∫
f dX̂A

)n
= E

(∫
f dX

)n
, n ∈ N,
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for any function f : [0, 1] → R of the form

f (s) =
∑

j≤mcj1{s ≤ tj }, s ∈ [0, 1],

where c1, . . . , cm ∈ R and 0 ≤ t1 < · · · < tm ≤ λA a.s. By the definition of X̂A
we have

∫
f dX̂A = ∫

V dX where V denotes the predictable process

Vs = 1A(s)
∑

j≤mcj1{s ≤ τtj }, s ∈ [0, 1],

defined in terms of the right-continuous inverse τ of λA. By Corollary 6.5 it is then
enough, for any k and r1, . . . , rk in N, to show that∫

· · ·
∫
%k

V r1s1 · · ·V rksk =
∫

· · ·
∫
%k

f r1s1 · · · f rksk .

But this follows easily from the substitution rule
∫
(f ◦ g) dµ = ∫

f d(µ ◦ g−1)

for Lebesgue–Stieltjes integrals. ��
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