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Abstract. A new probabilistic method, based on the Girsanov theorem, for establishing the
strong Feller property of diffusion processes in both finite and infinite dimensional spaces
is proposed. Applications to second order stochastic differential equations, stochastic delay
equations and stochastic partial differential equations of parabolic type are discussed, with
a twofold aim: both to extend some older results, usually by weakening the assumptions on
the drift term, and to obtain simpler proofs of them.

0. Introduction

Consider a homogeneous Markov process in a state spadth a strong Feller
irreducible transition probability?. In many cases, a rather complete description
of its long time behaviour is available by relating in an almost one-to-one way
recurrence properties of the process to existence and uniquenesgs-fifiad) in-
variant measure. In particular, if an invariant probability measie®ists, then the
process is recurrent and the measurgs, ) converge to in the total variation
norm as — oo for all starting pointsc € S. For locally compact spaces these
results were obtained in late fifties by G. Maruyama and H. Tanaka [31] and R. Z.
Khas'minski [27], for recent extensions to a wider class of state spaces (including
separable Banach spaces) see e.g. [41], [42] and references therein.

Let us recall that the transition probabilify (or the corresponding transition
semigroup( P;)) is strong Feller ifP, ¢ is a continuous function ofifor eactr > 0
and every bounded Borel functignon S, and irreducible ifP,1; > 0 on S for
eachr > 0 and all open set& # ¢. Of these two properties, the former is usu-
ally more difficult to verify. A Markov process defined by a stochastic differential
equation inR"™ with sufficiently regular coefficients such that the diffusion matrix
is uniformly positive definite possesses a transition probability having a density
which is a fundamental solution of the backward Kolmogorov equation, therefore,
the strong Feller property and irreducibility follow by the properties of fundamen-
tal solutions (see e.g. [18], Theorem 6.5.4). A more refined result in this direction,
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also based on PDE techniques, may be found in [44], Theorem 7.2.4. In the de-
generate case, K. Ichihara and H. Kunita found a characterization of hypoelliptic
differential operatord. = %z;:l Xl.2 + Y, whereXq, ..., X,, Y areg*°-vector

fields on ad-dimensionalg*>°-manifold M, d > r, that generate a strong Feller
process (see[23],Lemma5.1). Recently, in the paper [39] the strong Feller property
was established for diffusions " with drifts merely integrable using Dirichlet
forms.

If we turn to solutions to stochastic partial differential equations (SPDE'’s, for
brevity) which are Markov processes in infinite dimensional spaces the above men-
tioned tools cease to be easily applicable. Specially, the theory of Kolmogorov
equations in infinitely many variables has been developed only recently, more or
less parallelly to the study of the strong Feller property.

The first proofs of the strong Feller property for SPDE’s were based either on
finite dimensional approximations (e.g. in [32]) or on smoothing properties of the
infinite dimensional Kolmogorov equations ([34], [10]). Another approach, based
on the Bismut-Elworthy formula for directional derivatives of the transition semi-
group, was initiated in the paper [11], extended to equations with a multiplicative
noise and Lipschitz continuous nonlinear terms in [38], and subsequently applied
to various particular models, as stochastic reaction-diffusion equations with a poly-
nomial drift and stochastic Burgers and Navier-Stokes equations, see Chapters 7
and 14 of the monograph [14] for discussion and references, or the more recent
papers [17], [6], [7], [8], [22]. Tools from the Malliavin calculus were employed in
[19], [20].

All these proofs are rather complicated from the technical point of view and, as
in the finite dimensional case, they depend more on analytical than on probabilistic
methods. It was our intention to find a different argument, more straightforward
and of a probabilistic nature, yielding the strong Feller property of solution of some
classes of SPDE’s. The procedure we propose is based on two ingredients: First,
we characterize the strong Feller property of a transition probalstlity terms of
equicontinuity of measures; (x, -), this is done in Section 1 below. Second, we
show that, roughly speaking, an application of the Girsanov theorem to a strongly
Feller equation leads to an equation defining again a strong Feller process. Precise
formulations and an easy proof may be found at the beginning of Section 2. It
should be mentioned here that this paper having been essentially completed we
learned that a similar measure-theoretic description of the strong Feller proper-
ty was used in a different context by . Stettner in [15]. The Girsanov theorem
was employed to prove the (weak) Feller property of weak solutions to stochastic
differential equations ifR? in a related but different manner in the paper [43].

The rest of Section 2 is devoted to illustrative examples. The emphasis is laid
upon the argument, not on reaching maximal possible generality. There are two
types of applications of the proposed method. Either one starts with a linear equa-
tion, whose solutions are Gaussian processes (and hence necessary and sufficient
conditions for the strong Feller property are available) and obtains a self-contained
proof of the strong Feller property of a solution to a semilinear stochastic differ-
ential equation with an additive noise. Or one starts with an equation that can be
treated with some of the analytical methods and uses the probabilistic procedure to
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relax assumptions on the drift or to simplify considerably earlier proofs. Moreover,
the Girsanov theorem based procedure often yields irreducibility as an immediate
consequence of the proof of the strong Feller property.

Although we have aimed primarily at applications to SPDE'’s, it turns out that
new results may be obtained even in the finite dimensional case. In Example 2.1
we consider a second order stochastic differential equation written symbolically as

¥4 F(x, %) = D 0.1)

and show that its solution is a strong Feller procesk iis an invertible matrix
and F is a bounded continuous function. Let us note that the Kolmogorov equa-
tion corresponding to (0.1) strongly degenerates, so the theory of parabolic partial
differential equations cannot be applied directly.

A stochastic delay equation

0
dx = </ x(®+s)dn(s) + F(x(t)))dt + X dw
is dealt with in Example 2.2. We provide sufficient conditions for the proedes
be strong Feller and irreducible for> r, answering in this way a question posed
by G. Da Prato and J. Zabczyk (see [14], §10.3).

A stochastic parabolic equation

dX = (AX + (X)) dt + o (X)QY2dW (0.2)

with a bounded continuous drift in a Hilbert space is treated in Examples 2.3, 2.4
inthe cases = I ando boundedly invertibleQ = I, respectively. We relate here
our results to those obtained in [10], [19], and [38]. Finally, a one-dimensional heat
equation with a nonlinear nonhomogeneous white noise boundary condition is dis-
cussed in Example 2.5. Notwithstanding the simplicity of the considered problem,
the result does not seem to be provable by the available analytic methods.

In all these examples, the use of Girsanov’s theorem may be justified without
difficulties due to the boundedness (or the linear growth) of the drift. If the driftis not
bounded, some approximation procedures may be invoked, and we give two differ-
ent examples in this spirit. First, using Lyapunov functions techniques, we extend re-
sults concerning the equation (0.1) to drifts of the fafix, x) = b(x, x)+ VG (x),
whereb is a locally Lipschitz function obeying some one-sided growth conditions
and the potentiaf; is bounded from below. Equations of this type and their long
time behaviour have been investigated recently e.g. in [30], [2], [1]. Especially, in
the paper [1], 82, it was noted that the strong Feller property may be established
using the results from [23] i € %°°(R?*). Our method does not require any
smoothness of the drift.

Second, in Section 3 we return to the problem (0.2) assumingftisatiefined
and continuous only on some Banach subspace of the state space, but satisfies a
suitable dissipativity hypothesis.

In the last Section 4 we sketch an alternative approach to the result proven by
M. Fuhrman in [20]. He considered semilinear stochastic equations with an additive
noise in a Hilbert space, whose drifts belong to a certain special class, introduced
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in the finite dimensional case by G. Jona-Lasinio and&eéS8r [24]. Drifts in this
class, nevertheless, may be of considerable interest as they are subject only to weak
growth restrictions and they need not be dissipative. We will reprove the main result
of [20] on the strong Feller property replacing a difficult step using the Malliavin
calculus by a straightforward application of our Theorem 2.1 and showing that the
most stringent assumption of [20] may be omitted.

We close this section with introducing some notation to be used in what follows.
By 14 we denote the indicator of a sat by M, «, the space of allh x n matrices
with real entries. IfX, Y are metric space¥(X; Y) stands for the space of all
continuous mapping fronX to Y, €(X) = ¢(X; R), and%,(X) for the subspace
of bounded functions. IX, ¥ are Banach spaces, th&f(X) denotes the space
of all functions having continuous &chet derivatives up to ordér #(X, Y) the
space of all bounded linear operators frdamio Y, (X)) = (X, X); I € L (X)
is the identity operator. I{52, 1) is a measure space, théfi(£2; X) denotes the

space of all Bochnep-integrable functions fornf2 to X, and% denotes the con-
vergence in measuye. Finally, if X andY are Hilbert spaces, theiB||ys denotes
the Hilbert-Schmidt norm of an operatBre (X, Y).

1. Preliminarieson convergence of measures

Let E be a Polish space® the o-algebra of Borel sets i. Denote byr, the
topology of pointwise convergence in the space of finite signed measur&s on
that is, a ne{u, }, e converges tqu in 7, if and only if lim,cr u, (A) = ©(A)

for everyA € 4. Let {u,}nen be a sequence of Borel probability measures on
E, then the sefu,; n € N} is conditionally sequentially compact fey iff it is
equicontinuous, i.e.

lim supu,(Ay) =0 forall{A;} € 4, Ay | U, (1.2)

—>0 neN
see [21], Theorem 2.6, cf. also [16], Theorems 1V.9.1, IV.9.5. Therefore, Lemma
3.15in[21] yields thaj, —> w in 7, provided (1.1) holds and,, —> u weakly
in the probabilistic sense, that is

lim /fdu,,:ffdu for everyf € € (E). (1.2)
E E

n—o0

Further, consider a Markov kernél= P (x, -) on(E, #). P is called strong Feller
if P(-,A) € €,(E) foranyA € #. As a real valued function oA is continuous
iff it is sequentially continuous, the strong Feller property is equivalent to the as-
sertion thatP (x,, A) — P(xg, A) whenevelA € % andx,, xo € E are such that
x, — xoin E. In other words P is strong Feller iffP (x,,, -) —> P(xo, -) in z, for
all x,;, xg € E such thaty, — xo.
Hence we have arrived at the following result:

Lemmal.l. Let E be a Polish space, % the o-algebra of its Borel setsand P a
Markov kernel on (E, #4). Then P isstrong Feller if and only if P isFeller and the
measures { P (x,,, -); n € N} are equicontinuous for any convergent sequence {x; }
inE.



Probabilistic approach to the strong Feller property 191

Proof. It remains to note thak is Feller (that is, maps the spa€g(E) into itself)
iff (1.2) holds for the measures,, = P(x,, -), u = P(xg, ), wheneveKx,} is a
convergent sequence i, x, — xo. Q.E.D.

2. Thestrong Feller property for stochastic evolution equations

Let H be a separable Hilbert space ahd Dom(A) — H an infinitesimal gener-
ator of a strongly continuous semigroup B let W denote a standard cylindrical
Wiener process in a real separable Hilbert spAcgVe shall denote the norm and
the inner product in botl#7 and7 by | - | and (., -), respectively. Let us consider
equations

dX = (AX + (X)) dt + o (X)QY2dw, (2.1)
dZ = AZdt + 0(Z)QY?dw, (2.2)

whereQ € £ (7) is nonnegative and self-adjoint (but not necessarily nuclear),
f:H — HandoQY?: H — %(T, H) are Borel mappings such that

(A) 1) Thereexistsa probability space (£2, 7, P) carrying a standard cylindrical
Wener process W and, for any y € H, amild solution Z” to (2.2) satisfying
ZY(0) = y.

2) For any y € H thereexistsa martingale solution ((@y, Gy, p¥), (%)), W7,
(X (1)) of (2.1)with X*(0) = y.
3) Uniquenessin law holds for both (2.1)and (2.2).

(Martingale solutions are defined asin [12], Chapter 8.) The assumption (A) implies
that (2.1), (2.2) define Markov processes; letus denot by P(¢, v, -), R(t, y, -)

the transition probabilities corresponding to the equations (2.1), (2.2), respectively,
that is

P(t,y, A) =f 14X (1)) dp”,
o,
R(t,y,A) =E14(Z°(1)), t>=0, ye H, Ae%,

% denoting ther-algebra of Borel sets i#/.
We aim at proving the following

Theorem 2.1. Suppose that (A) holds and let there exist a Borel function
u: H — 7 satisfying f(-) = o (-)0Y2u(-). Assume that

(i) the transition probability R defined by (2.2)is strong Feller,

(i)forallt >0andy € H wehave EU (y, t) = 1, where

t l t
Uy, 1) =exp(/0 (u(Z(5)), ) dW (s) — 5/0 }u<ZY(s)>!2ds>,

and either
(iii) the set {U (yn, t); n € N} isuniformly integrable for any fixed r > 0 and
any convergent sequence {y,} in H,
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(iv) P isFeller,
or
(v) we have
UG ) == U(.1) 23)
and
|2 (1) — 2° (1) TPO; 0 (2.4)

for any convergent sequence {y,} in H, y, — y, andfor all + > 0.
Then P isstrong Feller aswell.

Remark 2.1. Note thatif (2.3) and (ii) hold then due to the nonnegativity/athe
hypothesis (iii) follows, in fact, we havé (y,,t) —> U(y, 1) in L1(P) (see e.g.
[35], Theorem 11.21). Hence the relevant information is that (ii) and (v) imply also
(iv). The assumption (iv), the Feller property Bf can often be easily checked if
the nonlinearities’, o are (locally) Lipschitz continuous and of linear growth, cf.
e.g. [12], §9.2.1. (In the case dith< oo, another proof requiring only continuity
and boundedness gfando is proposed in [44], Corollary 6.3.3.) In general, it may
be helpful to know that we can obtain the Feller propertyPafising a procedure
based on the Girsanov theorem.

Remark 2.2. The assumption (2.3) may be often verified in a straightforward way.
For example, assume that the function

H— L%([0,T] x 2;7), y+— u(Z’()

is continuous for every” > 0. (Sufficient conditions for that can be easily given
interms ofo, f andQ.) Lety, y, € H be such thay, — y; set for brevity
t 1 t
u) = / (u(z¥(s)), ) dW (s) — E/ lu(z2"(s)) | ds.
0 0

Obviously,u(y,) —> u(y) in probability as: — oo, hence also

Ui, 1) = XPU(ya) —— expuu(y) = U(y, 1),

Remark 2.3. Fixar > 0 and a subse¥ C H. Tracing the proof of the Novikov
condition as it is presented e.g. in [29], Theorem 1V.3.5(a) or in [26], Theorem 1.5,
it is possible to check easily that if

1 ! 12
supEexp| (= + / Z) d)
yeAE p((z 8) 0 [u(ZD)["ds | < o0

for somes > 0 then there exists a > 1 such that

SUpEU?(y,1) < oc. (2.5)
yeM

Itis wellknown that (2.5) implies uniform integrability of the $ét(y, ¢); y € M}.
(We are indebted to M. &kner for this remark.)
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Remark 2.4. Let us note that, in fact, the assumption (A2) is superfluous since
under (ii) the existence of martingale solutions of (2.1) follows from the Girsanov
theorem.

Proof. First, assume that (i)—(iv) are satisfied. Let ustfix 0 and a convergent
sequencéy, } in H arbitrarily; we have to prove the equicontinuity of the measures
{P(t, s, ); n € N}. Take an arbitrary sequenag € # such thatd; | ¢. By the
assumption (i) we know that

lim supR(z, y,, Ax) = klim SUpEl14, (Z7 (1)) = 0. (2.6)

k=00 yeN X neN

Set for simplicityU (y,) = U(y, t) and define a probabilitﬁn on 2 by dl?’n =
U (y,) dP. By the Girsanov theorem the proces% considered on the probability
space($2, 7, P,,) solves the equation (2.1), therefore

P(t, yu, Ar) = Po {27 (1) € Ay}

(see e.g. the proof of Theorem 10.18 in [12]). It follows

SUPP (1, yu, Ar) = SUPE(U ()14, (2" (1))

neN neN

= SU’\FJ){E(l{U(yn)SK}U(yn)lAk (Zn (f)))

ne

+E(Luon-0U G014 2 @)]

< K SUPEL4, (27" (1)) + SUPE (L (y)= k) U ().
neN

neN

Fix an arbitrarye > 0, by the uniform integrability we can choo&e> 0 such that

sup E(l{U(y,,)>K}U(Yn)) <

&
neN 2'
According to (2.6),

I
SUPE14, (Z7 (¢ —
ne£ A (277 (1)) < oK

for all k € N sufficiently large, which completes the first part of the proof.

Now assume (i) and (v), it remains to prove thtis Feller. Denote byP
the probability with the density/(y), dP = U(y) dP, and choose < %,(H)
arbitrarily. We aim at showing

lim /@(Z)P(I,yn, dz)=/ 92 P(t,y, dz).

By (2.4) we haven(Z¥ (1)) —> @(Z¥(¢)) in probability, hence i 1(P). It follows

'/ @) P, yn, dz) —/ p(@)P(t, y, d2)
H H

= |Eap(Z (1)) — Ep(Z* (1)
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< E{UOw) — UWMIe(Z ()] + EU () |p(ZY (1)) — (2 (1))
< suply| E|UGw) — U] + KE|e(Z7 (1)) — o(Z7 (1))

+25uplgl E(Lue- ) U))-
H

Thus first fixing aK sufficiently large and then using (2.3), (2.4) we obtain the
desired conclusion. Q.E.D.

Example 2.1. Stochastic nonlinear oscillators. Let us consider a second order dif-
ferential equation ifit” perturbed with an additive noise, written symbolically as

¥4 F(x, %) = Sw, 2.7)

whereF € ¢(R" x R*; R"), ¥ € M,x, iS a nonsingular matrix, an@ denotes
the (distributional) derivative of am-dimensional standard Wiener processWe
rewrite (2.7) as a first order system

dy = {Ar + f ()} dr + o dw, (2.8)
setting

0 1
AEMZHXZVM A: (O 0)7

f: RZn _ RZn’ f(X) = (

0
o € Mo, xn, O’=<E>.

That is, componentwise (2.8) reads as

0

— n n
—F(x,v))’ X =(x,v) e R" xR",

dx =vds,
dv = —F(x,v)dr + X dw.

First, let us consider the linear problem corresponding to (2.8), namely
d3 = A3 + o dw. (2.9)

The solution to (2.9) is a Gaussian Markov process with a transition probability
0, z,-) = N (eMz, Q;),t >0,z € R, where

t
0, =/ PAU=5) g % A (1=5)
0

and./"(h, R) stands for the Gaussian measurd®3f with meank and covariance
matrix R. The procesg is strong Feller irreducible, provided the matii is
nonsingular for any > 0. According to the Kalman rank condition (see e.g. [45],
Theorem 1.2), the matrig, is nonsingular for an arbitrany> 0 iff

rank[a, Ao, -, Az”_la] = 2n. (2.10)

€ MZn x2n2
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An easy calculation shows that

. 0o X ...
oA A ) = (5.

hence (2.10) is a consequence of the invertibilitybf
Letusturntothe nonlinear equation (2.8) supposingkhiatof a linear growth:
3K >0 V(x,v) € R*" |F(x,v)| < K(1+ |x]| + [v]). (2.11)

Setu = ¥~1F : R¥* — R";we are going to check the assumptions (i) and (v) of
Theorem 2.1. Letus denote pY the solution to (2.9) satisfying®(0) = yo € R?",

fix 7 > 0 and take an arbitrary sequengg} in R?", y, = (y1, y2), y* — y.
We claim that

suplu(3” ()] < c(14 sup lw®)]), 0<t<T, (2.12)

n>0 0<t<T

for a constant < co. The estimate (2.12) implies (ii) by Corollary 3.5.16 in [25].
Further,
3 ——3" in LA([0, T] x 2; R?"),
n—oo

and the continuity of yields

F@™ () —= F@GY()) inmeasure on [0T] x £2,

hence the function — u(3”(-)), R?" — L2([0, T] x £2; R") is continuous by

(2.12) and the dominated convergence theorem. Consequently, there exists a weak

solution to (2.8) for any nonrandom initial conditiot0) = y € R?". Assume that
uniqueness in law holds for (2.8), then Theorem 2.1 together with the positivity
of U imply that the Markov process solving (2.8) is strong Feller and irreducible.
(If we suppose thar is even bounded, then weak uniqueness follows, see [25],
Proposition 5.3.10.) It remains to prove (2.12), but using (2.11) we obtain

@ @)| < 1=

t
F<yi+y31+/ S w(s)ds, y3+>:w(t)>‘
0

t
sc1<1+|yn|+||2||{/o Iw(S)Ids+|w(t)|D
< co(1+ |yal + sup [w(@)])

O<t<T
<c3(1+ sup (w()]),
0<t<T

the last estimate holds since gup|y,| < oc.
Further, let us turn to equations whose dfiftloes not satisfy the linear growth
condition (2.11). We content ourselves with equations of the type

§4b(x, %)+ VG(x) = T, (2.13)
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under the hypothesis that: R x R" — R" is a locally Lipschitz function and
VG is the Féchet derivative of a functiof € ¢2(R") such thaiG(y) > G for a
constantGo € R and eacty € R". We rewrite (2.13) in the form (2.8) as before.
Following [30] we suppose that

(b(x, v), v) = — (k1 + kalx|" + ks|v|?)

forsome constants, k2, k3 > 0,r € [0, 2[and all(x, v) € R?*. Let(2, Z, (Z,),
P) be an arbitrary fixed stochastic basis carryingiadimensional Wiener process
w, then for every; € R%" there exists a unique solutiof = (x%, v?) to (2.13)
satisfyingy®(0) = z according to [30], Theorem 2.1. Set

o =inf{s > 0; [v*(s)| = m}, meN.

Let us fix a ballB in R?" andr > 0 arbitrarily. The proof of Theorem 2.1 in [30]
yields

sup SUPE|v* (1 A 73)|? < oo,
m>1 zeB
which in turn implies
lim supP{z% <t} =0. (2.14)

m—00 zeB

Let N be such thatxg] < N whenever(xog, vo) € B, let us consider an equation
dr, = {Agn+fn(gn)}dt+gdwa (2.15)
with a bounded Lipschitz continuous functigi : R%* — R” satisfying

0

Fulxov) = (—b(x, V) — VG(x)

) forall |v| <n, |x| < N + nt.
Denoting byx? the solution of (2.15) with? (0) = z € R?" (defined on the same
stochastic basis as the procgSswe obtain

' ATy =151 ATy) P-almost surely (2.16)

for eachz € B by a standard local uniqueness theoren® IfP, are the transition
probabilities corresponding to (2.13), (2.15), respectively, then

sup| Py (t,z, I') — P(t,z, I')| =sup|P{xi(t) € '} — P{*(t) € I'}|

z€B zZ€EB
< 2supP{rf <t}—0
ZEB n—oo

for any Borel sef” € R?* by (2.14) and (2.16). Since the ba&lwas arbitrary, we
have
P,(t,-, ') ——> P(t,-, I') locally uniformly onR?,
n—oo

Therefore,P(z, -, I') is a continuous function for every Borel sBtands > 0, in
other words P is strongly Feller. We cannot claim, however, tifais irreducible,
as we have only’(z, z, ) < Q(t, z,-) forallt > 0,z € R,
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As a simple particular one-dimensional case of (2.13) satisfying the above as-
sumptions we may consider an equation

X + px? signx = Tw

with © > 0. (Compare [28], Example 22.2, where the physical relevance of the
deterministic counterpart to this equation is discussed.)

Example 2.2. Stochastic delay equations. We shall be concerned with stochastic
delay equations of the form

0
dx(r) = (/ x(t +s)dn(s) + F(x(t))) dr + X dw(z), (2.17)

wherew is ad-dimensional Brownian motior®, € M, an invertible matrixy is
anMy4-valued Borel measure or|, 0] andF : RY — R? is a Borel function.

We interpret the equation (2.17) as an infinite dimensional problem (see [9] or [14],
Chapter 10)

dX = {AX + f(X)} dt + o dw (2.18)

in the Hilbert spacés? = R? x L2((—r, 0); R%), setting

_x( x\\ _ (F(0) x 5
xo=(30) r((0)=(7") ()=
ox:(%%>, x e RY,

Dom(A) = {(%‘”) L ¢ € W2((—r, 0); R")} ,
A (¢(0)> _ (f?,wmdn(s))
¢ E0)

defining, as usual, the function : [-r, 0] — RY by x;(-) = x(r + -).
First, we have to consider the corresponding linear problem

—r

0
dz(¢) = </ z2(t +s) dr;(s)) dr + X dw(z),

that is

dZ = AZ dt + o dw. (2.19)
We assume that
(2.20) the operator A generates a Co-semigroup on M 2,

(2.21)  the Markov process Z defined by (2.19)is strong Feller for all > r.
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For example, it is known (see e.g. [3], Proposition 2.1) that (2.20) holds true if the
measure; is of the form

N

n=Y aib; +bds, a €Maxa, b€ L®((~r,0); Myxa),
i=0

O=s¢0>:-+>sy=—r.

If, moreover,b = 0 then (2.21) is fulfilled as well and the procegss also irre-
ducible forr > r ([14], Theorem 10.2.3).

Now, suppose thaf € % (R¢; R?) is a continuous function of a linear growth,
i.e., there exists a constakit< oo such thatF (x)| < K (1+|x|) for everyx € R?.

Set
X

. 2 d
u.M— R, ()\

) — 2_1F(J{),

thenu is also a continuous function of a linear growth afid= ou. LetT > 0
andy e M? be arbitrary but fixed. According to [12], Proposition 10.17, for the
assumption (ii) of Theorem 2.1 to hold it suffices to fihd 0 such that

sup Eexp(8|u(Zy(t))|2> < 00, (2.22)
t€[0,T]

where, as above, we denote BY the solution of (2.19) witlZ > (0) = y. However,
the random variabl&” (r) is Gaussian and

sup Eexp<Q|Z~V(r)|2) <
t€[0,T]

forall o > O sufficiently small, hence (2.22) easily follows. Obviougly: — 7~
in L2([0, T] x £2; M?) whenevelry, € M?, y, — y, so the assumption (v) can be
checked using Remark 2.2, continuity and linear growth.dftherefore, assuming
that uniqueness in law holds for (2.18) we see that the Markov procekesined
by the equation (2.18) is strong Feller (and irreducible providés) for allr > r.
This settles in the affirmative a conjecture posed by G. Da Prato and J. Zabczyk in
[14], 810.3.
Let us note that the same proof applies to a more general equation

0
dx(r) = (/ x(t +s)dn(s) + F(x(®@), xl)) dr + X dw(?),
providedF is continuous and of a linear growth as a function frf to RY.

Remark 2.5. M. Scheutzow [40] studied the long-time behaviour of the Markov
process solving the equation

dx(t) = f(x,) dr + dw(), (2.23)

assuming only that weak uniqueness holds for (2.23) an& ([—r, 0]; RY) —
R? is Borel and locally bounded. Constructing directly an embedded Markov chain
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he established results on the ergodic behaviour of (2.23) which are standard conse-
guences of the strong Feller property and irreducibility. In [40], solutions of (2.23)
are considered aé([—r, 0]; R%)-valued processes; in this space they need not be
even Feller (see [40], Remark 5 in Section 3). Nevertheless, it may be of some
interest to know whether the approach adopted in our paper can be extended to
equations of the type (2.23) under assumptions similar to those in [40].

Example 2.3. An SPDE with an additive noise. Let us consider the equation (2.1)
takingH = 7 ando =1, i.e.

dX = (AX + f(X)) dr + QY2 dw (2.24)
and with a Borel functiory : H — H such that
Rng f € RngQY?, 0 Y?f e 4¥(H; H) and with a linear growth (2.25)

whereQ~1/2 denotes the pseudo-inverse@®2. (The most important particular
case is, of cours&) = I, when we suppose simply that: H — H is a contin-
uous function with a linear growth.) Let us denoteddy the semigroup generated
by A on H. We assume that

t
/ |e* QY22 gds < 0o forallr >0 (2.26)
0

(then the stochastic integral in the formula for mild solutions of (2.24) is well
defined) and

: 1/2
Rnge?! C Rng(/ et Qe ds) = Rng QY% forallt >0. (2.27)
0

The hypothesis (2.27) is necessary and sufficient for the Ornstein-Uhlenbeck pro-
cessZ defined by the linear counterpart

dZ = AZ dr + QY?dw

to (2.24) to be strong Feller (see [33], Proposition 1B; cf. also [12], §9.4.1); obvi-
ously, under (2.27) the proce&ss also irreducible. We set= Q12 1, then the
assumptions (ii) and (v) of Theorem 2.1 follow by the same argument as employed
inthe preceding example. So, if uniqueness in law holds for (2.24) and (2.25)—(2.27)
are satisfied then the Markov proceéss strong Feller and irreducible.

Let us compare this assertion with some related results. In the paper [19] the
problem (2.24) is investigated under the assumptions (2.26) in a bit strengthened
form, (2.27), Rng’ € RngQ'/? and with f andQ /2 f Lipschitz continuous. Us-
ing the Malliavin calculus the author proves théats strong Feller and irreducible
([19], Theorem 2.6). A. Chojnowska-Michalik and B. Goldys in [10] considered
(2.24) with a bounded Borel mapping such that{f(-), h) € %,(H) for any
h € H. They suppose (2.26), (2.27) and

T
Ker 0, = {0}, / |0; Y2e4"| dr < 00, T >0,
0
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and they prove, by investigating the associated Kolmogorov equation, that there
exists a weakly uniqgue martingale solution of (2.24) which is a strong Feller irre-
ducible process (see [10], Theorems 3, 4 and Propositions 3, 4).

Our proof of the strong Feller property for (2.24) is more straightforward than
the ones in [19], [10], but it ought to be emphasized that much stronger regularity
properties of the transition semigroup than the strong Feller property are established
in the cited papers.

Example 2.4. An SPDE with a multiplicative noise. In this example we shall indi-
cate that assumptions on the drift adopted in Peszat’s and Zabczyk’s paper [38] (cf.
also [14], 87.1) may be relaxed. Consider the equation (2.1)Kita T, Q = I,
that is

dX = (AX + f(X))dt + o(X)dW, (2.28)

assuming that

t
/ |2 ds < 0o foralls > O,
0

o : H— %(H) is a Lipschitz continuous mappingz) is invertible for any
z€ Hand

-1
suplle ™ (z)]| < oo.
zeH

In [38] it is shown that the Markov process defined by (2.28) is strong Feller pro-
vided thatf : H — H is Lipschitz ([38], Corollary 1.1). If, moreover, eithgr

or o is bounded, then this Markov process is also irreducible ([38], Theorem 1.3).
In particular, the Markov process defined by

dZ = AZdt +0(Z2)dW

is strong Feller and irreducible under the above hypothese$ ando. There-

fore, a straightforward application of Theorem 2.1 yields that the Markov process
associated with (2.28) is strong Feller and irreducible whengver ¥ (H; H)

is a bounded mapping. Indeed, set= o1 7, then the assumptions (ii) and (v)

of Theorem 2.1 follow easily by boundedness and continuity ahd Lipschitz
continuity ofo .

Example 2.5. A stochastic heat equation with a white noise boundary condition. In
this example we shall treat a one-dimensional heat equation withanonhomogeneous
nonlinear boundary condition containing a white noise term, written symbolically

du _ 9°u
B = a2’ 0, 0, 1],
at ox 1> X € [ ] (229)
(g—?ﬁ(“ 0), g—ﬁ(f’ 1)) = fu@®)+w, t=>0,

wherew is a two-dimensional Brownian motion andis a bounded continuous
function from W*2((0, 1)) to R? for aa € [0, 3[. (We denote byw*? the usu-

al Slobodeckispaces.) As well known (see e.g. [13]), the problem (2.29) can be
reformulated as an equation

t t
X, = e Xp +/ (A= DA INF(X)ds + / (A= De*"9N dw, (2.30)
0 0
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in the Hilbert spaceéd = L?((0, 1)), where

@2
=47
andN : R2 — H is the Neumann map, i.e., for apy= (01, 02) € R?, No is
the (unique) solution of the problem

d?u du du

The Ornstein-Uhlenbeck procegsdefined by

Dom(A) = {v € W2%((0, 1)); g—;’(O) = %(1) =0}, A

t
Z,=eMZo+ / (A — De "9 N dw,
0

has paths continuous iW*2((0, 1)) and is strong Feller i ([13], Proposition

3.3). Hence applying Theorem 2.1 in the same manner as above we see that the
processX defined by (2.30) is strong Feller, provided uniqueness in law holds for
(2.30).

3. Thestrong Feller property for stochastic evolution equations:
the dissipative case

In Section 2, we applied Theorem 2.1 to stochastic partial differential equations
whose drift contained nonlinear terms either bounded or of a linear growth, in which
case the Girsanov transform may be used in a rather straightforward way. Now we
shall discuss stochastic evolutions equations with unbounded nonlinearities in the
drift. To handle this case, we need more detailed information about the behaviour
of solutions than that provided by the hypothesis (A). Therefore, we shall study
a more particular model, which, nonetheless, covers stochastic reaction-diffusion
equations with polynomial nonlinearities (compare e.g. [12], §7.2). As in the pre-
vious section, we consider a pair of equations

dX = (AX + f(X)) dt + o (X)QY?dw, (3.1)
dZ = AZdt + 0 (Z)QY?dw, (3.2)

in a separable Hilbert spaég, assuming henceforth thét is a standard cylindrical
Wiener process in a real separable Hilbert spAcand Q € £ (7) is a nonneg-
ative self-adjoint operator. L&, || - ||) be a separable Banach space embedded
continuously intoH. Suppose

(C1) A : Dom(A) — H generates a Co-semigroup (e?) on H and

T 2
| let e < o0
0

forsomeT > Oanda > 0. Thepartof A in B, denoted by Ag, Dom(Ap) =
{x e Dom(A) N B; Ax € B}, generatesa Cp-semigroup on B.

We shall writeAp = A, e48' = ¢4’ if there is no danger of confusion.
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(C2) Themappingo : H — Z(7, H) satisfies

lo )l r,my < k(1+ 1x]),
lox) —oWllemm < klx =yl

for aconstant k < coandall x,y € H.

Fix a standard cylindrical Wiener proceBsin 7", defined on a filtered prob-
ability space($2, #, (#,), P). Given an arbitraryx € H there exists a unique
(# ;)-adapted mild solutioix”* to (3.2) with the initial conditionZz* (0) = x; this
solution satisfieZ* € ¥(R4; H) almost surely.

Further we list hypotheses on the functipriWe denote by:, -) g g+ the duality
betweenB and its dual spacB* and byad| x| the subdifferential of the norr- ||
at a pointx € B.

(C3) Letthemapping f : B —> B becontinuousand let there exist a nondecreas-
ing functiona : Ry — R, such that

(Ax + £G4 y). 2%, g < allyD(@+ 1]l

for eachx € Dom(Ap), y € Bandacertainx™ € 9| x||. Assumefurther that
there exists a function u € ¢ (B; ") bounded on bounded sets and satisfying
f =0o0Y2u on B.

The last two assumptions are needed to guarantee that the prddeskaves well
also in the state spad

(C4) Given T > O, thereexist p € [2, oo[ and C < oo such that for each stan-
dard cylindrical Wener process W defined on a filtered probability space
(2,7,(F,),P)and every (#,)-adapted process ¢ € L?(82; ¢([0, T]; B))
we have

t " P -
/ sup / e““”o(és)Ql/ZdWsH dP < C,
2 o<t<T llJo

and the paths

1
t|—>/ A9q (&) QY2 dW,
0

belong to ([0, T]; B) P-almost surely. R

(C5) GivenT > 0, let p bethesameasin (C4). Let there exist a constant C < oo
such that for any (#,)-adapted processes &, ¢ € L?(82; ([0, T]; B)) we
have

E sup
0<r<T

t p r
/ eA“—”[a(ss)—a(g)]Ql/deYH <CE f 1§ — &II” d.
0 0
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We refer the reader to the papers [4], [5], [36], [37] for results on maximal inequal-
ities yielding (C4), (C5) under various particular hypotheses. Let us note that (C4)
usually requires boundednessoofvhilst (C5) its Lipschitz continuity (in suitable
norms), so these assumptions are closely related to the hypothesis (C1). Proceeding
in a standard manner, it is possible to check that the pracéss B-valued and

Z* € LP(£2;4(]0, T]; B)) for eachT > 0, providedx € B.

Now we can state the main result of this section. The equation (3.2) is well-posed
both in H and in B, let us denote by the transition probability of the associated
Markov process. We say th&tis strong Feller in B, if R;(-, M) is continuous on
B for anyr > 0 and any Borel se¥ in B. Clearly, the strong Feller property &f
in H, as considered in Section 2, implies thatBnsince the embedding — H
is continuous. We shall see below that the equation (3.1) has a martingale solution
for each initial datunx € B (cf. Corollary 3.4). If uniqueness in law holds as well
then (3.1) defines a Markov processBn Denote byP its transition probability,
the strong Feller property a? in B is defined in an obvious way.

Theorem 3.1. Assume (C1)—(C5) let the equation (3.1) be well-posed in B. Let
the transition probability R defined by the equation (3.2) be strong Feller in B,
then the transition probability P defined by (3.1) isalso strong Feller in B.

Let us note that sufficient conditions for the strong Feller propertR afre
recalled in Example 2.4. Towards the proof of Theorem 3.1, we have to estab-
lish several technical lemmas. In what follows, we shall always suppose that the
assumptions (C1)—(C5) are satisfied. First, note that (C4), (C5) and the Gronwall
lemma yield

Lemma3.2. ForanyT > 0, R > 0,and x,,, x € B suchthat x, — x in B as
n — oo we have

sup E sup |Z*@0)|I” < oo,
lxI<R O<t<T

lim E sup |Z* () — Z*®)|” = 0.

n—>00  g<y<T

As in Section 2 we set
t 1 t
Ux,t) = exp(/ (u(Z;‘), SdwWg — E/ |u(Z§)|2ds> , x€B,t>0.
0 0

Since the paths of* are continuous imB, the random variablé&/ (x, ¢) is well
defined. Consider stopping times = t(x, n) defined by

Ty =inf{r > 0; |1Z*(0)| = n}.

As u is bounded on bounded set lhthe proces(Z}) is bounded fos < t;,
consequentheU (x, r A T;f) = 1foreveryn € N,x € B,t > 0. For afixedl >0
we obtain by the Girsanov theorem that

tAT(x,n)
wr = w, _/ W(Z*(s)ds, 0<r<T,
0
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is a standard cylindrical Wiener process on the probability spce”, P, ,,), the
measure®, , being defined by B, , = U(x, T A 7)) dP.

The following lemma corresponds to Lemma 2 in [22], unfortunately, the proof
in [22] is flawed, hence we present here a slightly modified one.

Lemma3.3. ForanyR > 0and T > 0

lim sup Py,{t; <T}=0

"0 x||<R
holds true.

Proof. Fix an arbitraryl” > 0 and forz € [0, T] set

t
ZX(1) = eMx +/ eAU=95(Z5(s)) QY2 dw?,
0
YX(1) = Z5(1) — Z(1).
Then
tAT(x,n)
no=[ A rz s
0
and hence the functiolj (-, w) is a mild solution of the equation
YE(t) =AY, () + f(Z*(1), Y () =0 0<t=<TAT
for almost allw € £2. Forx > 0 in the resolvent set of let R(L) = A(A ] — A)~1

and letY;’ , be the Yosida approximation tq;,

tAT(x,n)
Vi, () = ROV = f AIROY F(Z7(5) ds.
0

ThusYj'  solves the equation
YY) = AYS, () + ROV F(Z5 (1), Y5 ,0 =0, 0<t<TAr1,
in the strong sense. Put

S.(1) =RM) f(Z5 1) — 3,0+ Z, 1))
=R fX; (O +Z,0) — [, 1)+ Z, (1),

SO
Y5, () =AY (6) + FOF () + Z0(1) + 8,.(1)

and a standard application of the assumption (C3) (see e.g. [12], Appendix D) yields

q-
a” Y, < allZy @D+ 1Y, Ol) + 8.0).

By the Gronwall lemma we get

t t
17,0l < /O exp( / a<||z:;<r)||)dr> {atzzon + 1501} ds - @3
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forO <t <T At).SinceR(x) — I asi — oo in the strong operator topology
and||R(A)|| < M for a constaniM and allA > 0 sufficiently large, we have

T AT(x,n)
lim / 18,.(s)| ds = O

A—>00 Jo
and the estimate
t t
1Y, ()l Efo eXp(/ a(IIZj(r)II)dr> a(lZ,(s)Dds, 0<t<TArT,,

follows from (3.3) by passing — oco. Obviously,Y;* (t) = eAC—T&mM) y> () for
1, <t <T,so

t t
1Y, @ SK/O exp(/ a(IIZﬁ(r)II)dr> a(llZ, (s)I) ds

N

holds for a constank < oo and allz € [0, T]. Hence

sup [IZ*()Il = sup [IY,; () + Z, 0|

0<t<T 0<r<T

< sup [Z, (0l
0<r<T

- t t
+ K sup ; eXp(/ a(llzi,‘(r)ll)dr>a(IIZZ(S)II)ds

0<t<T K

T T
< sup |1 Z; (0] +Kf0 exp(/o a(IIZﬁ(V)II)dr)a(IIZZ(S)II)d&

0<t<T
This implies
Peafts =7} =Pua] sup 1250l = n}
0<t<T

< Pua| sUp 1Z5 01+ @(Z) z 0],
0<t<T

where we set

B T T
?:4(0,T: B) — R; 9 —> KeXp(fO a(ll(P(S)ll)dS)fO a(lle(s)|) ds.

By the hypothesis (C4) we can find a const@nt= C1(R, T) < oo independent
of n such that

sup sup 1Z; ®|I” dPy , < C1.
Ix||I<R J$§2 0<t<T

Whence

C
sup Praf sup 1Z5 (0l = h} = 2 — 0 (3.4)
lxll<R 0<t<T hP h—oo
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by the Chebyschev inequality, in particular

lim sup Pm{ sup |1Z; ()] > n} =0.

% x|<R 0<t<T

Asaisanondecreasing function, the mappigs bounded on bounded sets, name-
ly, if sSupg<,; <7 1Y ()| < hthen|® (y)| < KTa(h)exp(Ta(h)). Givene > 0, use
(3.4) to findx > 0 such thaP, ,{sup,-7 1 Z} ()| < x} > 1—e. Letng € N be
such thatk Ta(x) exp(Ta(x)) < no, thenP, ,{®(Z;) > n} < e foralln > no,
which completes the proof. Q.E.D.

A standard argument shows that Lemma 3.3 yields

Corollary 3.4. For everyx € Bandt > Owehave EU (x, t) = 1.
Proof. Obviously,

12BU(, 1) 2 BElpam=nU@, 1 Ag) = Poafry 21} —> 1

n—oo

Q.E.D.

Lemma 3.5. For eacht > 0 and any convergent sequence {x,} in B, x, — xo,
we have

U (X, 1) —— U (x0. 1)
n—oo

Proof. Fixt > 0,¢ > 0 and a convergent sequereg}, x, —> xg in B, arbitrar-
ily. By Lemma 3.2 we can find € N such that

SupP{r,f" < t} < g

n>0

SetA, = {1;" < 1}U{r;° < t} and choose a bounded functidre %(B, T) such
thatu = i on the ball{x € B; |x| < k}. If we define

t t
Uy, t) = exp(/ (@(Z2(s)), ) dw (s) — %/ ]ﬁ(Zy(s))\zds), y € B,
0 0

thenU (x,,, 1) = U(xy, 1), U(xo, t) = U(xo, t) almost surely o2 \ A,, for each
n > 1,sinceu(Z(s)) = u(Z(s))for0<s < rky At |lyll < k. Hence
P{IUGw. 1) = U(xo,1)] > €} < P(An) + P{|U(x, 1) — U(xo, )| > &}
<e+P{lUxy 1) — Ulxo, 1) > &}
To complete the proof we have to check that

U(XI‘H t)—P)U(-x()? t)
n—oo

By Remark 2.2 we know that it suffices to show that
n—oQ

t
lim / E|a(Z™ (5)) — i(2*(s))|* ds = 0. (3.5)
0

However,|| Z* — Z*0|| — 0 in measure on [OI'] x £2 by Lemma 3.2, thus (3.5)
follows immediately by boundedness and continuity: 00.E.D.
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Proof of Theorem 3.1. We can repeat the proof of Theorem 2.1 literally, taking
into account that the crucial assumptions (ii) and (v) of Theorem 2.1 are satisfied
according to Corollary 3.4. and Lemmas 3.5, 3.2, respectively. Q.E.D.

4. Aremark on M. Fuhrman’sresult

Let H be a real separable Hilbert spa®é,a standard cylindrical Wiener process
in H, defined on a fixed filtered probability spa@ge, 7, (#,),P), 0 € ¥(H) a
nonnegative self-adjoin operator. LEte %?(H), denote byV’, V" the first and
second Fechet derivative o/, respectively. We will consider the equation

dX = (AX — QV/(X)) dr + QY2 dw (4.1)

under the following assumptiond:: Dom(A) —> H is an infinitesimal generator
of a Co-semigroup(e’) on H such that

T
/ o e? Q2|2 < oo 4.2)
0
foraa > 0 and anyT' € R,.. Denote by%1(H) the Banach space of all nuclear
operators orH equipped with the nuclear norm. Suppose that the functions
ViH—R, V:H—H, V':H— %(H)

are uniformly continuous and bounded on bounded sefg,iRng V') € Dom
(A*), Rng 0Y2v" (1) QY?) € #1(H), and the functions

A*V'  H — H, 0Y?v'oY?:H — #1(H)
are continuous o/ and bounded on bounded subsetg/ofSet
LV(x) = %Tr(Ql/zV”(x)Ql/Z) +{A*V'(x),x), xeH,
and assume that
V(x) > k1, LV(x)— %IQ”ZV’(X)IZ <k (4.3)

for some constants;, k» € R and eachx € H.

Then, by Theorem 2.5 of [20], there exists a unique mild solution to (4.1) for
any initial conditionX (0) = x € H; denote byP the transition probability defined
by (4.1). (The reader may consult Section 5 of [20], where nontrivial examples of
equations satisfying the above hypotheses are presented.)

Assume further that (2.27) holds, that is, that the Ornstein-Uhlenbeck process

dZ = AZ dr + 0Y2dw

is strong Feller, we aim at checking the strong Feller proper# o§ing Theorem
2.1. Let us defind/(y,t), y € H,t >0, as in Theorem 2.1 with the choiee=
— 02y’ We have

t t
/ (QY2V/(2*(5)), ) AW (s) = V(Z" (1)) = V() —/ LV(Z(s))ds
0 0
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by [20], Lemma 2.1, hence

! 1
U1 = exp(vm - V(Z' @) +/0 {Lv@ o) - 5le"2viz o)[) ds)

foranyy € H,t > 0, and scEU(y, t) = 1 is an easy consequence of (4.3). Fix
t > 0 and a convergent sequeriag} in H, x, —> xp asn — oc. It remains to
prove that

U, )= U 50, 1), (4.4)
Obviously, sup,, |1 Z* (s) — Z*(s)| —> 0 almost surely, from which we obtain
V(xy) — V(x0), V(Z™(@)) — V(Z*(r)) P — almost surely

by continuity of V. Due to (4.2), the assumptions of Theorem 5.9 of [12] are met
and
lim supP{ sup |Z*(s)| = N} =0

N—=0oo y>0 lo<s<s

holds. Since the functiohV — %|Q1/2V’| is continuous and bounded on bounded
subsets off, we may proceed as in the proof of Lemma 3.5 to show

! 1
[ {zv@ oy - 5leveviz sl as
0

t
1
> [ {Lv@ow) - S10V2v/(zow) *) ds
n—>oo 0 2
and the claim (4.4) follows. Therefore, the transition funct®iis strong Feller,
obviously, it is also irreducible.

In [20], an additional assumption thal € ¥*(H) and

V' @I+ 1LV @)+ V() V' (0)] < ka4

for someks, k4 € Ry andy < 2 is adopted; we do not need this estimate. On the
other hand, Theorem 3.4 in [20] asserts more than we can prove: founded
BorelonH, P,y is not only continuous o& but also Lipschitz on bounded subsets
of H.
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