
Digital Object Identifier (DOI) 10.1007/s004400000076
Probab. Theory Relat. Fields 118, 147–168 (2000)

Lorenzo Zambotti

An analytic approach to existence
and uniqueness for martingale problems
in infinite dimensions

Received: 18 May 1998 / Revised version: 27 September 1999 /
Published online: 5 September 2000 – c© Springer-Verlag 2000

Abstract. We prove existence and uniqueness for a class of martingale problems in a Hil-
bert space. We solve the associated Kolmogorov equation and prove that the corresponding
semigroup is determined by a kernel of measures if a Schauder-type regularity is satisfied.

1. Introduction

In this paper we propose a new analytic approach to the study of existence and
uniqueness of solutions to martingale problems in infinite dimensions.

We consider a SPDE in a separable Hilbert space H

dX = (AX + F(X))dt + √

B(X) dW(t)

X0 = x ∈ H

(1)

whereA generates a strongly continuous contraction semigroup inH , F : H �→ H

is bounded Hölder-continuous, and B(·) is obtained by a bounded Hölder-contin-
uous trace-class perturbation of a constant operator.

Our method corresponds to the procedure presented by Stroock and Varadhan
in the finite-dimensional case (see [17], chap. 3 and 6). First, we solve the parabolic
Kolmogorov equation associated to (1), in the spaceCb(H) of bounded continuous
functions on H . Secondly, we prove that the corresponding semigroup (Pt )t≥0 is
determined by a measurable kernel {π(t, x, ·)} of probability measures on H .

The first step provides uniqueness of solutions to the martingale problem (1),
identifying the law at fixed (t, x) of any solution X with the functional Cb(H) �
ϕ �→ Ptϕ(x). The second step says that the transition function {π(t, x, ·)} satisfies
the Chapman-Kolmogorov equation. This allows to construct in a classical way a
Markov process X(t, x) with values in H , which turns out to be a solution to the
martingale problem (1).

There are many results on existence for martingale problems in infinite di-
mensions, mainly based on compactness techniques or Girsanov’s Theorem, while
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uniqueness is still largely open and has been proven only in particular cases: see
[5], [8], [11], [14], [19], [22], [21]. For an analytic approach based on Dirichlet
Forms see [13].

The main novelties of the present paper are contained in a generalization of the
Riesz Representation Theorem to the Hilbert space case. More precisely, we discuss
the following question: given a positive semigroup (Pt )t≥0 in Cb(H) satisfying a
parabolic equation, does there exist a measurable kernel of finite positive measures
{π(t, x, ·)} on H such that

Ptϕ(x) =
∫
H

ϕ(y) π(t, x, dy) (2)

for all ϕ bounded and continuous? The answer in general is negative (see the begin-
ning of Section 4 for a detailed discussion). However, we state the following general
principle, giving a positive answer in many interesting cases: let (L,D(L)) be, at
least formally, the infinitesimal generator in Cb(H) of (1), and suppose that there
exists an Ornstein-Uhlenbeck operator (M,D(M)) in Cb(H) such that a uniform
Schauder-type regularity holds for the operators αL+ (1−α)M, α ∈ [0, 1]. Then
there exists a unique kernel of finite measures π(t, x, ·) on H such that (2) holds
for all ϕ ∈ Cb(H), t ≥ 0, x ∈ H . It is interesting that a regularity in the backward
variable x, i.e. Schauder Estimates, produces a regularity in the forward variable
y, i.e. the representation as a σ -additive measure, for the kernel {π(t, x, dy)}.

In sections 3–5 we prove the aforementioned general principle. We state Schau-
der Estimates and Positivity for the operators (λ −L)−1, λ > 0, then we prove
existence and regularity of the transition semigroup associated to (1), and both ex-
istence and uniqueness of solutions to the martingale problem (1). The technique
presented here could be applied also to other class of coefficients, provided an anal-
ogous Schauder-type regularity holds: see for instance [3] and [21]. Notice also that
our technique is entirely analytic and independent of tightness methods (see [8],
chap. 8).

Our proof of Schauder Estimates, given in section 6, requires the hypothesis
that the trace-class norm of the perturbation in the noise-term of (1) is bounded by a
fixed constant: see (9) below. This hypothesis is due to technical difficulties arising
from the unboundedness of the operator A in the drift term of (1), and we stress
that it is not needed in the general procedure of sections 3–5. No assumptions are
required on the bound of the Hölder seminorm of the perturbation: see (10) below.

In our opinion a full understanding of Schauder-type regularity in infinite dimen-
sion is still missing. We think that a better insight in infinite-dimensional analytic
regularity will allow to apply our method with greater generality (see Remarks 9
and 10 below).

2. Notations and assumptions

In this paper we consider a separable real Hilbert spaceH , with scalar product 〈·, ·〉
and norm | · |. We will denote by L(H) the space of bounded linear operators on
H with the usual sup-norm ‖ · ‖, by L1(H) the space of trace-class operators on
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H , endowed with the trace-norm ‖ · ‖L1(H), and by L+
1 (H) the space of positive

symmetric operators in L1(H).

We write equation (1) in the following way:



dX = (AX + F(X))dt + (BB∗ +G(X))1/2 dW(t)

X0 = x ∈ H

(3)

with the following assumptions:

Hypothesis 1. 1. A : D(A) ⊂ H �→ H is the generator of a strongly continuous
semigroup (etA)t≥0 in H , such that

‖etA‖ ≤ 1 ∀ t ≥ 0. (4)

(Wt )t≥0 is a cylindrical white-noise in H and B ∈L(H).
2. The Ornstein-Uhlenbeck process {Z(t, x)}t≥0,x , defined by

Z(t, x) := etAx +
∫ t

0
e(t−s)AB dWs, (5)

takes values in H , i.e. for all t > 0

TrQt < ∞ Qtx :=
∫ t

0
esABB∗esA

∗
x ds. (6)

3. The O.U. process is Strong Feller, i.e. etAx ∈ Q
1/2
t (H) for all t > 0, x ∈ H .

The operator  (t) := Q
−1/2
t etA, bounded inH by the Closed Graph Theorem,

satisfies for some ν > 0

‖ (t)‖ ≤ ν√
t
∀ t > 0. (7)

Hypothesis 2. θ ∈ ]0, 1[, F : H �→ H , G : H �→L+
1 (H) and

sup
x∈H

|F(x)| + sup
x �=y

|F(x)− F(y)|
|x − y|θ =: ‖F‖Cθb (H ;H) <∞ (8)

sup
x∈H

‖G(x)‖L1(H) =: ε < θ (120 · 2 1−θ
2 ν2−θ )−1 (9)

sup
x �=y

‖G(x)−G(y)‖L1(H)

|x − y|θ =: M < ∞. (10)
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Assumptions 1–3 in Hypothesis 1 are common in SPDEs literature, see [8] and
[9]. Recently, regularity of invariant measures was studied in [1] for an infinite-
dimensional Stochastic Differential Equation, with a diffusion term given by the
Identity, plus a fixed trace-class operator times a L(H)-valued Lipschitz function.

Example. Consider the following SPDE on I = [0, 1]:


∂tX(t, ξ) =
(
∂2
ξξX(t, ξ)+ f (X(t, ξ))

)
dt

+
∞∑
k=1

(
1

ν2
+ λk · gk(X(t, ξ))

)1/2

ek(ξ) dβk(t)

X(t, 0) = X(t, 1) = 0 ∀ t > 0

X(0, ξ) = x(ξ) ∀ ξ ∈ [0, 1]

(11)

where:

• x ∈ L2(0, 1) and {ek}k is a complete orthonormal system in L2(0, 1).
• {βk(t)}t≥0,k are independent linear Brownian Motions.
• θ ∈ ]0, 1[, f : � �→ � is bounded and θ -Hölder continuous.
• For all k ∈ �, gk : � �→ � and

0 ≤ gk(x) ≤ 1, ∀ x ∈ �, sup
x �=y

|gk(x)− gk(y)|
|x − y|θ ≤ M <∞

• ν > 0, λk > 0 for all k ∈ �, and
∑

k λk =: ε < θ(120 · 2 1−θ
2 ν2−θ )−1.

Under these assumptions, (11) satisfies Hypothesis 1 and 2. �

We define Cb(H) as the space of all bounded uniformly continuous real func-
tions onH , endowed with the sup-norm ‖ ·‖0;Cαb (H), with α ∈ ]0, 1[, as the space
of functions in Cb(H) which are α-Hölder continuous; C2+α

b (H) as the space of
functions in Cb(H) which are twice Fréchet differentiable, with first Fréchet dif-
ferential ∇u uniformly bounded and second Fréchet differentialD2u bounded and
α-Hölder continuous as a map from H to L(H). We set:

‖u‖0 := sup
x∈H

|u(x)|, [u]α := sup
x �=y

|u(x)− u(y)|
|x − y|α , ‖u‖α := ‖u‖0 + [u]α

‖u‖2+α := ‖u‖0 + sup
x
|∇u(x)| + sup

x
‖D2u(x)‖ + sup

x �=y
‖u(x)− u(y)‖
|x − y|α

If (St )t≥0 is a semigroup acting on Cb(H), we will say, following [4], that
(St )t≥0 is weakly right-continuous (respectively weakly continuous) if for all
ϕ ∈ Cb(H) and x ∈ H , the map [0,∞) � t �→ Stϕ(x) is right-continuous
(resp. continuous).
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The transition semigroup (Rt )t≥0 in Cb(H) of (5)

Rtϕ(x) :=
∫
H

ϕ(y)N(etAx,Qt)(dy) x ∈ H, ϕ ∈ Cb(H) (12)

is not strongly continuous in Cb(H). However, (Rt )t≥0 is weakly continuous.
Therefore, one can define the continuous operators Fλ : Cb(H) �→ Cb(H)

Fλϕ(x) :=
∫ ∞

0
e−λtRtϕ(x)dt λ > 0, x ∈ H, ϕ ∈ Cb(H). (13)

The family {Fλ}λ is a Pseudo-resolvent on Cb(H) (see [20]): indeed, by the semi-
group law of (Rt )t≥0 it satisfies the Resolvent Formula

(λ− µ)FµFλ = Fµ − Fλ ∀ λ,µ > 0

and by the weak continuity of (Rt )t≥0, Fλ is one-to-one for all λ > 0. Therefore,
there exists a unique closed operator M : D(M) ⊂ Cb(H) �→ Cb(H) such that
Fλ = (λ −M)−1 =: R(λ,M) for all λ > 0. The operator (M,D(M)) is said
to be the infinitesimal generator of (Rt )t≥0. Moreover, the semigroup (Rt )t≥0 on
Cb(H), the resolvent family {R(λ,M)}λ and the operator (M,D(M)) determine
uniquely each other. We will call (M,D(M)) the Ornstein-Uhlenbeck operator.

We introduce now the operator (L,D(L)) in Cb(H), which will turn out to
be the infinitesimal generator of (3). We set

D(Q) := C2+θ
b (H), Qu := 1

2
Tr[GD2u] + 〈F,∇u〉,

D(L) := D(M) ∩D(Q), Lu :=Mu+ Qu, (14)

where θ ∈ ]0, 1[ is the same as in Hypothesis 2.

We define the coordinate process on H [0,T ] by

Xt : H [0,T ] �→ H, Xt(ω) := ω(t), t ∈ [0, T ].

We can now give the following

Definition 1. A solution to the martingale problem (3) on [0, T ] is a probability
measure �x on H [0,T ] such that

�x {ω : [0, T ] �→ H, ω(0) = x, ω Borel function } = 1,

and the process

{
f (Xt )−

∫ t

0
Lf (Xr) dr

}
t≥0

(15)

is a �x-martingale for all f ∈ D(L). If

lim
t→0

�x {ω : |ω(t)− x| ≤ δ } = 1 ∀ δ > 0 (16)

then the solution �x is said to be stochastically continuous.
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It is proven in [9], § 2.1, that a Markov process {�x}x with values in H satisfies
(16) if and only if its transition semigroup (Pt )t≥0 is weakly right-continuous.

We will often use the following important type of convergence, introduced in
[15]: given a sequence {fn : H �→ B, n ∈ � ∪ {∞} } of bounded continuous
functions from H to a Banach space B, we write

fn
π−→ f∞ if and only if (17)

∀ x ∈ H |f∞(x)− fn(x)|B → 0 as n→∞ & sup
n∈�

sup
x∈H

|fn(x)|B <∞.

Given a metric space K , we will denote by B(K) the Borel σ -algebra of K .
A positive σ -additive measure on the measurable space (K,B(K)) will be called
shortly a measure on K . If K and J are two metric spaces, T : K �→ J is a
measurable map and µ is a measure on K , then we will denote by T ∗µ the unique
measure on J such that T ∗µ(A) = µ(T −1A) for all A ∈ B(J ).

In the sequel, we will consider finite dimensional subspacesHn ofH . Splitting
H ∼= Hn ⊕ (Hn)

⊥ and denoting by δ0 the Dirac measure at 0 on (Hn)
⊥, we will

extend canonically a finite measure µn on Hn to the finite measure µn ⊗ δ0, again
denoted by µn, on H .

If {ek}k∈� is a complete orthonormal system in H and Hn := Span〈e1, . . . ,

en〉 for all n ∈ �, then there exist canonical projections =n→k : Hn �→ Hk , and
=k : �� �→ Hk , for all n ≥ k. Given for all n ∈ � a finite measure µn on Hn, the
system {µn}n∈� is said to be projective if (=n→k)

∗µn = µk for all n ≥ k.
We will use Kolmogorov’s Extension Theorem for countable products:

Theorem 1. Given a projective system {µn}n∈� on ({Hn},{=n→k}n≥k), there exists
a unique finite measure µ on �� such that (=k)

∗µ = µk for all k ∈ �.

We will say that a set F of real Borel functions on H are a determining class
if two probability measures on H , µ1 and µ2, are equal if and only if

∫
H
f dµ1 =∫

H
f dµ2 for all f ∈F.

3. Kolmogorov Equation

In this section we study Kolmogorov Equations associated to the operator L de-
fined in (14). In Theorems 2 and 3, whose proofs are postponed to Section 6, we
state Positivity and Schauder-type regularity for the resolvent operators (λ−L)−1 :
Cb(H) �→ Cb(H), λ > 0. Then we prove the existence of a semigroup, acting on
a subspace X of Cb(H), naturally associated to (3). Notice that a direct resolution
of the parabolic equation

ut = Lu u(0) = ϕ ∈ Cb(H) (18)

seems to be very hard (see Remark 2 below). On the other hand, solving the related
elliptic equation (λ−L)u = f for all f ∈ Cθb (H), yields:

1. There exists, if any, a unique weakly right-continuous semigroup in Cb(H)

whose infinitesimal generator is an extension of L.
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2. If X is the closure of D(L) in Cb(H), then there exists a strongly continuous
semigroup (PX

t )t≥0 acting on X, whose infinitesimal generator is an extension
of the part of L in X.

We consider the following elliptic equation, where L is defined as in (14):

λu−Lu = f (19)

with f ∈ Cθb (H), λ > 0, u ∈ D(L). The proof of the following two Theorems is
postponed to section 6.

Theorem 2 (Maximum Principle). For any f ∈ Cθb (H) and u ∈ D(L) such that
equation (19) holds, we have

a. ‖u‖0 ≤ 1

λ
‖f ‖0, and b. f ≥ 0  ⇒ u ≥ 0 (20)

Theorem 3 (Schauder Estimate). There exists a constant C = C(λ) > 0 such
that for all f ∈ Cθb (H) and u ∈ D(L) such that equation (19) holds, we have

‖Mu‖θ + ‖u‖2+θ ≤ C ‖f ‖θ (21)

It is a standard fact that using the classical Continuity Method, Theorem 3
yields an existence Theorem for solutions to (19). We give here the proof, which is
well known, because we will repeat it several times in the sequel, in order to prove
several properties of the operator R(λ,L) := (λ−L)−1.

Theorem 4 (Continuity Method). For all f ∈ Cθb (H) there exists one and only
one u ∈ D(L) such that (19) holds.

Proof. For all α ∈ [0, 1] we introduce the operator

D(Lα) := D(L), Lαu := Mu + αQu (22)

We introduce the set > of all α ∈ [0, 1] such that the equation

λu−Lαu = f (23)

has a unique solution u = R(λ,Lα)f for all f ∈ Cθb (H). We will prove that there
exists δ > 0 such that if α0 ∈ >, α ∈ [0, 1] and |α − α0| ≤ δ, then α ∈ >. Since
0 ∈ >, this will prove the thesis.

Let α0 ∈ >, and let u0 be the corresponding solution to (23). We are going to
show that equation (23) has a solution for all α close to α0. We set

γf : = C2+θ
b (H) �→ C2+θ

b (H) γf (v) := R(λ,Lα0) (f + (α − α0)Qv) (24)

In virtue of Theorem 3 this map is well defined and continuous, and u = γf (v) is
the solution of λu−Lα0u = f + (α − α0)Qv.

Moreover, u is a solution to (23) if and only if u is a fixed point of γf . Let
u = γf (v) and u = γf (v). We set K1 := ‖G‖Cθb (H ;L1(H))

+ ‖F‖Cθb (H ;H). Then
by Theorem 3 there exists C > 0 such that

‖u− u‖2+θ ≤ CK1 |α0 − α| ‖v − v‖2+θ .
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Setting δ1 := 1/(2CK1), we obtain that if |α − α0| ≤ δ1, γf is a contraction in
C2+θ
b (H). The conclusion follows, since δ1 does not depend on α0. �

We define now X := closure of D(L) in Cb(H). It is known that X �=
Cb(H), since the semigroup (Rt )t≥0 is not strongly continuous: see [4]. We denote
by (LX,D(LX)) the part of L in X: D(LX) := {u ∈ D(L) : Lu ∈ X},
LXu :=Lu for all u ∈ D(LX). Then we have the following

Proposition 1. D(LX) is dense in X.

Proof. It is enough to prove that D(L) is contained in the closure of D(LX). Let
x ∈ D(L). Then for all λ > 0 there is yλ ∈ D(L) such that λyλ −Lyλ = x, and
moreover yλ ∈ D(LX). Then yλ = (λ−LX)

−1x and LXyλ = (λ−L)−1Lx.
It follows, by (20.a),

‖λyλ − x‖ = ‖LXyλ‖ ≤ 1

λ
‖Lx‖ → 0 as λ→+∞. �

Corollary 1. The operator (LX,D(LX)) is closable in X: we will denote by
LX its closure. The unique continuous linear extension of (λ −LX)

−1 to X is
one-to-one and coincides with (λ−LX)

−1 for all λ > 0.

Proof. The Corollary follows from the following Closure Lemma (I.4.3 in [6]): if
(J,D(J)) is a dissipative linear operator in a Banach space E, and if both D(J)
and (I −J)D(J) are dense, then J is closable in E. �

Corollary 2. By Hille-Yosida Theorem, LX generates a strongly continuous semi-
group in X, that we call (PX

t )t≥0.

Remark 1. Notice that X is closed and strictly smaller than Cb(H), so that we
have a priori no way to extend (PX

t )t≥0 to Cb(H). This problem will be solved in
Corollary 4 below.

Remark 2. Notice also that very little can be said about D(LX) beyond its ab-
stract definition: this shows why a direct study of the parabolic equation (18) seems
so hard.

It is now a standard fact (see [5], [11], [17]) that Theorem 4 and the density of
Cθb (H) in Cb(H) imply the following

Theorem 5. For all x ∈ H and T ≥ 0, there exists at most one stochastically
continuous solution on [0, T ] to the martingale problem (3).

However, we have proven more than probabilistic uniqueness:

Theorem 6. There exists at most one weakly right-continuous semigroup inCb(H)
(respectively in X) whose infinitesimal generator extends L (resp. LX).
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4. The kernel of measures for the Resolvent

This section is devoted to the proof of the following

Theorem 7. For all λ > 0, x ∈ H , there exists a finite measure on H ρ(λ, x, ·)
such that

R(λ,L)ϕ(x) =
∫
H

ϕ(y) ρ(λ, x, dy) ∀ϕ ∈ Cθb (H) (25)

Moreover, for all A ∈ B(H), the map (λ, x) �→ ρ(λ, x,A) is measurable.

The main tools will be: 1. Feller Property: R(λ,L)(Cb(H)) ⊂ Cb(H); 2. Posi-
tivity (20.b); 3. Schauder-type regularity (21) of R(λ,L).

We fix a complete orthonormal system {ek}k∈� in H . For all n ∈ �, let Hn :=
Span〈e1,. . .,en〉. We will use the identification of H ∼= l2 ⊂ �� given by {ek}. For
all ϕ ∈ Cb(�n) we set

ϕH ∈ Cb(H), ϕH (z) := ϕ(〈z, e1〉, . . . , 〈z, en〉)
Fθ := {ϕH : ϕ ∈ Cθb (�n)}, F∞ := {ϕH : ϕ ∈ C∞0 (�n)} (26)

Notice that C∞0 (�n)⊕� can be identified with a dense subset of all C∞ functions
on the n-dimensional sphere Sn, which is compact. Therefore, by Riesz Represen-
tation Theorem for positive distributions on compact spaces, we have that for all
n ∈ � there exists a finite measure rn(λ, x, ·) on �n which is equal to the functional
C∞0 (�n) � ϕ �→ R(λ,L)ϕH (x).

Remark 3. By the positivity we know that rn(λ, x,�n) ≤ 1/λ. However, since
1 /∈ C∞0 (�n), it might happen that rn(λ, x,�n) < 1/λ. Moreover, it is not evi-
dent that the system {rn(λ, x, ·) : n ∈ �} is projective. Indeed, if f ∈ C∞0 (�n),
then setting f ∈ Cb(�

n+1), f (x1, . . . , xn+1) := f (x1, . . . , xn), we have that
f /∈ C∞0 (�n+1), so that we can not say that∫

�n
f (y) rn(λ, x, dy) =

∫
�n+1

f (y) rn+1(λ, x, dy) �

In order to obtain a measure ρ(λ, x, ·) on H such that (25) holds, we have to
prove that:

1. rn(λ, x,�n) = 1/λ for all n ∈ �. The system {rn(λ, x, ·)}n∈� is projective and
therefore determines a measure r(λ, x, ·) on ��

2. The measure r(λ, x, ·) is concentrated on the space l2 ⊂ ��, which can be
identified with H by means of the chosen orthonormal system

3. The measureρ(λ, x, ·) onH determined by the restriction of r(λ, x, ·) toB(H),
satisfies (25).

We will prove that properties 1-3 hold in our case, using a unifying technique,
namely the transfer of regularity properties from the resolvent R(λ,M) of the
Ornstein-Uhlenbeck operator to R(λ,L), by means of the Continuity Method of
Theorem 4.
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However, we stress that the existence of the measures rn(λ, x, ·) follows only
from the Positivity and the Feller property of the operator R(λ,L), while each of
the properties 1–3 could fail to hold for a generic positive operator in Cb(H), as
the following remarks show.

Remark 4. Recall the definition given in (26), and consider the closure F of the
space Fθ in Cb(H). If we denote by (Kn

t )t≥0 the Heat semigroup on Cb(�n), then
we can define KH

t ϕ
H := (Kn

t ϕ)
H for all ϕ ∈ Cθb (�n). (KH

t )t≥0 is a well defined
contraction semigroup onFθ , and therefore has a unique extension to a contraction
semigroup on F. For all t > 0 and x ∈ H , the map Cb(�n) � ϕ �→ KH

t ϕ
H (x)

is equal to a Gaussian measure µn(t, x) on �n, and the system {µn(t, x)}n∈� is
clearly projective, but it is well known that the measure µ(t, x) that it determines
on �� is concentrated on ��\l2, and therefore property 2 can not hold. �

Remark 5. Property 3 can fail to hold even if property 2 holds. Suppose that, for
a given positive functional T : Cb(H) �→ �, there exists a finite measure m on
H which is equal to T on F∞. Two such measures must be equal, since F∞ is a
determining class. But the same uniqueness does not hold for positive functionals
on Cb(H): indeed, notice that there exist functions g ∈ Cb(H) such that

g ≥ 0 & g �= 0 & sup
{
ϕ(x) : ϕ ∈F∞ & ϕ ≤ g

} = 0 ∀ x ∈ H,

for instance, any g(x) = a(|x|)with a : � �→ � continuous, a ≥ 0, a ≡ 0 outside a
bounded interval and a(0) = 1. By Hahn-Banach Theorem for positive functionals
(see [2], chap. II, § 3, n. 4, Proposition 6) we can define a functional T̂ = T on
F∞, T̂ g = α for any α ∈ [0, sup g] and extend it to a positive linear functional on
Cb(H). This implies that there exist infinitely many positive functionals T̂ which
are equal to T and therefore to m on F∞, but T̂ �≡ T on Cb(H). �

Remark 6. Suppose now that the functional T is of the form T ϕ = T (λ, x)ϕ =
R(λ,L)ϕ(x). The positivity of T could be combined with some algebraic relations
linking the functionals {T (λ, x)}λ>0,x , such as the Resolvent formula. However,
this formula holds for the functionals {T (λ, x)}, but possibly not for the measures
{m(λ, x)}, since the space F∞, on which T (λ, x) = m(λ, x), is not invariant for
the operators {R(λ,L)}λ>0. �

We come to the proof of Theorem 7. Recall the definition (22) of Lα: for all
α ∈ [0, 1], set R(λ,Lα) := (λ−Lα)

−1 : Cθb (H) �→ D(L).

Proposition 2. For all n ∈ �, there exists a set of finite positive measures on �n

{rnα(λ, x, ·) : λ > 0, x ∈ H }, such that:
1. For all ϕ ∈ C∞0 (�n) we have

R(λ,Lα)ϕ
H (x) =

∫
�n
ϕ(y) rnα(λ, x, dy) (27)

2. rnα(λ, x,�n) ≤ R(λ,Lα)1(x) = 1

λ
.
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Proof. The first assertion follows applying Riesz Representation Theorem to the
positive functional C∞0 (�n) � ϕ �→ T ϕ := R(λ,Lα)ϕ

H (x). The second asser-
tion follows from the positivity of T and the fact that T (1) = 1/λ. �

We want now to prove that the system {rnα(λ, x, ·) : n ∈ �} is projective. By
Remark 3, this does not follow from Proposition 2.

We prove our first transfer result of properties from Ornstein-Uhlenbeck oper-
ator to operator (L,D(L)).

Lemma 1. If {f, fn : n ∈ �} ⊂ Cθb (H), fn
π−→ f and supn ‖fn‖θ <∞, then

R(λ,L)fn
π−→ R(λ,L)f .

Remark 7. Daniell’s Theorem, Thm. 2.5.5. in [10], says that a positive linear func-
tional T : Cb(H) �→ � can be extended to a positive finite measure on B(H) if
and only if: Tfn ↑ Tf for all sequences fn, f ∈ Cb(H) such that fn ↑ f , where
↑ denotes monotone non-decreasing pointwise convergence. However, (20) gives
only continuity of T through uniform convergence. In Lemma 1 we show that the
continuity of T with respect to an intermediate convergence, namely the π -con-
vergence of uniformly Hölder-continuous functions, is a consequence of Schauder
Estimates and the properties of the kernel of the O.U. semigroup (12).

Proof of Lemma 1. Consider the set > of all α ∈ [0, 1] such that

{f, fn : n ∈ �} ⊂ Cθb (H),

fn
π−→ f and supn‖fn‖θ <∞  ⇒ R(λ,Lα)fn

π−→ R(λ,Lα)f,

∇R(λ,Lα)fn
π−→ ∇R(λ,Lα)f, and D2R(λ,Lα)fn

π−→ D2R(λ,Lα)f.

First, 0 ∈ >: indeed, if supn ‖fn‖θ < ∞, then for all x ∈ H (see (47) and (48)
below and [8], § 9.4.1):

supn,t t
1/2|∇Rtfn(x)| <∞, supn,t t

1−θ/2‖D2Rtfn(x)‖ <∞

∇R(λ,M)fn(x) =
∫ ∞

0

e−λt

t1/2

(
t1/2∇Rtfn(x)

)
dt

D2R(λ,M)fn(x) =
∫ ∞

0

e−λt

t1−θ/2
(
t1−θ/2D2Rtfn(x)

)
dt

and the conclusion follows from the Dominated Convergence Theorem.
Moreover, > is open: arguing as in the proof of Lemma 3, we take α0 ∈ > and

α ∈ [0, 1] such that the mappings γfn defined in (24) are contractions in C2+θ
b (H).

We write

R(λ,Lα)(f − fn) = (R(λ,Lα)f − (γf )
k(0)) + ((γf )

k(0)− (γfn)
k(0))

+ ((γfn)
k(0)− R(λ,Lα)fn) =: I1 + I2 + I3

One can prove inductively on k that for all n, γfn(0) = R(λ,Lα0)fn and

(γfn)
k+1(0) = R(λ,Lα0)fn + (α − α0)R(λ,Lα0)Q

[
(γfn)

k(0)
]
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and, setting K1 := ‖G‖Cθb (H ;L1(H))
+ ‖F‖Cθb (H ;H), by Theorem 3 there exists

C > 0 such that

‖(γfn)k+1(0))‖2+θ ≤ C
(
‖fn‖θ + |α − α0|K ‖(γfn)k(0)‖2+θ

)

≤
(

k∑
i=0

[
|α − α0|CK

]i) ‖fn‖θ
Since α0 ∈ >, one obtains by induction on k that for all x ∈ H and k ≥ 1,

(γfn)
k+1(0)(x)

π−→ (γf )
k+1(0)(x) , ∇(γfn)k+1(0)(x)

π−→ ∇(γf )k+1(0)(x),

and D2(γfn)
k+1(0)(x)

π−→ D2(γf )
k+1(0)(x), as n→∞

By Theorem 4, if |α − α0| ≤ δ1 = 1/(2CK) the terms I1 and I3 defined above
converge to 0 in C2+θ

b (H) uniformly in n as k → ∞. Therefore, for all η > 0
we can find k0 such that (|I1| + |I3|)(k0, n) < η for all n. Fixing k0 and letting
I2(k0, n) → 0 as n → ∞, we obtain that α ∈ >. Since δ does not depend on α0
and 0 ∈ >, > = [0, 1]. �

Corollary 3. Formula (27) holds for all ϕ ∈ Cθb (�
n) and for all λ > 0, x ∈

H , α ∈ [0, 1]. In particular, rnα(λ, x,�n) = 1/λ for all n ∈ � and the system
{rnα(λ, x, ·) : n ∈ �} is projective.

Proof. Fix n ∈ �, and let f ∈ Cθb (�
n). Take any sequence {fk} ⊂ C∞0 (�n)

such that supk ‖fk‖θ < ∞ and fk
π−→ f . Then by the Dominated Convergence

Theorem and Lemma 1∫
�n
f (y) rnα(λ, x, dy) = lim

k

∫
�n
fk(y) r

n
α(λ, x, dy)

= lim
k
R(λ,Lα)f

H
k (x) = R(λ,Lα)f

H (x) �

By Kolmogorov’s Extension Theorem and Corollary 3, we have that there exists
a unique finite measure rα(λ, x, ·) on �� endowed with the product σ -algebra,
having rnα(λ, x, ·) as marginal distributions. Notice that every ϕ ∈Fθ has a unique
continuous extension ϕ on ��. Then formula (27) becomes

R(λ,Lα)ϕ(x) =
∫

��

ϕ(z) rα(λ, x, dz) ∀ϕ ∈Fθ (28)

What we have to prove now, is that rα(λ, x, ·) is concentrated onH . The key obser-
vation is the following: if we are given a measure m on a measurable space (Y,I)
and a measurable positive function ψ : Y �→ [0,∞], then∫

Y

ψ dm <∞  ⇒ ψ <∞ m− almost everywhere (29)
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Therefore, if we prove that the function

K : �� �→ [0,∞], z = {zk} �→ K(z) :=
∞∑
i=1

|zi |2

has finite rα(λ, x, ·)-integral, then ��\H = {z ∈ �� : K(z) = ∞} has r(λ, x, ·)-
measure equal to 0. We set:

Kn : �� �→ � z = {zk} �→ Kn(z) :=
n∑
i=1

|zi |2 ∧ n (30)

ψ : H �→ � ψ := K|H = | · |2 ψn ∈ Cb(H) ψn := (Kn)|H
(31)

Lemma 2. If there exists C(α) > 0 and λ > 0 such that

sup
n
R(λ,Lα)ψn(x) ≤ C(α)

λ
(1+ ψ(x)) ∀ x ∈ H (32)

then rα(λ, x, ·) restricts to a finite measure ρα(λ, x, ·) on (H,B(H)). Moreover∫
H

|z|2 ρα(λ, x, dz) ≤ C(α)

λ
(1+ |x|2) (33)

Proof. We will prove that if (32) holds, then the integral ofK on (��, rα(λ, x, ·))
is finite. Notice that {Kn} is an increasing sequence of bounded measurable func-
tions on �� such that K = supn∈� Kn. Since ψn ∈ F, by formula (28) we have
for all n

R(λ,Lα)ψn(x) =
∫
Hn

ψn(y) r
n
α(λ, x, dy) =

∫
��

Kn(z) rα(λ, x, dz).

By (32), we have that λR(λ,Lα)ψn ≤ C(α)(1+ ψ) for all n ∈ �, so by Beppo-
Levi Theorem∫

��

K(z) rα(λ, x, dz) = sup
n

∫
��

Kn(z) rα(λ, x, dz)

= sup
n

R(λ,Lα)ψn(x) ≤ C(α)

λ
(1+ ψ(x)) < +∞

and the assertion follows. Notice now that if I is the Borel σ -algebra of ��, then
the trace of I on H is the Borel σ -algebra of H , B(H). Therefore, r̄α(λ, x, ·)
restricts to a well defined finite measure ρα(λ, x, ·) on (H,B(H)). �

Lemma 3. There exists C ≥ 1 such that ∀ x ∈ H , λ > 0, α ∈ [0, 1]

sup
n
R(λ,Lα)ψn(x)+ sup

n
|∇R(λ,Lα)ψn(x)|

+ sup
n
‖D2R(λ,Lα)ψn(x)‖ ≤ C

λ
(1+ ψ(x)) (34)
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Proof. An explicit computation shows that there exists C ≥ 1 such that (34) holds
for α = 0. Suppose that for α0 ∈ [0, 1] there exists C(α0) ≥ 1 such that ∀ x ∈ H
and λ > 0

sup
n
R(λ,Lα0)ψn(x)+ sup

n
|∇R(λ,Lα0)ψn(x)| (35)

+ sup
n
‖D2R(λ,Lα0)ψn(x)‖ ≤

C(α0)

λ
(1+ ψ(x))

Then Lemma 2 applies for α0. We know that if |α − α0| is small enough, then
R(λ,Lα)ψn is the limit in C2+θ

b (H) of (γψn)
k(0) as k → ∞, where γψn is de-

fined as in (24). By (35) and (33), we have by induction on k ∈ � that setting
K2 := supx ‖G(x)‖L1(H) + supx |F(x)|
(γψn)

k(0) + |∇(γψn)k(0)| + ‖D2(γψn)
k(0)‖

≤ C(α0)

λ



(

k∑
i=0

[
|α − α0|K2

C(α0)

λ

]i)
(1+ ψ) +

k∑
j=1∧k

[
|α − α0|K2

]j


≤ 3
C(α0)

λ
(1+ ψ)

provided |α − α0| ≤ δ2 := 1/(2K2). We set δ := δ1 ∧ δ2, where δ1 was defined
in the proof of Theorem 4. Now we can set in (35), C(α0) := 31/δ C(0) for all
α0 ∈ [0, 1], and the Lemma is proven. �

We can now prove that (27) holds for all ϕ ∈ Cθb (H): in fact, take ϕ ∈ Cθb (H),
and set ϕn ∈ Fθ , ϕn(x) := ϕ(xn), where xn is the projection of x onto Hn. Then
supn ‖ϕn‖θ ≤ ‖ϕ‖θ , and ϕn

π−→ ϕ, so by Lemma 1 and the Dominated Conver-
gence Theorem,∫

H

ϕ(y) ρα(λ, x, dy) = lim
k

∫
H

ϕk(y) ρα(λ, x, dy)

= lim
k

R(λ,Lα)ϕk(x) = R(λ,Lα)ϕ(x)

The measurability of the map (λ, x) �→ ρα(λ, x,A) for all A ∈ B(H) follows as
an application of the Monotone Class Theorem. If we set ρ(λ, x, ·) := ρ1(λ, x, ·),
then Theorem 7 is proven. �

5. The kernel of measures for the Semigroup

In this section we prove the following

Theorem 8. For all t ≥ 0, x ∈ H , there exists a unique probability measure on
H π(t, x, ·) such that

PX
t ϕ(x) =

∫
H

ϕ(y) π(t, x, dy) ∀ϕ ∈ X = D(L) (36)
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For all A ∈ B(H), the map (t, x) �→ π(t, x, A) is measurable and the family
{π(t, x, ·) : t, x} satisfies the Chapman-Kolmogorov equation

π(t + s, x, B) =
∫
H

π(t, y, B) π(s, x, dy) ∀B ∈ B(H), t, s ≥ 0, x ∈ H.
(37)

Proof. We fix a complete orthonormal system {ek}k∈�. Since D(A∗) is dense in
H , we can suppose that {ek}k∈� ⊂ D(A∗). Similarly to (26), we define the spaces

F0 := {ϕH : ϕ ∈ Cb(�n), ∃ lim
|x|→0

ϕ(x)}, F∞ := {ϕH : ϕ ∈ C∞0 (�n)}

{ek}k∈� ⊂ D(A∗) implies F∞ ⊂ D(L) and therefore F0 ⊂ X. We also define
functions ψn ∈ Cb(H) as in (30), noting that now ψn ∈ X.

Two probability measures satisfying (36) must coincide: indeed, F0 is a deter-
mining class. This proves the uniqueness statement.

Since the operator LX generates the semigroup (PX
t )t≥0, then for all f ∈ X

we have by Hille-Yosida Theorem

PX
t f = lim

m→∞

(
I − tLX

m

)−m
f = lim

m→∞
[
mR(m, tLX)

]m
f in X. (38)

Formula (38) will be our basic tool to deduce properties of (PX
t )t≥0 from the

properties of {R(λ,L)}λ>0 proven in the previous section.
Arguing as section 4, we obtain that for all n ∈ �, there exists a measure

pn(t, x, ·) on �n with total mass less or equal to 1, such that

PX
t ϕ

H (x) =
∫

�n
ϕ(y) pn(t, x, dy) ∀ϕ ∈ C∞0 (�n). (39)

For any f ∈ Cb(�
n) such that ∃ lim|x|→∞ f (x), consider a sequence {fk} ⊂

C∞0 (�n) such that fk
π−→ f . Then f H , f Hk ∈F0 and by (38)

PX
t f

H − PX
t f

H
k = (PX

t f
H − [mR(m, tLX)

]m
fH )

+ [
mR(m, tLX)

]m
(f H − f Hk ) + (

[
mR(m, tLX)

]m
fHk − PX

t f
H
k )

Arguing as in the proof of Lemma 1, we obtain that PX
t f

H
k → PX

t f
H as k→∞.

This implies that for all t, x, pn(t, x,Hn) = 1 and the family {pn(t, x, ·) : m ∈ �}
is projective and determines a unique probability measure p(t, x, ·) on ��. More-
over, by (38)

PX
t ψn = (PX

t ψn −
[
mR(m, tLX)

]m
ψn)+

[
mR(m, tLX)

]m
ψn =: I1 + I2

(40)
By (34), I2 ≤ C(1+ψ) uniformly inm, n, and I1 tends to 0 asm→∞, so we get

sup
n
PX
t ψn ≤ C(1+ ψ) < ∞
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and arguing as in the proof of Lemma 2,p(t, x, ·) is concentrated onH and restricts
to a well defined measure π(t, x, ·) on (H,B(H)).

Formula (39) says that (36) holds for all ϕ ∈ F∞. We prove now that (36)
holds for all ϕ ∈ X.

Consider, for all k ∈ �, a cut-off function χk ∈ C∞0 (�k) such that

0 ≤ χk ≤ 1, χk ≡ 1 on {|z|�k ≤ k}, and χ ≡ 0 on {|z|�k ≥ k + 1}.
For any ϕ ∈ X, set ϕk(x) := ϕ(xk)χk(xk), where xk is the projection of x ∈ H

onto Hk . Then ϕk ∈F0 and ϕk
π−→ ϕ. Now

PX
t ϕ − PX

t ϕk = (PX
t ϕ −

[
mR(m, tLX)

]m
ϕ)+ [

mR(m, tLX)
]m
(ϕ − ϕk)

+([mR(m, tLX)
]m
ϕk − PX

t ϕk) =: I1 + I2 + I3

By (38), I1 and I3 converge to 0 uniformly in k as m → ∞, while at fixed m
I2 converges to 0 as k → ∞ by Theorem 7. The proof of (39) is complete. The
measurability of the map (t, x) �→ π(t, x, A), with A ∈ B(H), follows as an
application of the Monotone Class Theorem, and Chapman Kolmogorov equation
(37) is a consequence of the semigroup law of (PX

t )t≥0. Therefore, the proof of
Theorem 8 is complete. �

We can now prove the existence result for the martingale problem (3). Recall
that the coordinate process on H [0,T ] is defined by

Xt : H [0,T ] �→ H, Xt(ω) = ω(t)

Theorem 9. For all x ∈ H and T ≥ 0, there exists a solution �x on [0, T ] to
the martingale problem (3), such that for all k ∈ D(A), the process {〈ω(t), k〉}t is
cad-lag for all ω in a set N ⊂ H [0,T ], with �x(N) = 1 for all x ∈ H . Moreover,
the family {�x}x is measurable.

Proof. It is standard from Theorem 8 that for allT ≥ 0 there exists a unique Markov
Process {�x}x on H [0,T ] with transition function {π(t, x, ·)}t,x . For the construc-
tion of the desired cad-lag modification of the coordinate process, we follow [16],
Chapter III.

We take a countable dense subset of H , Z = {zn}n, and consider

h∞ : H �→ �, h∞(x) := |R(1, A)x|2 + 1,

H1 :=
{
hn,m,q : H �→ �, hn,m,q(x) := 1+

n∑
k=1

|〈zm + qR(1, A)x, ek〉|2
}
,

where l, m, n ∈ �, q ∈ �. We set H :=H1 ∪ {h∞}. Notice that H is contained
in the set of continuous functions onH , but not inCb(H). However, we can define,
by approximation with Cb(H) functions, Lh for every h ∈ H. In particular, re-
member that in Lemma 3 it was proven that the measures ρ(λ, x, ·) have integrable
second moment.
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We show now that for λ > 0 big enough, λh∞ −Lh∞ ≥ 0. Indeed,

λh∞(x)−Lh∞(x) = λh∞(x)− Tr[R(1, A)(BB∗ +G(x))R(1, A∗)]

−2〈AR(1, A)x, R(1, A)x〉 − 2〈R(1, A)F (x), R(1, A)x〉.
Since −〈AR(1, A)x, R(1, A)x〉 ≥ 0 by (4), we find, setting w = |R(1, A)x|2,

λh∞(x)−Lh∞(x) ≥ λw2 − c1w + λ− c2

with c1, c2 positive and independent of x. Therefore, for λ0 big enough, λ0h∞ −
Lh∞ =: g∞ ≥ 0. Since g∞ is continuous and with quadratic growth, we can
define by approximation R(λ0,L)g∞ and prove that it coincides with h∞. Then,
the process {e−λ0t h∞(Xt )}t≥0 is a supermartingale and therefore has right limits
along �+ on a set N1 ⊂ H [0,T ] with �x(N1) = 1 for all x ∈ H .

Arguing similarly for all functions h ∈ H1, we find a set N ⊂ H [0,T ] with
�x(N) = 1 for all x ∈ H , such that for all ω ∈ N , h ∈H, the map t �→ h(ω(t))

has right limits along �+.
For t ∈ �+, denote by St the set of all sequences {tn}n ⊂ �+, with tn ↓ t .
Suppose that ω ∈ N and |R(1, A)ω(tn)| → +∞ for {tn}n ∈St . Then, for any

sequence {sn}n ∈St , we have

lim
n
|R(1, A)ω(sn)| = lim

n
|R(1, A)ω(tn)| = +∞

and therefore, lims↓t,s∈�+ |R(1, A)ω(s)| = +∞. We denote by M1(t) the set of
all such ω.

Take now ω ∈ N −M1(t) =: M2(t). Therefore, for some sequence {tn}n ∈
St , and hence for all, |R(1, A)ω(tn)| is bounded. Then, there exists, along some
{sn}n ∈ St , a limit y ∈ H of R(1, A)ω(sn) in the weak topology of H . Suppose
that for {rn}n ∈ St , R(1, A)ω(rn) ⇀ z �= y. Then, we can find n,m ∈ �, q ∈ �

such that

3

2
≤ 1+

n∑
k=1

|〈zm + q · y, ek〉|2, 1+
n∑
k=1

|〈zm + q · z, ek〉|2 ≤ 5

4
.

We denote by h the corresponding hn,m,q ∈H1. By construction, we have

3

2
≤ lim

n
h(ω(sn)) = lim

n
h(ω(rn)) ≤ 5

4

which is absurd. Hence, lims↓t,s∈�+ R(1, A)ω(t) = y in the weak topology.
Therefore, for allω ∈ N and t ∈ �+, either lims↓t,s∈�+ |R(1, A)ω(s)| = +∞,

or lims↓t,s∈�+ R(1, A)ω(s) exists in the weak topology. In other words, ω(s) has
right weak limits with values in D(A−1) ∪ {∞}, where D(A−1) is the completion
of H with respect to the norm |R(1, A) · |. We define X̃t := lims↓t,s∈�+ Xs , when
such limit exists in the sense specified above, and X̃t := 0 otherwise. We claim
that for all t , X̃t = Xt a.s., which will also imply that X̃t takes values in H a.s.
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Notice that the function vn(x) := |x| ∧ n, n ∈ �, is lower semicontinuous
with respect to the weak topology of H , and the function un(x) := vn(R(1, A)x)
belongs to X. Then we have for all n ∈ �

�[|R(1, A)X̃t | ∧ n] ≤ lim inf
s↓t,s∈�+

�[|R(1, A)Xs | ∧ n]

= lim
s↓t,s∈�+

�[PX
t−sun(Xt )] = �[|R(1, A)Xt | ∧ n]

which implies �[|R(1, A)X̃t |] ≤ �[|R(1, A)Xt |]. Since the right hand side is finite,
then �x(M1(t)) = 0 for all x ∈ H and t ≥ 0.

Let u, v be functions inCb(H), v being cylindrical with respect to an orthonor-
mal basis in D(A), so that in particular: first v ∈ X, and secondly R(1, A)xn ⇀
R(1, A)x in H implies v(xn)→ v(x). Then

�[u(Xt )v(X̃t )] = lim
s↓t,s∈�+

�[u(Xt )v(Xs)]

= lim
s↓t,s∈�+

�[u(Xt )P
X
s−t v(Xt )] = �[u(Xt )v(Xt )]

By the Monotone Class Theorem and the fact that the indicator function of the di-
agonal inH ×H is Borel, the claim follows. Therefore, {X̃t }t is a right-continuous
modification of {Xt }t .

Now, since right-continuous real-valued supermartingales have a.s. left-limits
along �+, proceeding as before we find that {X̃t }t is the desired modification of
the coordinate process.

Notice now that for all ϕ ∈ D(LX) the process

f (X̃t )−
∫ t

0
Lϕ(X̃r ) dr t ≥ 0

is a martingale by construction. For all u ∈ D(L)we set f := u−Lu. Then there
exists a sequence fn ∈ X∩Cθb (H) such that fn

π−→ f and un := R(λ,L)fn
π−→

u. Then {Xu(t)}t is a martingale for all u ∈ D(L). The measurability of {�x}x
follows from the Monotone Class Theorem. �

In Remark 1 we noticed that a priori there is no way to extend a positive semi-
group on X to a semigroup on Cb(H). However, Theorem 8 has the following
corollary:

Corollary 4. For all ϕ ∈ Cb(H) set

Ptϕ(x) :=
∫
H

ϕ(y) π(t, x, dy) t ≥ 0, x ∈ H

Then (Pt )t≥0 is a semigroup acting on Cb(H). In particular, the process {�x}x is
Feller.
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Proof. If ϕ ∈ Cθb (H), then we have shown that there exists a sequence ϕn ∈
X∩Cθb (H), such that ϕn

π−→ ϕ and ‖ϕn‖θ ≤ ‖ϕ‖θ for all n. One can easily prove
by means of the transfer principle, that PX

t is a bounded operator in X ∩ Cθb (H)
for all t ≥ 0. Then

ϕn
π−→ ϕ & sup

n
‖ϕn‖θ ≤ ‖ϕ‖θ  ⇒ PX

t ϕn
π−→ Ptϕ & ‖Ptϕ‖θ ≤ Ct ‖ϕ‖θ

By the density of Cθb (H) in Cb(H), we have that Pt(Cb(H)) ⊂ Cb(H). �

Remark 8. If G(·) is constant, then the results of the previous sections can be
repeated also in the case of F being bounded and continuous, and without assump-
tions on ε in (9). In particular Lemma 1 can be improved, with similar proof,
in the following way: If fn, f ∈ Cb(H) is a sequence such that fn

π−→ f ,

then R(λ,L)fn
π−→ R(λ,L)f . By Daniell’s Theorem, this implies directly

Theorem 7.

6. Schauder Estimate and Maximum Principle

In this section we prove positivity and Schauder-type regularity for the equation

λu − Lu = f (41)

We assume that Hypothesis 1 and 2 hold.

Proof of Theorem 2. We have to prove that for any f ∈ Cθb (H) and u ∈ D(L)

such that (41) holds, we have

inf
H
f ≤ λu(x) ≤ sup

H

f ∀ x ∈ H. (42)

Valentine’s Theorem says that if E is a Hilbert space, then the space Lipb(H ;E)
of bounded Lipschitz continuous maps fromH toE is dense in the space of bound-
ed uniformly continuous maps (see [18]). Therefore there exists a sequence {Fn} ⊂
Lipb(H ;H) approximating F uniformly in H . Moreover, approximating G by
means of functions taking values into finite-rank symmetric operators, we can find
a sequence {Gn} ⊂ Lipb(H ;L+

1 (H)) such that ‖G(x)−Gn(x)‖L1(H) → 0 uni-
formly in x ∈ H . Then we can write

D(Ln) := D(L) Lnu :=Mu+ 1

2
Tr[GnD

2u]+ 〈Fn,∇u〉

λu−Lnu = f + 1

2
Tr[(Gn −G)D2u]+ 〈(Fn − F),∇u〉 =: f + gn (43)

By Chapters 7 and 9 of [8], there exist H -valued processes {Xn(t, x)}t≥0,x such
that, if ϕ, g ∈ Cb(H) satisfy

λϕ −Lnϕ = g, then ϕ =
∫ ∞

0
e−λt�[g(Xn(t, x))]dt. (44)
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Therefore (43) and (44) imply

inf
H
(f + gn) ≤ λu(x) ≤ sup

H

(f + gn) ∀ x ∈ H

Since ‖gn‖0 → 0 as n→∞, the Theorem is proven. �

Proof of Theorem 3. We have to prove that there exists a constant C = C(λ) > 0
such that for all f ∈ Cθb (H) and u ∈ D(L) satisfying equation (41), we have

‖Mu‖θ + ‖u‖2+θ ≤ C ‖f ‖θ (45)

We follow [3] and [7]: see also [12] for another approach. Recall the defini-
tion (12) of the Ornstein-Uhlenbeck semigroup (Rt )t≥0. Setting ‖f ‖1 := ‖f ‖0 +
supx∈H |∇f (x)| for f ∈ C1

b(H), we have

f ∈ Cb(H)  ⇒ ‖D2Rtf (x)‖ ≤
√

2ν2

t
‖f ‖0 ∀ t > 0, x ∈ H (46)

f ∈ C1
b(H)  ⇒ ‖D2Rtf (x)‖ ≤ ν√

t
‖f ‖1 ∀ t > 0, x ∈ H (47)

where ν is as in (7): see also [8], § 9.4.1. By interpolation we obtain

f ∈ Cθb (H)  ⇒ ‖D2Rtf (x)‖ ≤ 3
2

1−θ
2 ν2−θ

t1−θ/2
‖f ‖θ (48)

which implies D2R(λ,M)f (x) ∈L(H). For v ∈ C2
b (H) we set

[D2v]θ,M := sup
|h|≤1

{
sup
t∈]0,1]

t−θ‖Rt(〈D2v · h, h〉)− 〈D2v · h, h〉‖0

}

Then a computation shows that (see respectively [7] and [3] for details):

[D2v]θ ≤ 2(1+ 3e (1/2)θ)
(
‖D2v‖0 + [D2v]θ,M

)
, (49)

[D2R(λ,M)f ]θ,M ≤ 6
2

1−θ
2 ν2−θ

θ
‖f ‖θ . (50)

We write equation (41) in the following way:

λu−Mu = f + 1

2
Tr[GD2u]+ 〈F,∇u〉

Then by (50)

[D2u]θ,M ≤ 6
2

1−θ
2 ν2−θ

θ

(
‖f ‖θ + ‖F‖Cθb (H ;H)‖∇u‖θ + ε[D2u]θ +M‖D2u‖0

)
Using the interpolatory inequalities:

‖D2u‖0 ≤ Cθ ‖u‖
θ

2+θ
0 [D2u]

2
2+θ
θ ‖∇u‖θ ≤ Cθ ‖u‖

1+θ
2+θ
0 [D2u]

1
2+θ
θ
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and Young’s inequality, we obtain by (49)

[D2u]θ ≤ 120
2

1−θ
2 ν2−θ

θ

(
‖f ‖θ + (ε + r)[D2u]θ + C(r)‖u‖0

)

By (9), we can choose now r > 0 such that (ε + r)2 1−θ
2 ν2−θ120/θ < 1 and using

the Maximum Principle, we obtain

‖D2u‖θ ≤ C ‖f ‖θ �

Remark 9. Using a Localization technique analogous to the one in [3], we could
avoid the hypothesis (9) on ε. On the other hand this would require, with the tech-
niques presently available, strong assumptions on G such as uniform continuity
with respect to the norm on H x �→ |R(1, A)x|.
Remark 10. In this paper we restrict to differential operators of the form (14). The
reason is that, up to now, Schauder Estimates for the Ornstein-Uhlenbeck operator
(M,D(M)) can be proven only for the L(H)-norm of the second derivatives:
see [7]. However, notice that the operator 2M is not of the form (14), nonetheless
it satisfies Schauder-type regularity and its semigroup is determined by a kernel
of probability measures. A detailed characterization of D(M) could allow to treat
more general operators than (14).
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