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Abstract. We consider adaptive estimating the value of a linear functional from indirect
white noise observations. For a flexible approach, the problem is embedded in an abstract
Hilbert scale. We develop an adaptive estimator that is rate optimal within a logarithmic
factor simultaneously over a wide collection of balls in the Hilbert scale. It is shown that
the proposed estimator has the best possible adaptive properties for a wide range of linear
functionals. The case of discretized indirect white noise observations is studied, and the
adaptive estimator in this setting is developed.

1. Introduction

In this paper we consider adaptive estimating linear functionals from indirect white
noise observations. Let X be a separable Hilbert space with the inner product 〈·, ·〉
and the norm ‖ · ‖. Consider an operator equation

Ax = y, (1)

where A is a linear injective operator from X into a dense subset Range(A) ⊂ X.
Suppose that the right hand side y of (1) is observed in the presence of a Gaussian
white noise of the intensity ε. This specifically means that for every element φ ∈ X
we can observe

yε(φ) = 〈Ax, φ〉 + εξ(φ), (2)

where ξ(φ) is a Gaussian random variable on a probability space {�,A,�} with
zero mean and variance ‖φ‖2. In addition,

�[ξ(φ)ξ(ψ)] = 〈φ,ψ〉, ∀φ,ψ ∈ X, (3)
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where � is the expectation with respect to �. We are interested in estimating the
value of a linear functional f (x) = 〈f, x〉 from the indirect noisy observations
(2).

Statistical approach to inverse problems has been proposed by a number of au-
thors, including Sudakov and Khalfin (1964), Bakushinskii (1969), Wahba (1977).
For more recent work on this topic see, e.g., O’Sullivan (1986), Nychka and Cox
(1989), Johnstone and Silverman (1991), Nussbaum (1994), Donoho (1995), Mair
and Ruymgaart (1996), Golubev and Khasiminskii (1997), Chow, Ibragimov and
Khasminskii (1999), Mathe and Pereverzev (1999) and references therein. Typi-
cally in these papers A is an integral operator

Ax(t) =
∫
T

a(t, τ )x(τ )dτ, (4)

acting fromX = L2(T ) to L2(T ), where T is an interval in �, and x(·) is the func-
tion to be estimated. There is also a considerable literature on the optimal recovery
problem, where it is assumed that the right hand side y of (1) is observed with
a deterministic noise. A few selected references on the classical deterministic ap-
proach to inverse problems are Tikhonov and Arsenin (1977), Traub, Wasilkowski
and Wozniakowski (1988), Engl, Hanke and Neubauer (1996).

When estimating a linear functional f (x) = 〈f, x〉, it is usually assumed that
some a priori information on the unknown solution x is available. This information
typically reflects prior knowledge on smoothness of x, and is stated in the form
x ∈ W , whereW is a prespecified subset ofX. Let ̂ε(x) = ̂(x; yε) be an estimate
of f (x) based on the observations (2). In the framework of the minimax approach
accuracy of an estimate ̂ε is measured by its uniform with respect toW risk

R[̂ε;W ] := sup
x∈W

�|̂ε(x)− f (x)|2.

The minimax risk is defined by

R∗[ε;W ] := inf
̂ε

R[̂ε;W ] = R[∗;W ],

where inf is taken over all possible estimates ̂ε. The main purpose is to construct
asymptotically optimal, or in optimal in order estimates ̂ε satisfying

R[̂ε;W ] = R∗[ε;W ](1 + o(1)), ε → 0,

R[̂ε;W ] ≤ C(ε)R∗[ε;W ], sup
ε
C(ε) <∞

respectively.
The outlined problem of estimating linear functionals from white noise obser-

vations is a subject of considerable literature under various assumptions on the
operator A, the linear functional f (x) and the solution set W . It has been exten-
sively studied for the case of direct observations, where A is the identity operator
(Speckman (1979), Li (1982), Ibragimov and Has’minskii (1984)). For models with
indirect observations see, e.g., Donoho and Low (1992), Donoho (1994), and refer-
ences therein. In these papers a variety of optimal in the minimax sense estimators



Adaptive inverse estimation of linear functionals 171

has been developed. Typically, such estimators are highly specialized in the sense
that their construction depends heavily on the solution set W . The crucial step of
the construction involves selecting a smoothing parameter; to choose it optimally
one should have a priori information on the solution set W . In practice, however,
specifying the setW of possible solutions can present severe difficulties. Therefore,
developing estimators that are optimal in the minimax sense simultaneously over
a collection of solution setsW is of interest.

Let Wε denote a collection of solution setsW , possibly growing as ε → 0. We
say that an estimate ̂ε is adaptive with respect to Wε if

sup
W∈Wε

{R[̂ε;W ]/R∗[ε;W ]} ≤ C(ε), (5)

where supε C(ε) < ∞, or C(ε) grows slowly as ε goes to 0 (we say that C(ε)
grows slowly as ε → 0 if limε→0[C(rε)/C(ε)] = 1 for every r > 0). Recently
much attention has been concentrated on developing adaptive nonparametric es-
timators both for direct and indirect observations (Lepskii (1991), Donoho and
Johnstone (1994), Barron, Birge, Massart (1999), Donoho (1995), Abramovich and
Silverman (1998), Johnstone (1999), Cavalier and Tsybakov (1998)). For adaptive
estimation of linear functionals from direct white noise observations we refer to
Lepskii (1990), Efromovich and Low (1994) and Tsybakov (1998). Adaptive esti-
mates that are within a logarithmic factor optimal simultaneously over a collection
of the solutions sets have been proposed there. It has been shown also that the
extra logarithmic factor is often unavoidable when estimating linear functionals. In
particular, this fact has been established by Lepskii (1990, 1992) and Brown and
Low (1996) for estimating a function (or its derivative) at a single given point from
direct white noise observations. The similar result holds for indirect observations
involving certain convolution operators (Goldenshluger (1999)). It should be no-
ticed that there is a vast literature on data–driven selection of smoothing parameters
in inverse problems (see, e.g., Wahba (1977), Lukas (1998) and references therein);
however, the minimax properties of the related estimation methods are not usually
analyzed.

The goal of the present paper is to develop an adaptive estimator of linear func-
tionals in the general Hilbert space framework. For a flexible approach, we embed
the problem in a Hilbert scale, and propose the estimator that is adaptive over a
collection of balls in the Hilbert scale. Our construction exploits deterministic regu-
larization methods along with the general adaptation scheme developed by Lepskii
(1990, 1991) for estimation from direct white noise observations. We show that
the accuracy of our adaptive estimator is only by a logarithmic factor worse than
the one we could achieve in the case when the solution set W is known exactly.
We argue also that in many important cases this extra logarithmic factor cannot
be reduced; here our estimator possesses the best possible abilities for adaptation.
Furthermore, we consider the case of discretized observations, where the data (2)
are available only for a finite number of “probe” functions φi ∈ X, i = 1, . . . , n.
This case corresponds to grouped or binned data which are typical in statistical
practice (Johnstone and Silverman (1991), Bickel and Ritov (1995)). In the context
of indirect estimation in the Hilbert scales the case of discretized observations has
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been studied by Mathe and Pereverzev (1999). Both the “probe” functions and the
number of observations n are important parameters of the estimation method. We
consider the problem of optimal discretization, and show that our estimate asso-
ciated with a data–driven choice of the design set  n = {φi ∈ X, i = 1, . . . , n}
possesses the same adaptive minimax properties, as the adaptive estimate based on
the complete observations (2). We indicate the number n of discrete observations
which is sufficient for rate optimal (up to the logarithmic factor) estimation and
argue that this number cannot be reduced in the sense of the order.

The rest of the article is organized as follows. Section 2 introduces our notation
and assumptions. In Section 3 we consider the regularized inverse estimator and
show that it is optimal in order under a proper choice of the regularization param-
eter. In Section 4 our adaptive estimator is defined, and its accuracy is analyzed.
Adaptive estimation of linear functionals from indirect discretized observations is
studied in Section 5.

2. Formulation and assumptions

Recall that a Hilbert scale {Xr}r∈� is a family of Hilbert spaces Xr with the in-
ner products 〈u, v〉r := 〈Lru,Lrv〉, where L is an unbounded self-adjoint strictly
positive operator in a dense domain ofX. More precisely,Xr is defined as the com-
pletion of the intersection of domains of all operators {Ls}s∈�, endowed with the
norm ‖u‖r := 〈u, u〉1/2

r , ‖ · ‖0 = ‖ · ‖. The first investigation of inverse problems
with deterministic noise in Hilbert scales dates back to Natterer (1984). Statisti-
cal inverse estimation in Hilbert scales has been studied by Mair and Ruymgaart
(1996), and Mathe and Pereverzev (1999). Usually {Xr} are the Sobolev spaces of
various kinds; in this case r is the index characterizing smoothness.

Example 1. (a) Let X = L2(0, 1), and

Xr =
{
x ∈ L2(0, 1) :

∞∑
k=1

k2r |〈x, ϕk〉|2 <∞
}
,

where ϕ1, ϕ2, . . . be an orthonormal basis ofL2(0, 1). In this caseXr is the domain
of the operatorLr , whereL : X1 → L2(0, 1) is defined byLx = ∑∞

k=1 k〈x, ϕk〉ϕk .
(b) Let X = L2(�), and

Xr =
{
x ∈ L2(�) :

∫
�

(1 + s2)r |(Fx)(s)|2ds <∞
}
,

where F denotes the Fourier transform from L2(�) into itself. Then Xr is the
domain of the operator Lr , where L = S1/2 and S : X2 → L2(�) is given by
Sx = x − x′′.

The following factors determine essentially behavior of the minimax risks in
estimating linear functionals f (x) = 〈f, x〉: (a) degree of ill-posedness of the op-
eratorA; (b) smoothness of the representer f ; (c) smoothness of the solution x. We
introduce the main assumptions on these ingredients of the problem in the Hilbert
scale framework.
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Throughout the paper we assume that the operator A is adapted to the Hilbert
scale {Xr} is the following sense.

Assumption 1. The operator A acts along the Hilbert scale {Xr}: for some pa-
rameter a ≥ 0 there exist constants d,D > 0 such that

d‖u‖r−a ≤ ‖Au‖r ≤ D‖u‖r−a, ∀u ∈ Xr−a, r ∈ �. (6)

Examples of integral operators (4) satisfying (6) can be found in Neubauer (1988),
Mair and Ruymgaart (1996). Condition (6) describes the degree of ill-posedness of
the operator A relative to the Hilbert scale {Xr}. We note that even if the operator
A does not fit some standard Hilbert scale, one can often construct a scale adapted
to A. This is the case when A : X → X acts compactly and injectively in some
Hilbert space X. Then A meets condition (6) with a = 1/2 in the scale generated
by L := (A∗A)−1; see Natterer (1984) and Hegland (1995) for further details.

The following assumption on the linear functional f (x) will be used in the
sequel.

Assumption 2. The representer f of the linear functional f (x) = 〈f, x〉 belongs
to the Hilbert space Xν , and either (i) ν ≤ a, or (ii) ν < a.

The condition (i) is quite usual in estimating linear functionals (see Tautenhahn
(1996)); it includes linear functionals that can theoretically be estimated both at
the parametric O(ε2) and nonparametric rates. The condition (ii) corresponds to
estimating nonparametric (singular) linear functionals, where the representer f is
a generalized function relative to the Hilbert space X.

As for the unknown solution x, we suppose that x belongs to the ballWµ(M) ⊂
Xµ

Wµ(M) := {x ∈ Xµ : ‖x‖µ ≤ M}
for some indexµ > 0 and constantM > 0. Since the dual space ofXµ isX−µ (see,
for example, Krein et al. (1982), p. 237), and Xr is embedded in Xs for r > s, we
need also the condition ν ≥ −µ to ensure that the linear functional f (x) = 〈f, x〉
is well-defined.

Example 2. Let X = L2(0, 1), and A be a compact integral operator given by
(4). Let the Hilbert scale {Xr} be generated by an operator L, and let {ϕk} be a
complete orthonormal system of eigenfunctions of the operator L, i.e. Lϕk(t) =
λkϕk(t), k = 1, 2, . . .. Thus, 0 < λ1 ≤ λ2 ≤ · · · with λk → ∞ as k → ∞. Then
the solution x of integral equation (1) with the integral operator (4) satisfying (6)
belongs to Xµ if and only if

∞∑
k=1

λ
2µ
k |〈ϕk, x〉|2 <∞.

Suppose we are interested in estimating the value of f (x) = x(t0), where t0 ∈
[0, 1]. If for some ν ≥ −µ

∞∑
k=1

λ2ν
k |ϕk(t0)|2 <∞
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then for x ∈ Xµ ⊂ X−ν

x(t0) = 〈ft0 , x〉 :=
∫ 1

0
ft0(t)x(t)dt =

∞∑
k=1

ϕk(t0)〈ϕk, x〉.

Here the representer ft0 of estimated linear functional is a generalized function
determined by the series

ft0(t) =
∞∑
k=1

ϕk(t0)ϕk(t)

converging in Xν . In particular, if L is as in Example 1(a) and µ > 1/2, then
ft0 ∈ X−1/2.

3. Regularized inverse estimator

The inverse operator A−1 is not necessarily bounded in the X-topology; there-
fore some kind of regularization is required for estimating the value 〈f, x〉. In the
context of the deterministic approach to inverse problems it was shown in Bakushin-
skii (1967), Groetsch (1977), Vainikko and Veretennikov (1986), and Tautenhahn
(1996) that a wide variety of regularization methods can be constructed in the fol-
lowing way. Let gα(·) be a piecewise continuous function on [0,D2] depending on
a regularization parameter α > 0 and satisfying the following conditions:

sup
λ∈[0,D2]

|λγ gα(λ)| ≤ cγ αγ−1, 0 ≤ γ ≤ 1, (7)

sup
λ∈[0,D2]

|λβ [1 − λgα(λ)]| ≤ cβαβ, 0 ≤ β ≤ 1, (8)

whereD is given in (6), and cγ , cβ are positive constants. Fix a non-negative number
s ≥ −ν and define the regularized estimate ̂εα,s(x) of f (x) = 〈f, x〉 by

̂εα,s(x) = yε(AL−sgα(L−sA∗AL−s)L−sf ), (9)

where A∗ is the adjoint of the operator A in X. Observe also that the condition
s ≥ −ν ensures that AL−sgα(L−sA∗AL−s)L−sf ∈ X, so that the estimate is
well-defined. The well-known Tikhonov regularization method is characterized by
(9) with gα(λ) = (λ+ α)−1. In the statistical context this method has been applied
to estimating the value of a linear functional by Li (1982) with the special choice
α = O(ε2).

Accuracy of the regularization methods depends crucially on the choice of the
regularization parameter α. Let ̂εα,s(x) be the estimate (9) associated with some
regularization parameter α and s ≥ max{0,−ν}. It follows immediately from (2)
and (9) that

〈f, x〉 − ̂εα,s(x) = bα,s(f, x)+ εvα,s(f, ξ),
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where

bα,s(f, x) = 〈f, (I − L−sgα(L−sA∗AL−s)L−sA∗A)x〉,
vα,s(f, ξ) = −ξ(AL−sgα(L−sA∗AL−s)L−sf ).

Since vα,s(f ) is a zero mean random variable, we obtain

�|〈f, x〉 − ̂εα,s(x)|2 = b2
α,s(f, x)+ ε2�v2

α,s(f, ξ). (10)

Now we establish upper bounds on the bias and variance in the right hand side of
(10).

Lemma 1. Let Assumptions 1, 2(i) hold, and ̂εα,s(x) be associated with s ≥
max{0,−ν}. Then for every µ ∈ (−ν, 2s + a] one has

sup
x∈Wµ(M)

|bα,s(f, x)| ≤ cM‖f ‖ν α
µ+ν

2(a+s) , (11)

where c = c(ν, a, s, d,D) depends on ν, a, s, d,D only.

Proof. Let

x0
α,s = L−sgα(L−sA∗AL−s)L−sA∗Ax (12)

then

|bα,s(f, x)| = |〈f, x − x0
α,s〉| ≤ ‖f ‖ν‖x − x0

α,s‖−ν,

and the proof follows immediately from (7) and Proposition 2.2 in Tautenhahn
(1996). �

Lemma 2. Let Assumptions 1, 2(i) hold, and s ≥ max{0,−ν}. Then

�v2
α,s(f, ξ) ≤ c α ν−aa+s ,

where c = c(ν, a, s, f ) depends on ν, a, s and f only.

Proof. In order to prove the statement of the lemma, we should establish the up-
per bound on ‖AL−sgα(L−sA∗AL−s)L−sf ‖2. Let us introduce the operatorH =
AL−s . We need the following assertion that can be found in Natterer (1984):

Range{(H ∗H)r/2} = Xr(a+s), |r| ≤ 1. (13)

Then for f ∈ Xν, ν ≤ a and s ≥ max{0,−ν} we obtain

L−sf ∈ Xs+ν = Range{(H ∗H)
s+ν

2(a+s) }.

This guarantees existence of vf ∈ X such that

L−sf = (H ∗H)
s+ν

2(a+s) vf . (14)
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Then (3), (13), (14) and (7) imply

�v2
α,s(f, ξ) = ‖AL−sgα(L−sA∗AL−s)L−sf ‖2

= ‖Hgα(H ∗H)(H ∗H)
s+ν

2(a+s) vf ‖2

≤ sup
λ∈[0,D2]

∣∣∣gα(λ)λ s+ν
2(a+s)+ 1

2

∣∣∣2‖vf ‖2 ≤ cα ν−aa+s ,

where the constant c = c(ν, a, s, f ) depends on ν, a, s and f only. �
Combining Lemmas 1, 2, we obtain that under Assumptions 1, 2 the uniform

risk of the estimate ̂εα,s(x) associated with s ≥ max{0,−ν} and α > 0 admits the
following upper bound

R[̂εα,s;Wµ(M)] ≤ c
(
M2α

µ+ν
a+s + ε2α

ν−a
a+s

)
, ∀µ ∈ (−ν, 2s + a], (15)

where c = c(ν, s, a, f, d,D). Thus, α controls trade-off between the bias and the
variance of the risk. As usual in nonparametric estimation, the optimal choice of
the regularization parameter minimizes the upper bound (15). We obtain that with

the optimal choice α � (M−1ε)
2(a+s)
µ+a one has

R[̂εα,s;Wµ(M)] ≤ cM− 2(ν−a)
µ+a ε

2(µ+ν)
µ+a , ∀µ ∈ (−ν, 2s + a], (16)

where “�” means equivalent in the sense of the order.
One can argue that the rate of convergence given in (16) cannot be improved

for estimating linear functionals. Indeed, it follows from Donoho and Low (1992)
that

1

4
ω2(ε) ≤ R∗[ε;Wµ(M)] ≤ ω2(ε), (17)

where the modulus of continuity ω(ε) is given by

ω(ε) = sup{2f (x) : ‖Ax‖ ≤ ε/2, ‖x‖µ ≤ M}.

Since ν > −µ, we have Xµ ⊂ X−ν , and 〈f, x〉 ≤ ‖f ‖ν‖x‖−ν . Condition (6)
implies that the constraint ‖Ax‖ ≤ ε/2 is equivalent to ‖x‖−a ≤ d̃ε/2 with some
constant d̃ ∈ [d,D]. Taking into account the embedding X−a ⊃ X−ν ⊃ Xµ, and
the strict interpolation property of the Hilbert scales, we obtain

sup{‖x‖−ν : ‖x‖−a ≤ d̃ε/2, ‖x‖µ ≤ M} = (d̃ε/2) µ+ν
µ+a M− ν−a

µ+a . (18)

Thus, the estimate ̂εα,s(x) is optimal in order for every ball Wµ(M) with µ ∈
(−ν, 2s + a].

It is interesting to note also the order of the risk indicated in (16) coincides
with the optimal order of accuracy obtained by Engl and Neubauer (1988) and
Tautenhahn (1996) in the problem of optimal recovery of 〈f, x〉.
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4. Adaptive estimator

The optimal choice of the regularization parameter requires a priori information
on the parameters µ and M of the solution set Wµ(M), and for this reason is not
practical. In this section we introduce our adaptive estimator which is near optimal
simultaneously over a wide collection of the balls Wµ(M), not just over a single
one.

Let ̂εα,s(x) be the regularized inverse estimator defined in (9). Denote α =
ε2(a+s)/(a−ν), α = 1, rα = α(ν−a)/(2(a+s)), and for a fixed real number q > 1
define

7q := {α ∈ [α, α] : α = αj = qjα, j = 0, 1, . . .}.

Consider the family of the regularized inverse estimates {̂εα,s(x)} associated with
the regularization parameter α from the finite ordered set 7q . Let 9 ≥ 1; then we
define our adaptive estimate as ̂εα+,s(x), where

α+ := max{α ∈ 7q : |̂εα,s(x)− ̂εη,s(x)| ≤ 49εrη, ∀η ≤ α, η ∈ 7q}. (19)

Note that α+ is well-defined; in particular, the minimal α+ = α is a feasible so-
lution to (19). Observe also that α+ depends on the random noisy data (2), on the
ill-posedness index a, on ε, on smoothness of the representer f of estimated linear
functional, and on three design parameters s, q and 9. In the sequel 9 will be chosen
as function of ε, s and q, so that actually α+ depends on the two design parameters
s and q. We would like to stress that the parameters µ and M of the solution set
Wµ(M) are not involved in our construction.

Theorem 1. Let Assumptions 1, 2(ii) hold, and ε be small enough such that for
some constant c1 = c1(ν, a, s, f ) one has

ε
√

ln ε−1 ≤ c1 min
{
M, M

− ν−a
µ+a

}
. (20)

Assume also that

µ ∈ (−ν, 2s + a]. (21)

Then there exists a constant c2 = c2(ν, a, s, f, d,D, q) such that for the estimate
̂εα+,s(x) associated with 9 = c2

√
ln ε−1 and s ≥ max{0,−ν} one has

R[̂εα+,s;Wµ(M)] ≤ c3

[
M

− ν−a
µ+a (ε2 ln ε−1)

µ+ν
µ+a + ε2 ln ε−1

]
, (22)

where c3 = c3(ν, a, s, f, d,D, q).

Proof. In the below proof c1, c2, . . . stand for the constants depending on ν, a, s, f ,
d,D and q only. For brevity, we will write ̂α(x) for ̂εα,s(x), vα(f ) for vα,s(f, ξ),
and bα(x) for bα,s(f, x).
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Denote Bα(x) = c1‖x‖µ‖f ‖να(µ+ν)/(2(a+s)), where c1 is the constant appear-
ing in the right hand side of (11). For a fixed 9 ≥ 1, define

α∗ = max{α ∈ 7q : Bα(x) ≤ 9εrα}.
It follows immediately from (11) that for qα∗ ∈ 7q

9εrqα∗ < Bqα∗(x) ≤ cM‖f ‖ν(qα∗)(µ+ν)/(2(a+s)),

and then
α∗ ≥ (c29εM

−1)
2(a+s)
µ+a (23)

for some constant c2. Condition (20) implies that the quantity in the right hand side
of (23) belongs to the interval [α, α].

Consider the event

�9 =
{
ω ∈ � : max

α∈7q

(
r−1
α |vα(f )|

)
≤ 9

}
.

Assume that �9 holds; then for every η ∈ 7q satisfying η ≤ α∗ we have

|̂η(x)− ̂α∗(x)| ≤ |〈f, x〉 − ̂η(x)| + |〈f, x〉 − ̂α∗(x)|
≤ |bη(x)| + ε|vη(f )| + |bα∗(x)| + ε|vα∗(f )|
≤ 2Bα∗(x)+ 9εrη + 9εrα∗ ≤ 49εrη.

This means that on the set �9 our adaptive rule (19) always chooses the regular-
ization parameter α+ greater than α∗. Thus, taking into account that α+ ≥ α∗ on
the set �9 , and (23) we obtain

|〈f, x〉 − ̂α+(x)| ≤ |〈f, x〉 − ̂α∗(x)| + |̂α∗(x)− ̂α+(x)|
≤ Bα∗(x)+ ε|vα∗(f )| + 49εrα∗

≤ 69εrα∗ ≤ c3(9ε)
µ+ν
µ+a M− ν−a

µ+a . (24)

Now consider the caseω ∈ �c9 = �\�9 . By Lemma 2 forα = ε2(a+s)/(a−ν) ≤
α+ one has independently of the event �9

|〈f, x〉 − ̂α+(x)| ≤ |̂α(x)− ̂α∗(x)| + |〈f, x〉 − ̂α(x)|
≤ 49εrα + Bα(x)+ ε|vα(f )|
≤ 49ε−1 + ε[�v2

α(f )]
1/2 max

α∈7q

(
|vα(f )|[�v2

α(f )]
−1/2

)
≤ c49ε

−1<(ξ), (25)

where
<(ξ) := max

α∈7q

(
|vα(f )|[�v2

α(f )]
−1/2

)
.

Since vα(f )[�v2
α(f )]

−1/2 is the standard Gaussian random variable, and the card-
inality of the set 7q does not exceed N = c5 ln ε−1, we can write

�{<(ξ) > τ } ≤ N
∫ ∞

τ

exp(−t2/2)dt, τ > 0. (26)
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Integrating by parts we easily obtain from (26) that

�[<(ξ)]4 ≤ c0 (lnN)
2, (27)

where c0 is an absolute constant. Further, Lemma 2 and (26) imply that

�{�c9} = �

{
ω ∈ � : max

α∈7q
α

a−ν
2(a+s) |vα(f )| > 9

}

≤ �

{
ω ∈ � : max

α∈7q
|vα(f )|(�v2

α(f ))
−1/2 > c−1

6 9

}

= �{<(ξ) > c−1
6 9} ≤ N

∞∫
c−1

6 9

exp(−t2/2)dt. (28)

Using (25), (26), (27), and (28) we obtain

�
(
|〈f, x〉 − ̂α+(x)|21{�c9}

)
≤ c49ε

−1
∫
�c9

|<(ξ)|2d�(ω)

≤ c49ε
−1(�|<(ξ)|4)1/2[�(�c9)]

1/2

≤ c79ε
−1

√
N lnN

( ∞∫
c−1

6 9

exp(−t2/2)dt
)1/2

.

Now it is evident from the above upper bound that one can choose a constant c8

such that for 9 = c8
√

ln ε−1 one has

�
[
|〈f, x〉 − ̂α+(x)|21{�c9}

]
≤ ε2 ln

1

ε
. (29)

With this choice of 9, combining (29) and (24) we finally obtain

�|〈f, x〉−̂α+(x)|2 ≤ c9

[
M

− ν−a
µ+a (ε2 ln ε−1)

µ+ν
µ+a + ε2 ln ε−1

]
. �

If we knew in advance the parameters µ andM of the solution setWµ(M), we
could achieve the rate of convergence given in (16). The arguments of Donoho and
Low (1992) show that this is the minimax rate of convergence. Therefore accuracy
of our adaptive estimator coincides, up to a logarithmic in ε−1 factor, with the best
achievable rate of convergence for the case, where the parameters of the solution
setWµ(M) are known exactly. We stress, however, that the upper bound (22) holds
simultaneously for all balls Wµ(M) from the collection Wε defined by (20) and
(21). Comparing the upper bound (22) with the order of the minimax risk given by
(17) and (18), we conclude that the estimate εα+,s(x) is adaptive with respect to
Wε in the sense of (5).

We can argue also that in many important cases the estimate ̂εα+,s(x) possesses

the best possible abilities for adaptation; i.e. the ln ε−1 factor cannot be eliminated
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if one is interested in adaptive estimation over a collection of solution sets. In par-
ticular, if X = L2(0, 1), A is the identity operator, f (x) is the singular linear
functional, and Wε contains at least two ballsWµ1(·),Wµ2(·) with µ1 �= µ2, then
the extra ln ε−1 cannot be avoided (see Lepskii (1990), Brown and Low (1996),
Efromovich and Low (1994) and Tsybakov (1998)). The same is true for some
convolution operators (Goldenshluger (1999)). In these cases our estimator has the
best possible adaptive properties.

5. Discretization

In this section we consider the problem of estimating a linear functional f (x) from
discretized indirect white noise observations. In other words, we assume that only
a finite number of observations is available

yε(φi) = 〈Ax, φi〉 + εξ(φi), i = 1, . . . , n, (30)

where the set of the elements  n := {φi ∈ X, i = 1, . . . , n} is called the design.
From now on we assume that both the design set n, and the number of observations
n can be chosen. This assumption has a practical meaning, because it concerns with
the important question of how many observations to use for a given noise intensity
ε (cf. Johnstone and Silverman (1991)). The goal is to estimate a linear functional
f (x) = 〈f, x〉 from such discretized indirect white noise observations.

Our construction is based on the Tikhonov regularized inverse estimator char-
acterized by gα(λ) = (λ+ α)−1. Suppose that  n is an orthonormal system in X,
and letQn denote the orthogonal projector onto the span{φ1, φ2, . . . , φn}

Qn =
n∑
i=1

〈φi, ·〉φi.

Let s ≥ max{0,−ν}, and define the regularized estimate ̂εα,n,s(x) of the linear
functional f (x) = 〈f, x〉 by

̂εα,n,s(x) = yε(QnAL−s(αI + L−sA∗QnAL−s)−1L−sf ) (31)

(cf. (9)). SinceQnAL−s(αI +L−sA∗QnAL−s)−1L−sf ∈ span{φ1, φ2, . . . , φn},
the estimate is well-defined.

Another representation for ̂εα,n,s(x) can be obtained from the variational char-
acterization of the Tikhonov method. Denote

Qnyε =
n∑
i=1

yε(φi)φi, Qnξ =
n∑
i=1

ξ(φi)φi .

Then the observations (30) can be written as

Qnyε = Qn(Ax + εξ). (32)
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Note that (32) is the standard form of the projection scheme for the approximate
solution of the operator equation (1) with random noise. Let xεα,n,s be the solution
to the following minimization problem

min
u∈Xs

{‖QnAu−Qnyε‖2 + α‖u‖2
s }.

Equivalently, xεα,n,s is the solution to the Euler equation

αu+ L−2sA∗QnAu = L−2sA∗Qnyε, (33)

which is, in fact, a finite-dimensional operator equation in span{L−2sA∗φi, i =
1, 2, . . . , n}. With this notation, ̂εα,n,s(x) = 〈f, xεa,n,s〉.

In what follows we assume that the design sets  1 ⊂  2 ⊂ · · · ⊂  n ⊂ · · ·
have good approximation properties in the following sense.

Assumption 3. For every n

‖I −Qn‖Xr→X0 ≤ c̃ n−r , ∀r ∈ [0, s + a], (34)

where c̃ is a constant depending on s and a only.

This assumption is standard for discretization of inverse problems in Hilbert
scales (see, for example, Neubauer (1988)). If {Xr} is a scale of Sobolev spaces then
(34) is valid for a wide variety of design sets, like splines, wavelets, trigonometric
functions.

It follows from (30), (31) and (33) that

〈f, x〉 − ̂εα,n,s(x) = bα,n,s(f, x)+ vα,n,s(f, ξ),

where

bα,n,s(f, x) =
〈
f, (I − (αI + L−2sA∗QnA)−1L−2sA∗QnA)x

〉
,

vα,n,s(f, ξ) = −ξ(QnAL−s(αI + L−sA∗QnAL−s)−1L−sf ).

Now we establish upper bounds on the bias and variance of the estimate ̂εα,n,s(x).

Lemma 3. Let Assumptions 1, 2(ii) and 3 hold, and s ≥ max{0,−ν}. Then there
exists a constant c̄1 = c̄1(a, ν, s, d,D) such that for n = n(α) = c̄1α

−1/(2(a+s))
one has

sup
x∈Wµ(M)

|bα,n(α),s(f, x)| ≤ c̄2M‖f ‖ν α
µ+ν

2(a+s) , ∀µ ∈ (−ν, 2s + a],

where c̄2 = c̄2(a, ν, s, d,D).

Proof. In the below proof c1, c2, . . . stand for positive constants depending on a,
ν, s, d and D only.
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Let x0
α,n,s = (αI + L−2sA∗QnA)−1L−2sA∗QnAx; then

|bα,n(α),s(f, x)| = |〈f, x − x0
α,n,s〉| ≤ ‖f ‖ν‖x − x0

α,n,s‖−ν,

and it is sufficient to bound from above the norm ‖x − x0
α,n,s‖−ν . It follows from

(11) that

‖x − x0
α,n,s‖−ν ≤ ‖x − x0

α,s‖−ν + ‖x0
α,s − x0

α,n,s‖−ν

≤ c1M‖f ‖ν α
µ+ν

2(a+s) + ‖x0
α,s − x0

α,n,s‖−ν, (35)

where x0
α,s is given in (12). Let us evaluate the second term in (35). Using the

formula

gα(L
−2sA∗A) = L−sgα(H ∗H)Ls, H = AL−s ,

(see, e.g., Tautenhahn (1996)) for gα(λ) = (λ+α)−1 andHn = QnH = QnAL−s
we have

x0
α,s − x0

α,n,s = L−s[gα(H ∗H)H ∗ − gα(H ∗
nHn)H

∗
n ]Ax

= L−s[(αI +H ∗H)−1H ∗ − (αI +H ∗
nHn)

−1H ∗
n ]Ax

= L−s(αI+H ∗H)−1[(H ∗−H ∗
n )− (H ∗H −H ∗

nHn)(αI+H ∗
nHn)

−1H ∗
n ]Ax

= L−s(αI +H ∗H)−1H ∗(I −Qn)[I − AL−s(αI +H ∗
nHn)

−1H ∗
n ]Ax

= L−s(αI +H ∗H)−1H ∗(I −Qn)A(x − x0
α,n,s). (36)

Further, it follows from Proposition 1 by Natterer (1984) that for any u ∈ X

‖u‖−r(a+s) ≤ d0 ‖(H ∗H)r/2u‖, |r| ≤ 1, (37)

where d0 = [min|r|≤1 min{dr ,Dr}]−1, and d , D are the constants from (6). Com-
bining (6), (7), (34), (36) and (37) we obtain

‖x0
α,s − x0

α,n,s‖−ν = ‖L−ν−s(αI +H ∗H)−1H ∗(I −Qn)A(x − x0
α,n,s)‖

= ‖(αI +H ∗H)−1H ∗(I −Qn)A(x − x0
α,n,s)‖−ν−s

≤ d0‖(H ∗H)
ν+s

2(a+s) (αI +H ∗H)−1H ∗(I −Qn)A(x − x0
α,n,s)‖

≤ d0 sup
λ

|gα(λ)λ
ν+s

2(a+s)+1
2 |‖I−Qn‖Xa−ν→X‖A(x − x0

α,n,s)‖a−ν

≤ c2 α
ν+s

2(a+s)− 1
2 n−(a−ν) D ‖x − x0

α,n,s‖−ν .

Now it is easy to see that there exists a constant c3 such that for n = c3 α
−1/(2(a+s))

‖x0
α,s − x0

α,n,s‖−ν ≤ 1

2
‖x − x0

α,n,s‖−ν . (38)

The assertion of the lemma follows from (35) and (38). �
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Remark 1. Reconsidering the proof of Lemma 3 one can see that the constant c̄1
can be chosen as

c̄1 =
[
c̃d0D(a + s)−1[(ν + a + 2s)ν+a+2s(a − ν)a−ν] 1

2(a+s)
] 1
a−ν
,

where c̃ is a constant from (34), and d0 is defined in the proof of Lemma 3.

Lemma 4. Let Assumptions 1, 2(ii) and 3 hold, and s ≥ max{0,−ν}. Assume that
n = n(α) = c̄1α

−1/(2(a+s)), where c̄1 is as in Lemma 3. Then

�[v2
α,n(α),s(f, ξ)] ≤ c̄2α

ν−a
a+s , (39)

where c̄2 = c̄2(ν, a, s, f ).

Proof. We have

�v2
α,n(α),s(f, ξ) = ‖Hn(α)gα(H ∗

n(α)Hn(α))L
−sf ‖2.

By (14) and (7) we obtain

�v2
α,n(α),s(f, ξ)

≤ ‖Hn(α)gα(H ∗
n(α)Hn(α))(H

∗H)
ν+s

2(a+s) vf ‖2

≤ c1

{
‖Hn(α)gα(H ∗

n(α)Hn(α))(H
∗
n(α)Hn(α))

ν+s
2(a+s) ‖X→X

+‖Hn(α)gα(H ∗
n(α)Hn(α))[(H

∗H)
ν+s

2(a+s) −(H ∗
n(α)Hn(α))

ν+s
2(a+s) ]‖X→X

}2

≤ c2

{
α

ν+s
2(a+s)−1

2 +α− 1
2 ‖(H ∗H)

ν+s
2(a+s) −(H ∗

n(α)Hn(α))
ν+s

2(a+s) ‖X→X

}2
. (40)

Using (34) and Corollary 4.2 from Plato and Vainikko (1990) we finally obtain

‖(H ∗H)
ν+s

2(a+s) − (H ∗
n(α)Hn(α))

ν+s
2(a+s) ‖X→X ≤ ‖(I −Qn(α))AL−s‖

ν+s
a+s
X→X

≤
{
c3 [n(α)]−(a+s)‖AL−s‖X→Xa+s

} ν+s
a+s

≤ [c4 n(α)]
−(ν+s) (D‖L−s‖X→Xs

) ν+s
a+s

≤ c5 α
ν+s

2(a+s) .

Together with (40) this yields (39). �
Now we are ready to establish an analog of Theorem 1 for the case of discret-

ized observations. Let n = n(α) = c̄1α
−1/(2(a+s)), where c̄1 is defined in Lemma 3

(see also Remark 1). Then the estimate ̂εα,n(α),s depends only on two design pa-
rameters α and s. Let α+ be given by (19) and n+ = n(α+). Consider the estimate
̂εα+,n+,s(x) associated with the choice 9 = c̄2

√
ln ε−1, where c̄2 depends on ν, a,

s, f , d, D and q. We stress here that ̂εα+,n+,s(x) is based on discretized observa-
tions (30), the number of which n+ = n(α+) depends on the random regularization
parameter α+. Then the following statement holds.
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Theorem 2. Let the conditions of Theorem 1 hold, and Assumption 3 is satisfied.
Then

R[̂εα+,n+,s;Wµ(M)] ≤ c
[
M

− ν−a
µ+a (ε2 ln ε−1)

µ+ν
µ+a + ε2 ln ε−1

]
,

where c = c(ν, a, s, f, d,D, q).
Proof. follows from Lemmas 3, 4 using the same arguments as in the proof of
Theorem 1. �

Theorem 2 shows that the same rate of convergence as in (22) can be achieved
even in the case where only a finite number of observations n is available. Thus,
the estimate ̂εα+,n+,s(x) is adaptive over the collection of the ballsWµ(M) defined
by (20) and (21). Note also that if we would like to reach the accuracy level in-
dicated in Theorems 1 and 2, then for each α ∈ 7q the number of observations
n = n(α) = O(α−1/(2(a+s))) used for construction of the estimate ̂εα,n,s(x) cannot
be reduced in the sense of the order. Indeed, Lemma 3 in fact establishes an upper
bound on approximation of elements fromWµ(M) by elements of ann-dimensional
subspace with respect to the norm ‖ · ‖−ν . For rate optimal estimation, this approx-
imation accuracy must be of the same order as the non–discretized bias (11). On
the other hand, approximation of elements from Wµ(M) with respect to the norm
‖ · ‖−ν by the elements of any n–dimensional subspace cannot be better than Kol-
mogorov’s n–width which has the orderO(n−µ−ν) in the considered case. Thus the
discretized bias bα,n(α),s(f, x) cannot be of the same order as the non–discretized
one, if n is less than O(α−1/(2(a+s))) in the sense of the order.
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