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Abstract. We consider adaptive estimating the value of a linear functional from indirect
white noise observations. For a flexible approach, the problem is embedded in an abstract
Hilbert scale. We develop an adaptive estimator that is rate optimal within a logarithmic
factor simultaneously over a wide collection of balls in the Hilbert scale. It is shown that
the proposed estimator has the best possible adaptive properties for a wide range of linear
functionals. The case of discretized indirect white noise observations is studied, and the
adaptive estimator in this setting is devel oped.

1. Introduction

In this paper we consider adaptive estimating linear functionalsfrom indirect white
noise observations. Let X be a separable Hilbert space with the inner product (-, -)
and thenorm || - ||. Consider an operator equation

Ax =y, )

where A isalinear injective operator from X into a dense subset Range(A) C X.
Suppose that the right hand side y of (1) is observed in the presence of a Gaussian
white noise of theintensity ¢. Thisspecifically meansthat for every element ¢ € X
we can observe

ve(9) = (Ax, ¢) + ££(9), @)

where £(¢) is a Gaussian random variable on a probability space {2, .7, P} with
zero mean and variance ||¢||2. In addition,

E[E@EW)] = (¢, ¥), Vo, ¥ €X, ©)
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where [ is the expectation with respect to P. We are interested in estimating the
value of alinear functional £(x) = (f, x) from the indirect noisy observations
2).

Statistical approach to inverse problems has been proposed by a number of au-
thors, including Sudakov and Khalfin (1964), Bakushinskii (1969), Wahba (1977).
For more recent work on this topic see, e.g., O’ Sullivan (1986), Nychka and Cox
(1989), Johnstone and Silverman (1991), Nussbaum (1994), Donoho (1995), Mair
and Ruymgaart (1996), Golubev and Khasiminskii (1997), Chow, Ibragimov and
Khasminskii (1999), Mathe and Pereverzev (1999) and references therein. Typi-
cally in these papers A is an integral operator

Ax(1) = / a(t, T)x(v)dr, (4)
T

actingfrom X = Lo(T) to Lo(T),whereT isaninterval in R, and x (-) isthefunc-
tion to be estimated. Thereisalso aconsiderable literature on the optimal recovery
problem, where it is assumed that the right hand side y of (1) is observed with
adeterministic noise. A few selected references on the classical deterministic ap-
proach to inverse problems are Tikhonov and Arsenin (1977), Traub, Wasilkowski
and Wozniakowski (1988), Engl, Hanke and Neubauer (1996).

When estimating alinear functional £ ¢ (x) = (f, x), itisusually assumed that
some apriori information on the unknown solution x isavailable. Thisinformation
typically reflects prior knowledge on smoothness of x, and is stated in the form
x € W, where W isaprespecified subset of X. Let #¢(x) = {(x; y,) bean estimate
of £ ¢ (x) based on the observations (2). In the framework of the minimax approach
accuracy of an estimate ¢¢ is measured by its uniform with respect to W risk

AL, W] = su‘ﬁ)/ E|2° (x) — €7 (x)|%.
xe

The minimax risk is defined by
B[ W) = inf 2[05; W] = A" W],
ZS

whereinf istaken over all possible estimates ¢, The main purpose is to construct
asymptotically optimal, or in optimal in order estimates ¢° satisfying

R0, W] = #*[e; WL+ 0o(1)), & — 0,
R0 W] < C(e)R*[e; W], supCl(e) < oo

respectively.

The outlined problem of estimating linear functionals from white noise obser-
vations is a subject of considerable literature under various assumptions on the
operator A, the linear functional ¢ ¢ (x) and the solution set W. It has been exten-
sively studied for the case of direct observations, where A is the identity operator
(Speckman (1979), Li (1982), Ibragimov and Has minskii (1984)). For modelswith
indirect observations see, e.g., Donoho and L ow (1992), Donoho (1994), and refer-
ences therein. In these papers avariety of optimal in the minimax sense estimators
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has been developed. Typically, such estimators are highly specialized in the sense
that their construction depends heavily on the solution set W. The crucial step of
the construction involves selecting a smoothing parameter; to choose it optimally
one should have a priori information on the solution set W. In practice, however,
specifying theset W of possible solutions can present severe difficulties. Therefore,
developing estimators that are optimal in the minimax sense simultaneously over
acollection of solution sets W is of interest.

Let % . denote acollection of solution sets W, possibly growingase — 0. We
say that an estimate ¢¢ is adaptive with respect to %, if

sup {2105 W1/%*[e; W]} < C(e), (5)
Wew .

where sup, C(e) < oo, or C(e) grows slowly as ¢ goes to 0 (we say that C(e)
grows slowly ase — 0 if lim,_o[C(re)/C(¢)] = 1 for every r > 0). Recently
much attention has been concentrated on developing adaptive nonparametric es-
timators both for direct and indirect observations (Lepskii (1991), Donoho and
Johnstone (1994), Barron, Birge, Massart (1999), Donoho (1995), Abramovich and
Silverman (1998), Johnstone (1999), Cavalier and Tsybakov (1998)). For adaptive
estimation of linear functionals from direct white noise observations we refer to
Lepskii (1990), Efromovich and Low (1994) and Tsybakov (1998). Adaptive esti-
mates that are within alogarithmic factor optimal simultaneously over acollection
of the solutions sets have been proposed there. It has been shown also that the
extralogarithmic factor is often unavoidable when estimating linear functionals. In
particular, this fact has been established by Lepskii (1990, 1992) and Brown and
Low (1996) for estimating afunction (or its derivative) at asingle given point from
direct white noise observations. The similar result holds for indirect observations
involving certain convolution operators (Goldenshluger (1999)). It should be no-
ticed that thereisavast literature on data—driven selection of smoothing parameters
ininverse problems (see, e.g., Wahba (1977), Lukas (1998) and referencestherein);
however, the minimax properties of the related estimation methods are not usually
analyzed.

The goa of the present paper isto devel op an adaptive estimator of linear func-
tionals in the general Hilbert space framework. For aflexible approach, we embed
the problem in a Hilbert scale, and propose the estimator that is adaptive over a
collection of ballsinthe Hilbert scale. Our construction exploits deterministic regu-
larization methods along with the general adaptation scheme developed by L epskii
(2990, 1991) for estimation from direct white noise observations. We show that
the accuracy of our adaptive estimator is only by a logarithmic factor worse than
the one we could achieve in the case when the solution set W is known exactly.
We argue also that in many important cases this extra logarithmic factor cannot
be reduced; here our estimator possesses the best possible abilities for adaptation.
Furthermore, we consider the case of discretized observations, where the data (2)
are available only for afinite number of “probe” functions¢; € X,i =1,...,n.
This case corresponds to grouped or binned data which are typical in statistical
practice (Johnstone and Silverman (1991), Bickel and Ritov (1995)). In the context
of indirect estimation in the Hilbert scales the case of discretized observations has
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been studied by Mathe and Pereverzev (1999). Both the “ probe” functions and the
number of observations n are important parameters of the estimation method. We
consider the problem of optimal discretization, and show that our estimate asso-
ciated with a data—driven choice of the design set &, = {¢; € X,i = 1,...,n}
possesses the same adaptive minimax properties, as the adaptive estimate based on
the complete observations (2). We indicate the number n of discrete observations
which is sufficient for rate optimal (up to the logarithmic factor) estimation and
argue that this number cannot be reduced in the sense of the order.

Therest of the articleis organized asfollows. Section 2 introduces our notation
and assumptions. In Section 3 we consider the regularized inverse estimator and
show that it is optimal in order under a proper choice of the regularization param-
eter. In Section 4 our adaptive estimator is defined, and its accuracy is analyzed.
Adaptive estimation of linear functionals from indirect discretized observationsis
studied in Section 5.

2. Formulation and assumptions

Recall that a Hilbert scale {X, },<r is a family of Hilbert spaces X, with the in-
ner products (u, v), := (L"u, L"v), where L is an unbounded self-adjoint strictly
positive operator in adense domain of X. Moreprecisely, X, isdefined asthe com-
pletion of the intersection of domains of all operators {L*},cr, endowed with the
norm |ju|l, = (u, u)}/z, Il - llo= 1" l. Thefirst investigation of inverse problems
with deterministic noise in Hilbert scales dates back to Natterer (1984). Statisti-
cal inverse estimation in Hilbert scales has been studied by Mair and Ruymgaart
(1996), and Mathe and Pereverzev (1999). Usually {X,} are the Sobolev spaces of

various kinds; in this case r isthe index characterizing smoothness.
Examplel. (a@)Let X = L»(0,1),and

o
X, = {x € L2001 ) k¥ |{x, pi)I? < oo} :
k=1

where g1, 2, . .. bean orthonormal basisof L2(0, 1). Inthiscase X, isthedomain
of theoperator L”,where L : X1 — L2(0, 1)isdefinedby Lx = Y721 k{(x, k) k.
(b) Let X = L»(R), and

X, = {x € LyR): /(1+s2)r|(97x)(s)|2ds < oo},
R

where & denotes the Fourier transform from L»(R) into itself. Then X, is the
domain of the operator L”, where L = S¥? and S : X, — L2(R) is given by
Sx=x—x".

The following factors determine essentially behavior of the minimax risks in
estimating linear functionals £ s (x) = (f, x): (a) degree of ill-posedness of the op-
erator A; (b) smoothness of the representer f'; (¢) smoothness of the solution x. We
introduce the main assumptions on these ingredients of the problem in the Hilbert
scale framework.
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Throughout the paper we assume that the operator A is adapted to the Hilbert
scale {X,} isthe following sense.

Assumption 1. The operator A acts along the Hilbert scale { X, }: for some pa-
rameter a > O there exist constantsd, D > 0 such that

dllullr—a = |Aull; < Dllully—a, Vu € Xr—a, reR. (6)

Examples of integral operators (4) satisfying (6) can be found in Neubauer (1988),
Mair and Ruymgaart (1996). Condition (6) describes the degree of ill-posedness of
the operator A relative to the Hilbert scale { X, }. We note that even if the operator
A does not fit some standard Hilbert scale, one can often construct a scal e adapted
to A. Thisisthe casewhen A : X — X acts compactly and injectively in some
Hilbert space X. Then A meets condition (6) with a = 1/2 in the scale generated
by L := (A*A)~1; see Natterer (1984) and Hegland (1995) for further details.
The following assumption on the linear functional € ¢ (x) will be used in the

sequel.

Assumption 2. Therepresenter f of thelinear functional £ ¢ (x) = (f, x) belongs
to the Hilbert space X,,, and either (i) v < a, or (ii) v < a.

The condition (i) is quite usual in estimating linear functionals (see Tautenhahn
(1996)); it includes linear functionals that can theoretically be estimated both at
the parametric O (¢2) and nonparametric rates. The condition (ii) corresponds to
estimating nonparametric (singular) linear functionals, where the representer f is
ageneralized function relative to the Hilbert space X.

Asfor the unknown solution x, we suppose that x belongsto theball W, (M) C
Xu

WuM) ={x e X, lxllp <M}

for someindex « > Oand constant M > 0. Sincethedual spaceof X, isX_,, (see,
for example, Krein et al. (1982), p. 237), and X, isembedded in X, for r > s, we
need also the condition v > —u to ensure that the linear functional £ ¢ (x) = (f, x)
iswell-defined.

Example?2. Let X = L2(0,1), and A be a compact integral operator given by
(4). Let the Hilbert scale {X,} be generated by an operator L, and let {¢;} be a
complete orthonormal system of eigenfunctions of the operator L, i.e. Lo (t) =
Mok (), k=1,2,....Thus,0 < A1 < Ap < ---withAy — coask — oo. Then
the solution x of integral equation (1) with the integral operator (4) satisfying (6)
belongsto X, if and only if

N 2
D 0 Her, x)1? < 0.
k=1

Suppose we are interested in estimating the value of £ ¢(x) = x(r0), where rg €
[0, 1]. If for somev > —pu

o0
> " 22lgi(t0)? < 00
k=1
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thenforx e X, C X_,

1 0
£00) = Ui x) = [ Fo®x(0)d = 3 prtio) g, 5.
k=1

Here the representer f, of estimated linear functional is a generalized function
determined by the series

Fo®) =" eu(t)pr(t)

k=1

converging in X,,. In particular, if L isasin Example 1(a) and u > 1/2, then
Jio € X—172.

3. Regularized inver se estimator

The inverse operator A1 is not necessarily bounded in the X-topology; there-
fore some kind of regularization is required for estimating the value ( f, x). In the
context of thedeterministic approach toinverse problemsit wasshownin Bakushin-
skii (1967), Groetsch (1977), Vainikko and Veretennikov (1986), and Tautenhahn
(1996) that a wide variety of regularization methods can be constructed in the fol -
lowing way. Let g (-) be apiecewise continuous function on [0, D?] depending on
aregularization parameter « > 0 and satisfying the following conditions:

sup [V g <o’ 7t 0<y <1, ©
r€[0,D?]
sup M1 —rga W]l < cpaf, 0<p <1, ®)
1€[0,D?]

where D isgivenin(6),andc, , cg arepositiveconstants. Fix anon-negative number
s > —v and define the regularized estimate %, , (x) of £ /(x) = (£, x) by

8 ((x) = ye(AL S go (LS A*AL )L™ f), )

where A* is the adjoint of the operator A in X. Observe also that the condition
s > —vensuresthat AL g (L A*AL™%)L™" f € X, s0 that the estimate is
well-defined. The well-known Tikhonov regularization method is characterized by
(9) with g4 (1) = (A + )~ L. Inthe statistical context this method has been applied
to estimating the value of alinear functional by Li (1982) with the special choice
a = 0(&?).

Accuracy of the regularization methods depends crucially on the choice of the
regularization parameter «. Let ég,s(x) be the estimate (9) associated with some
regularization parameter « and s > max{0, —v}. It follows immediately from (2)
and (9) that

(fox) = €5 (X) = ba s (f, x) + a5 (f. £).
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where

bas(fix) = (f.(I =L go (L A*AL™*)L™ A A)x),
Va,s (fs &) = —E(AL™ g (L™ A*AL™)L™* f).

Since v, s (f) isazero mean random variable, we obtain

EICf, x) — €5 ()12 = B2 [ (f. x) + e%Ev2 ((f. £). (10)

Now we establish upper bounds on the bias and variance in the right hand side of
(20).

Lemmal. Let Assumptions 1, 2(i) hold, and Efx,s(x) be associated with s >
max{0, —v}. Then for every u € (—v, 2s + a] one has

ptv
sup |ba,s(fs x)| < CM||f||V052("+S), (11)
xeW, (M)

wherec = c(v, a, s, d, D) dependson v, a, s, d, D only.

Proof. Let
20, = L7'ga (LT A*AL™)L™" A" Ax (12)

then
lbas (f )] = 1(f x =22 ) < I fullx = x2 -,

and the proof follows immediately from (7) and Proposition 2.2 in Tautenhahn
(1996). d

Lemma 2. Let Assumptions 1, 2(i) hold, and s > max{0, —v}. Then
[Evis(f, £) <cadrs,

wherec = c(v, a, s, f) dependson v, a, s and f only.
Proof. In order to prove the statement of the lemma, we should establish the up-
per bound on [|[AL 5 g (LS A*AL~%)L ™ f||2. Let usintroduce the operator H =
AL, We need the following assertion that can be found in Natterer (1984):

Renge((H*H)"/?}) = X, @+s), Irl < 1. (13)
Thenfor f € X, v <aands > max{0, —v} weobtain

L™ f € X,y = Renge{(H* H)2e ).

This guarantees existence of vy € X such that

L™ f = (H*H)Zao vy, (14)
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Then (3), (13), (14) and (7) imply

EvZ  (f.§) = AL gu(L™A*AL™*)L™" f |2
sty
= ”Hga(H*H)(H*H) 2(a+s) Uf||2

S+v +l 2 2 v—a
<SP |8u(MAZE T2 lup||T < caats,
€[0,D?]

where the constant ¢ = ¢(v, a, s, f) dependson v, a, s and f only. |

Combining Lemmas 1, 2, we obtain that under Assumptions 1, 2 the uniform
risk of the estimate £;,  (x) associated with s > max{0, —v} and « > 0 admitsthe
following upper bound

AL

w.ss Wu(M)] SC(MZCY% +82a3;+§), Yu € (—v, 2s +d], (15)
wherec = ¢(v, s, a, f,d, D). Thus, o controls trade-off between the bias and the
variance of the risk. As usual in nonparametric estimation, the optimal choice of

the regularization parameter minimizes the upper bound (15). We obtain that with
2(a+s)
the optimal choicea =< (M ~L¢) W one has

2(v—a) 2(u+v)

Wo(M)] <cM™ wta g wta | Yy e (v, 25 +a], (16)

A,
where “ <" means equivalent in the sense of the order.

One can argue that the rate of convergence given in (16) cannot be improved
for estimating linear functionals. Indeed, it follows from Donoho and Low (1992)
that

1
707 = A5 Wu(M)] < 0P (e), (17)
where the modulus of continuity w(g) isgiven by
w(e) =sup{2ly(x) : |Ax|| < &/2, x|, = M}.

Sincev > —u, wehave X, ¢ X_,, and (f,x) < || fllv[lx]|-,. Condition (6)
implies that the constraint || Ax|| < ¢/2 isequivalent to ||x||_, < de/2 with some
constant d € [d, D]. Taking into account the embedding X_, > X_, D X w,» and
the strict interpolation property of the Hilbert scales, we obtain

~ ~ ptv - v—a
supflixll—y @ lIxll—a < de/2, lIxll, < M} = (de/2)r+eM ¥+a.  (18)

Thus, the estimate Zg’s(x) is optimal in order for every ball W, (M) with u €
(—v, 25 +4].

It is interesting to note also the order of the risk indicated in (16) coincides
with the optimal order of accuracy obtained by Engl and Neubauer (1988) and
Tautenhahn (1996) in the problem of optimal recovery of (f, x).



Adaptive inverse estimation of linear functionals 177

4. Adaptive estimator

The optimal choice of the regularization parameter requires a priori information
on the parameters . and M of the solution set W, (M), and for this reason is not
practical. In this section we introduce our adaptive estimator which is near optimal
simultaneously over a wide collection of the balls W, (M), not just over asingle
one.

Let éfxys(x) be the regularized inverse estimator defined in (9). Denote o =
g2lat9)/@=v) 7 = 1, r, = @V=®/Qa+9)) and for afixed rea number ¢ > 1
define

Ay ={aela,a]lia=a;=q’a, j=01,..}

Consider the family of the regularized inverse estimates {ég,x (x)} associated with
the regularization parameter o from the finite ordered set A,. Let » > 1; then we

define our adaptive estimate as E(é;1+,s (x), where

oy i=max{a € Ay - |é§m(x) — é;’s(x)l <dxery, Vp<a,ne ;. (19

Note that o is well-defined; in particular, the minimal o, = « isafeasible so-
lution to (19). Observe aso that o depends on the random noisy data (2), on the
ill-posednessindex a, on ¢, on smoothness of the representer f of estimated linear
functional, and on three design parameterss, ¢ and . Inthe sequel » will be chosen
asfunction of ¢, s and ¢, so that actually «; depends on the two design parameters
s and g. We would like to stress that the parameters 1 and M of the solution set
W, (M) are not involved in our construction.

Theorem 1. Let Assumptions 1, 2(ii) hold, and ¢ be small enough such that for
some constant ¢; = c1(v, a, s, f) one has

s\/lne—lfclmin{M, M*ﬁ‘é}. (20)

Assume also that
u e (—v,2s +al. (21)
Then there exists a constant ¢c2 = c2(v, a, s, f, d, D, ¢) such that for the estimate

éng,X(x) associated with » = cov/Ine—1 and s > max{0, —v} one has

AL

& .
o4 ,5?

W, (M)] < c3 [M‘E%Z(ezme—l)f% +e2inet], (@)
wherecs = c3(v, a, s, f,d, D, q).
Proof. Inthebelow proof ¢y, c2, . . . stand for the constantsdependingon v, a, s, f,

d, D and ¢ only. For brevity, we will write £, (x) for £, (x), ve (f) for va (f, &),
and by (x) for by s (f, x).



178 A. Goldenshluger, S.V. Pereverzev

Denote B, (x) = cal|x ||| f |l #H2/2@+9)) where c1 isthe constant appear-
ing in theright hand side of (11). For afixed » > 1, define

ay =maX{a € Ay By(x) < xery).
It follows immediately from (11) that for ga, € A,
XEFqa, < Bga, (x) < M| £l (gas) W/ Gt

and then
2(a+s)

@y > (coxeM 1) v (23)

for some constant c2. Condition (20) impliesthat the quantity in theright hand side
of (23) belongsto theinterval [«, @].
Consider the event

Q, = {a) cQ: Q%(glwa(m) < x}.

Assume that €2,; holds; then for every n € A, satisfying n < a, we have

€y () = Lo, ()] < (%) = Ly + (£, x) = L, (0)]

< by ()| + elvg (N + b, (X)| + €[V, ()]

< 2By, (x) + xery + xery, < 4xery.
This means that on the set €2,, our adaptive rule (19) always chooses the regular-
ization parameter o greater than «,.. Thus, taking into account that o > o, on
the set ©2,,, and (23) we obtain

0, %) = Ly (O] < 1y %) = Lo, ()] + [, () = L, (30)]
< By, (x) 4 €|vg, ()] + dxerg,

+v v—a
< Bxery, < C3(}{8)ﬁM_m. (24)

Now consider thecasew € Q¢ = Q\Q,. By Lemma2for g = g2@+9)/(@=v) <
o4 one has independently of the event €2,,

[(fo %) = gy ()] < 10 (x) = Loy, (X)] + [{f, x) — £y (x)]
< 4xery + By (x) 4 €lvg (f)]

< e + e[Ev3()]Y? max (|v(x(f)|[[Evt§(f)]7l/2)
< cane1O(8), (25)

where

e 2, \1-1/2
O = max (Ju(HIEZ (7).

Since vy (f)[Ev2(f)]~Y? isthe standard Gaussian random variable, and the card-
inality of the set A, does not exceed N = cg Ine—1, we can write

P{OE) >t} <N /OO exp(—t2/2)dt, > 0. (26)
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Integrating by parts we easily obtain from (26) that
E[O®)]* < co(InN)?, (27

where cg is an absolute constant. Further, Lemma 2 and (26) imply that

P(QS) =P {w €Q: ma Qa5 vy ()] > x}

€8y

<P {w € Q: max |va (f)IEG() 2> cglx}
=P{O®E) > gk} < N / exp(—12/2)dr. (28)
C6 1){

Using (25), (26), (27), and (28) we obtain

E(10F3) = L 0P2URS)) = caxe™ [ 06 PaP(@)
< caxe HEIO @)D YAPQ)]Y?

% 1/2
567%8_1\/N|HN<[ exp(—t2/2)dt) )
-1
CG X

Now it is evident from the above upper bound that one can choose a constant cg
such that for »x = cgv/Ine—1 one has

A 1
E[10f, %) = Loy 01222 | < 2 In . (29)
&
With this choice of », combining (29) and (24) we finally obtain
~ 2 _v—a 2 -1 ntv 2 _1
EI(f, ), ()12 < co [ M7 (62 Ine )50 4 e2Ine ] 0

If we knew in advance the parameters .« and M of the solution set W, (M), we
could achievetherate of convergence givenin (16). The arguments of Donoho and
Low (1992) show that thisisthe minimax rate of convergence. Therefore accuracy
of our adaptive estimator coincides, up to alogarithmic in e 1 factor, with the best
achievable rate of convergence for the case, where the parameters of the solution
set W, (M) areknown exactly. We stress, however, that the upper bound (22) holds
simultaneously for all balls W, (M) from the collection %", defined by (20) and
(21). Comparing the upper bound (22) with the order of the minimax risk given by
(17) and (18), we conclude that the estimate £;,, (x) is adaptive with respect to
W ¢ inthe sense of (5).

We can argue also that in many important casesthe estimate Ej;M (x) possesses
the best possible abilities for adaptation; i.e. the In e~ factor cannot be eliminated
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if oneisinterested in adaptive estimation over a collection of solution sets. In par-
ticular, if X = L2(0, 1), A isthe identity operator, £ (x) is the singular linear
functional, and ¥, contains at least two balls Wy, (-), W,,,(-) with 1 # po, then
the extraIne~1 cannot be avoided (see Lepskii (1990), Brown and Low (1996),
Efromovich and Low (1994) and Tsybakov (1998)). The same is true for some
convolution operators (Goldenshluger (1999)). In these cases our estimator has the
best possible adaptive properties.

5. Discretization

Inthis section we consider the problem of estimating alinear functional £ ¢ (x) from
discretized indirect white noise observations. In other words, we assume that only
afinite number of observationsis available

y8(¢i)= (Ax’ ¢i>+8g(¢i)a l:]-a ceen N (30)

where the set of the elements ®,, .= {¢; € X, i = 1, ..., n} iscaled the design.
From now onweassumethat both the design set @,,, and the number of observations
n can be chosen. Thisassumption has a practical meaning, becauseit concernswith
the important question of how many observationsto use for agiven noiseintensity
¢ (cf. Johnstone and Silverman (1991)). The goal isto estimate a linear functional
£ (x) = (f, x) from such discretized indirect white noise observations.

Our construction is based on the Tikhonov regularized inverse estimator char-
acterized by g, (1) = (A + o)~ L. Suppose that ®,, is an orthonormal systemin X,
and let Q,, denote the orthogonal projector onto the span{¢1, ¢, ..., ¢}

n= (i )oi.
i=1
Let s > max{0, —v}, and define the regularized estimate ¢

5.n.s () Of the linear
functional € s (x) = (f, x) by

lﬁ;n’s(x) = y.(QnAL*(al + L™ A* QnAL_S)_lL_Sf) (3D

(cf. (9)). Since Q, AL~ (el + L5 A*Q,AL™)"IL™ f e span{¢1, ¢2, ..., du},
the estimate is well-defined. .
Another representation for £¢, , _(x) can be obtained from the variational char-

o,n,s

acterization of the Tikhonov method. Denote

Qnye =Y _ye(@)pi. Qnk =D &P

i=1 i=1

Then the observations (30) can be written as

Onye = Qn(Ax + £§). (32)



Adaptive inverse estimation of linear functionals 181

Note that (32) is the standard form of the projection scheme for the approximate
solution of the operator equation (1) with random noise. Let x;, , ¢ be the solution
to the following minimization problem

Min{[| QnAu — Quyell? + afJull?}.
ueXy
Equivaently, x;, , . isthe solution to the Euler equation
—25 4% 725 g%
au+ L™>A*Q0,Au = L™* A*Q,y,, (33)

which is, in fact, afinitedimensional operator equation in span{L~Z A*¢;, i =
1,2,...,n}. With thisnotation, £;, , ((x) = (f, x5, ;)-

In what follows we assume that thedesign sets @1 C ®p C -+~ C ®,, C - --
have good approximation propertiesin the following sense.

Assumption 3. For everyn
Il — Qnllx,>x, <¢cn ", Vrel0,s+ad, (34)

where ¢ is a constant depending on s and a only.

This assumption is standard for discretization of inverse problems in Hilbert
scales (see, for example, Neubauer (1988)). If { X, } isascale of Sobolev spacesthen
(34) isvalid for awide variety of design sets, like splines, wavelets, trigonometric
functions.

It follows from (30), (31) and (33) that

(fsx) = €4 s (%) = ban,s (f, X) + van,s (f, €),
where
buns (f %) = (£, (T = (@I + L™ 4* 0, )P L2 4% 0, A)x) |
Vans (f ) = —E(QnAL™ (al + L™ A*Q,AL™*) 'L f).
Now we establish upper bounds on the bias and variance of the estimate ea s ()

Lemma 3. Let Assumptions 1, 2(ii) and 3 hold, and s > max{0, —v}. Then there
exists a constant ¢1 = ¢1(a, v, s, d, D) such that for n = n(a) = 1o~/ (@a@+s)
one has

_ Htv
SUP  |ban(a),s(f, ) < 2M| fllv 2@, Vi € (—v, 25 +a],
xeW, (M)

whereco = ca(a, v, s, d, D).

Proof. In the below proof c1, c2, ... stand for positive constants depending on «,
v, s,d and D only.
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Letx0, , = (af + L 2 A*Q,A) 1L 2 A*Q, Ax; then

ban(@y.s (1 = 1(fix = x8, M < I ullx —x2, s ll—v,

and it is sufficient to bound from above the norm ||x — xg,n’x |-, It follows from
(11) that

0 0 0 0
”x - xo{)n,s”*v = ”x - xays”*\) + ”‘xa‘s - xo@nys”*\)

pn+v 0 0
<c M”f”v o 2ats) + ”xoz,s - xa,n,s ”*V’

(35)

where x9

o,

formula

is given in (12). Let us evaluate the second term in (35). Using the

o(L™2A*A) = L go(H*H)L®, H = AL™",

(see, e.g., Tautenhahn (1996)) for g4 (A) = (A+a) tand H, = 0, H = 0, AL~
we have
0, =20, = L [gu(H*H)H* — go(HH,) H}]Ax
= L™*[(al + H*H) *H* — («I + H'H,) " H]Ax
= L™ (al+H*H) Y {(H*—H*) — (H*H — H}H,)(«] + H*H,) 1 H*] Ax
=L~ (al + H*H)"*H*(I — Q,)[1 — AL (] + H;f H,) " H;"]Ax
=Ll + H*H)"*H*(I — 0,)A(x —x% ). (36)

o,n,s

Further, it follows from Proposition 1 by Natterer (1984) that for any u € X
el —rats) < doI(H*H)Y Pull, | <1, (37)

where dp = [miny,|<1 min{d", D"}]71, and d, D are the constants from (6). Com-
bining (6), (7), (34), (36) and (37) we obtain

0 0
Xe,s = Xa,nsll—v

= |IL™"(al + H*H)"YH*(I — Q) A(x —x2, )l

o,n,s

= [l + H*H) " H*(I — Q) A(x — x3,, )ll—v—s
< dol| (H* H) 25 (] + H*H) " H*(I — Q) A(x — 22, )|

a,n,s

s 1 0
< do SUp|ga (M)A ZeHI 2] — Qpllx, ,—»x|A(x — xg., Ila—v
A

0

vts 1 —(a-v)
< coa2ats) 2p Dllx —xg 5 sll—v-

Now it iseasy to seethat there existsaconstant c3 such that for n = ¢3 o~/ (2@ +s)

0 0

1 0
lxg s — x ||—v_§||X—x

o,n,s ||—l)‘

(38)

o,s o,n,s

The assertion of the lemmafollows from (35) and (38). O



Adaptive inverse estimation of linear functionals 183

Remark 1. Reconsidering the proof of Lemma 3 one can see that the constant ¢1
can be chosen as
1

a—v

1
1= [EdoD(a + s)_l[(v +a+ 2s)TetE g v)“_”]z(““>] ,

where ¢ is aconstant from (34), and dp is defined in the proof of Lemma 3.

Lemma4. Let Assumptions1, 2(ii) and 3 hold, and s > max{0, —v}. Assume that
n = n(a) = &~ Y@@+ where ¢ isasin Lemma 3. Then

[E[Ug,n(a),s(f, £)] < Gt (39)
wherecz = c2(v, a, s, f).
Proof. We have
Ev2 0.5 (f &) = 1 Huce 8o (H,eoy Huia)) L™ f1I2.
By (14) and (7) we obtain

2
[Eva,n(a),s (fv 'i:)
< 1Hp)8a(H, (a)Hn(a))(H H) bl Uf||

<a H | Hy) 8 (H, (a)Hn(oc))( n(a)Hn(a))z(“%) Ix—x
2
+ Hy (o) 8o (H, (a)Hn(a))[(H*H)z(““) —(H, (a)Hn(a))z(“+S)]||X—>X}
Vs 2
< e {82 e B (HY )T —(H gy Ha@) %0 xx ) (40)

Using (34) and Corollary 4.2 from Plato and Vainikko (1990) we finally obtain

vt
| H) 2o — (H*(a)Hnm))Z(“*“ Ix—x < I = Qn@) AL Il x
Vs

= {ealn@] ™AL xox,. |

Vs
< [c4n(a)]_(v+s) (D”L—S ||X—>XS) ats

vts
S 5 2(a+s) .

Together with (40) thisyields (39). |

Now we are ready to establish an analog of Theorem 1 for the case of discret-
ized observations. Letn = n(a) = &1 1/(2(““)), where &1 isdefined in Lemma3
(see dso Remark 1). Then the estimate Eg 2@ depends only on two design pa-
rametersa and s. Let o begiven by (19) and n,. = n(oe+) Consider the estimate
E§l+ n, s () associated with the choice » = c2vIne~1, where ¢ dependson v, a,
s, f,d, D and g. We stress here that ég%nw (x) is based on discretized observa-
tions (30), the number of whichn = n(«4) dependson the random regularization

parameter o . Then the following statement holds.
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Theorem 2. Let the conditions of Theorem 1 hold, and Assumption 3 is satisfied.
Then

AL

3 .
oy Ny,

v—a +v
W, (M)] < c[Mfm(szlns_l)Z? —i—szlns_l],
wherec = c(v, a, s, f,d, D, q).

Proof. follows from Lemmas 3, 4 using the same arguments as in the proof of
Theorem 1. O

Theorem 2 shows that the same rate of convergence asin (22) can be achieved
even in the case where only a finite number of observations » is available. Thus,
the estimate ég%nw (x) is adaptive over the collection of the balls W, (M) defined
by (20) and (21). Note also that if we would like to reach the accuracy level in-
dicated in Theorems 1 and 2, then for each o € A, the number of observations

A

n = n(a) = O(a~Y/@a+s)) ysed for construction of the estimate ¢, , . (x) cannot

o,n,s

be reduced in the sense of the order. Indeed, Lemma 3 in fact establishes an upper
bound on approximation of elementsfrom W, (M) by elementsof ann-dimensional
subspace with respect to thenorm || - ||, . For rate optimal estimation, this approx-
imation accuracy must be of the same order as the non—discretized bias (11). On
the other hand, approximation of elements from W, (M) with respect to the norm
|l - ||—» by the elements of any n—dimensional subspace cannot be better than Kol-
mogorov’sn—width which hastheorder O (n~#~") inthe considered case. Thusthe
discretized bias by, »(«),s (f, x) cannot be of the same order as the non—discretized
one, if n islessthan O (¢~ (2@+5))) in the sense of the order.
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