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Abstract. We prove existence and uniqueness for a class of martingale problemsin a Hil-
bert space. We solve the associated Kolmogorov equation and prove that the corresponding
semigroup is determined by akernel of measuresif a Schauder-type regularity is satisfied.

1. Introduction

In this paper we propose a new analytic approach to the study of existence and
uniqueness of solutions to martingal e problems in infinite dimensions.
We consider a SPDE in a separable Hilbert space H

dX = (AX + F(X))dt + VBX)dW ()

D
Xo=x € H

where A generatesastrongly continuous contraction semigroupin H, F : H — H
is bounded Holder-continuous, and B(-) is obtained by a bounded Holder-contin-
uous trace-class perturbation of a constant operator.

Our method corresponds to the procedure presented by Stroock and Varadhan
inthefinite-dimensional case (see[17], chap. 3 and 6). First, we solvethe parabolic
Kolmogorov equation associated to (1), in the space C, (H) of bounded continuous
functions on H. Secondly, we prove that the corresponding semigroup (P;);>o iS
determined by a measurable kernel {m (¢, x, -)} of probability measureson H.

The first step provides uniqueness of solutions to the martingale problem (1),
identifying the law at fixed (¢, x) of any solution X with the functional C,(H) >
¢ — Pyp(x). The second step saysthat the transition function {r (z, x, -)} satisfies
the Chapman-Kolmogorov equation. This allows to construct in a classical way a
Markov process X (¢, x) with valuesin H, which turns out to be a solution to the
martingale problem (1).

There are many results on existence for martingale problems in infinite di-
mensions, mainly based on compactness techniques or Girsanov’s Theorem, while
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uniqueness is still largely open and has been proven only in particular cases. see
[5], [8], [11], [14], [19], [22], [21]. For an analytic approach based on Dirichlet
Forms see[13].

The main novelties of the present paper are contained in ageneralization of the
Riesz Representation Theorem to the Hilbert space case. More precisely, wediscuss
the following question: given a positive semigroup (P;);>0 in Cp(H) satisfying a
parabolic equation, does there exist ameasurable kernel of finite positive measures
{m(t, x,-)} on H such that

Pip(x) = /Hw(y)N(t,x,dy) )

for all ¢ bounded and continuous? The answer in general isnegative (seethe begin-
ning of Section 4 for adetail ed discussion). However, we statethefollowing general
principle, giving a positive answer in many interesting cases. let (¢, D(%)) be, at
least formally, the infinitesimal generator in C;,(H) of (1), and suppose that there
exists an Ornstein-Uhlenbeck operator (.#, D(.#)) in Cp(H) such that auniform
Schauder-typeregularity holdsfor the operatorsa ¥ + (1—«).#,« € [0, 1]. Then
there exists a unique kernel of finite measures (¢, x, -) on H such that (2) holds
foral ¢ € Cp(H),t > 0,x € H.Itisinteresting that aregularity in the backward
variable x, i.e. Schauder Estimates, produces a regularity in the forward variable
y, i.e. the representation as a o -additive measure, for the kernel {z (¢, x, dy)}.

In sections 3-5 we prove the aforementioned general principle. We state Schau-
der Estimates and Positivity for the operators (A — %)=, » > 0, then we prove
existence and regularity of the transition semigroup associated to (1), and both ex-
istence and uniqueness of solutions to the martingale problem (1). The technique
presented here could be applied also to other class of coefficients, provided an anal-
ogous Schauder-typeregularity holds: seefor instance[3] and [21]. Notice a so that
our technique is entirely analytic and independent of tightness methods (see [8],
chap. 8).

Our proof of Schauder Estimates, given in section 6, requires the hypothesis
that the trace-class norm of the perturbation in the noise-term of (1) isbounded by a
fixed constant: see (9) below. This hypothesisisdueto technical difficultiesarising
from the unboundedness of the operator A in the drift term of (1), and we stress
that it is not needed in the general procedure of sections 3-5. No assumptions are
required on the bound of the Holder seminorm of the perturbation: see (10) below.

Inour opinionafull understanding of Schauder-typeregul arity ininfinitedimen-
sion is still missing. We think that a better insight in infinite-dimensional analytic
regularity will allow to apply our method with greater generality (see Remarks 9
and 10 below).

2. Notations and assumptions
In this paper we consider aseparablereal Hilbert space H, with scalar product (-, -)

and norm | - |. We will denote by ¥ (H) the space of bounded linear operators on
H with the usual sup-norm || - ||, by #1(H) the space of trace-class operators on
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H, endowed with the trace-norm || - || #,(#), and by gf(H) the space of positive
symmetric operatorsin #1(H).

We write equation (1) in the following way:
dX = (AX + F(X))dt + (BB* + G(X)Y?2dw(r)
Xo=x € H

with the following assumptions:

Hypothesisl. 1. A: D(A) C H — H isthegenerator of a strongly continuous
semigroup (e'4),>0 in H, such that

et <1 Vi>0. 4

(Wy)r>o0 isacylindrical white-noisein H and B € £ (H).
2. The Ornstein-Uhlenbeck process {Z (¢, x)}:>0.x, defined by

t
Z(t, x) 1= Ax +/ e"IAB AW, (5)
0

takesvaluesin H,i.e.forall t > 0

t
TrQ, < o© Oix = / SABB* e’ x ds. (6)
0
3. TheO.U. processis Strong Feller, i.e. e'4x e Qtl/z(H) forallt >0,x € H.

Theoperator I'(¢) := Q,_l/ 2,1 4 boundedin H by the Closed Graph Theorem,

satisfies for somev > 0

ITOI < Vi >0. ()

Sk

Hypothesis2. 60 €]0,1, F:Hw H, G:Hw ¥{(H) and

[F(x) — F(y)|
sup |F(x)| +sup ———— = ||F gy < 00 8
BRI+ 2B = e @
1—
SUP [G(X) |2y =2 & < 6(120-272 v279)~2 ©)
xeH
160 = CWlwatny _ oo 10

XFy |x — y|6
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Assumptions 1-3 in Hypothesis 1 are common in SPDEs literature, see[8] and
[9]. Recently, regularity of invariant measures was studied in [1] for an infinite-
dimensional Stochastic Differential Equation, with a diffusion term given by the
Identity, plus afixed trace-class operator timesa . (H)-valued Lipschitz function.

Example. Consider thefollowing SPDE on I = [0, 1]:

0X(1.6) = (FX (1,6 + f(X(1.8)) di

00 1 1/2
+ ; (;Hk -gk<X(r,$)>) ex (&) dBy(1) a1

X(t,0=Xt1)=0 V>0

X(©0,8) =x() vE €0, 1]
where:

x € L%(0, 1) and {e;}« is acomplete orthonormal systemin L2(0, 1).
{Br()}:>0k areindependent linear Brownian Motions.

0 €]0,1], f : R+ Risbounded and 6-Holder continuous.
ForalkeN, g :R+— Rand

O<g) <1 VreR  syp SO =8Ol _

XF#Yy [x — y|9

e v>0)>0foralkeN,andY ), rp =t¢ < 6(120. 27" v20)-1,
Under these assumptions, (11) satisfies Hypothesis 1 and 2. O

We define C, (H) as the space of all bounded uniformly continuous real func-
tionson H, endowed with the sup-norm || - [lo; Cjy (H), withe €0, 1[, asthe space
of functionsin C,(H) which are «-Holder continuous, C§+"‘(H ) as the space of
functionsin C, (H) which are twice Fréchet differentiable, with first Fréchet dif-
ferential Vu uniformly bounded and second Fréchet differential D%u bounded and
«-Holder continuous as amap from H to ¥ (H). We set:

lullo == sup lu(x)|, [u]e = sup M’

g lulle == llullo + [u]«
xeH x#y -

ux)—u
lullz4a = llullo + SUp|Vu(x)| + sup||Du(x)|| + S;p%
x x x#y -

If (S¢)>0 IS @ semigroup acting on C,(H), we will say, following [4], that
(S1)r>0 is weakly right-continuous (respectively weakly continuous) if for all
¢ € Cp(H)and x € H,themap [0,00) > ¢ — S;¢(x) is right-continuous
(resp. continuous).
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The transition semigroup (R;);>o in C(H) of (5)

Rip(x) = /Hcp(y) N(ex, 0)dy) xe€H, geCpy(H) (12

is not strongly continuous in C,(H). However, (R;);>0 iS weakly continuous.
Therefore, one can define the continuous operators F;, : Cp(H) — Cp(H)

o
Fokx) = / e M Rp(x)dt A>0, xe€H, e Cp(H). (13
0

The family {Fy}, isaPseudo-resolvent on C,(H) (see[20]): indeed, by the semi-
group law of (R;)>o it satisfies the Resolvent Formula
A=W FF, = F,—F, Vi, u>0

and by the wesk continuity of (R;);>0, F» isone-to-onefor al A > 0. Therefore,
there exists a unique closed operator .# : D(#) C Cp(H) — Cp(H) such that
F, = (. —.#)"Y = RO, .) fordl » > 0. The operator (.#, D(.#)) is said
to be the infinitesimal generator of (R;);>0. Moreover, the semigroup (R;);>0 On
Cy(H), theresolvent family {R(), .#)}, and the operator (.#, D(.#)) determine
uniquely each other. We will call (.#, D(.#)) the Ornstein-Uhlenbeck operator.

We introduce now the operator (¢, D(%)) in C,(H), which will turn out to
be the infinitesimal generator of (3). We set

D(2) := C2™(H), Qu = %Tr[GDzu] + (F, Vu),
D(Z):=D(#)ND(2),  PLu:=Mu+ u, (14)
where 6 €]0, 1] isthe same asin Hypothesis 2.
We define the coordinate process on H[%71 by
X, HOTl — H, X (w) = o), t €0, T].

We can now give the following

Definition 1. A solution to the martingale problem (3) on [0, T'] is a probability
measure P, on H%.71 such that

Pi{w:[0,T] —» H, w(0) = x, w Bord function} = 1,

t
and the process {f(Xt) — / ,Sﬁf(Xr)dr} (15)
0 t>0
isaP,-martingalefor all f € D(¥).If

IirTg)Px{w:|a)(t)—x|§8}=1 Vé>0 (16)
1—

then the solution P, is said to be stochastically continuous.
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It isprovenin[9], § 2.1, that a Markov process {P,}, with valuesin H satisfies
(16) if and only if itstransition semigroup (P;);>o isweakly right-continuous.

We will often use the following important type of convergence, introduced in
[15]: given asequence {f, : H — B, n € N U {oo}} of bounded continuous
functions from H to a Banach space B, we write

fo = fs if andonly if (17)

VxeH |foox)— fu(x)|lp >0 asn—>o00 & supsup|fu(x)lp < oo.
neNxeH

Given ametric space K, we will denote by #(K) the Borel o-algebra of K.
A positive o -additive measure on the measurable space (K, #(K)) will be caled
shortly a measure on K. If K and J are two metric spaces, T : K — J isa
measurable map and . isameasure on K, then we will denote by 7* . the unique
measure on J such that 7*u(A) = n(T~1A) foral A € 2(J).

In the sequel, we will consider finite dimensional subspaces H,, of H. Splitting
H = H, ® (H,)" and denoting by 8o the Dirac measure at 0 on (H,)*, we will
extend canonically afinite measure " on H,, to the finite measure 1" ® 8o, again
denoted by 1, on H.

If {er}ren iS @ complete orthonormal system in H and H,, := Span{ey, ...,
ey) for al n e N, then there exist canonical projections I,,x : H, — Hy, and
I, : RN — Hy, foral n > k. Givenfor al n € N afinite measure 1" on H,, the
system {u" },en IS said to be projective if (IT,_)*u”" = u* foral n > k.

We will use Kolmogorov's Extension Theorem for countable products:

Theorem 1. Givenaprojectivesystem{u" },en ON ({Hy} {Tln—k }n>k), thereexists
a unique finite measure zz on RN such that (IT)* = u* for all k € N.

We will say that aset # of real Borel functionson H are a determining class
if two probability measureson H, p11 and 2, areequal if and only if [, fdu1 =
Jy fduzforal f e 7.

3. Kolmogorov Equation

In this section we study Kolmogorov Equations associated to the operator % de-
fined in (14). In Theorems 2 and 3, whose proofs are postponed to Section 6, we
state Positivity and Schauder-typeregul arity for theresolvent operators (A — %) 1 :
Cy(H) — Cp(H), A > 0. Then we prove the existence of a semigroup, acting on
asubspace X of C,(H), naturally associated to (3). Notice that a direct resolution
of the parabolic equation

u; = Lu u0) = ¢ € Cp(H) (18)

seemsto bevery hard (see Remark 2 below). On the other hand, solving the related
eliptic equation (A — L)u = f foral f € CY(H), yields:

1. There exists, if any, a unique weakly right-continuous semigroup in C,(H)
whose infinitesimal generator is an extension of .%.
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2. If X istheclosure of D(%) in C,(H), then there exists a strongly continuous
semigroup (PX),>0 acting on X, whose infinitesimal generator is an extension
of the part of £ in X.

We consider the following elliptic equation, where % is defined asin (14):
AM—Lu = f (29
with f € CZ(H), A > 0,u € D(&). The proof of the following two Theoremsis
postponed to section 6.

Theorem 2 (Maximum Principle). Forany f < le(H) andu € D(¥) suchthat
equation (19) holds, we have

1
a llullo = —Il.fllo. and b f>0= u>0 (20)

Theorem 3 (Schauder Estimate). There exists a constant C = C(A) > 0 such
that for all f € Cﬁ(H) and u € D(%) such that equation (19) holds, we have

[-Zullg + llullzvo < Cllfllo (21)

It is a standard fact that using the classical Continuity Method, Theorem 3
yields an existence Theorem for solutionsto (19). We give here the proof, which is
well known, because we will repeat it several timesin the sequel, in order to prove
several properties of the operator R(A, £) := (A — £)~ L.

Theorem 4 (Continuity Method). For all f € Cg(H) there exists one and only
oneu € D(%) such that (19) holds.

Proof. For al « € [0, 1] weintroduce the operator
D(¥%y) = D(¥), Lou ‘= Mu + alu (22
Weintroducethe set A of al o € [0, 1] such that the equation
M~ Lou = f (23)

hasauniquesolutionu = R(x, ¥,) f fordl f € C,f(H).WeWiII provethat there
exists§ > Osuchthatif wp € A, @ € [0, 1] and |« — ag| < §,thena € A. Since
0 € A, thiswill provethethesis.

Let wp € A, and let ug be the corresponding solution to (23). We are going to
show that equation (23) has a solution for all « closeto ag. We set

yri= CEO(H) > CZY(H) y;(v) i= RO, Lop) (f + (@ — ) 2v) (24)

In virtue of Theorem 3 this map is well defined and continuous, and u = y¢(v) is
the solution of Au — Lyou = f + (0 — ag) 2v.

Moreover, u is a solution to (23) if and only if u is afixed point of y;. Let
u = )/f(U) andu = )/f(ﬁ) Weset 71 .= ”G”CZ(H;Jl(H)) + ”F”CZ(H;H)‘ Then
by Theorem 3 there exists C > 0 such that

lu —ull249 = CH1lag — | [v — Vll246-
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Setting 61 := 1/(2C#"1), we obtain that if |« — ap| < 81, yy isacontractionin
Cb2+9 (H). The conclusion follows, since §; does not depend on «p. O

We define now X = closure of D(%) in Cp(H). It isknown that X #
Cp(H), sincethe semigroup (R;);>o iSnot strongly continuous: see[4]. We denote
by (Zx, D(¥x)) thepart of £ in X: D(¥x) := {u € D(¥) : Lu € X},
Pxu = Zufordlu e D(Zx). Then we have the following

Proposition 1. D(Zx) isdensein X.

Proof. Itisenoughto provethat D(%) iscontained in the closure of D(Zx). Let
x € D(&). Thenforal A > Othereisy, € D(¥) suchthat Ay, — £y, = x, and
moreover y, € D(Zx). Theny, = (A — Lx) Ix and Lxy,. = 0 — L)1 &x.
It follows, by (20.9),

1
1Ays = xll = L%yl = 5 1€x] — 0 @A — +oo. 0

Corollary 1. The operator (¥x, D(Zx)) is closable in X: we will denote by
P its closure. The unique continuous linear extension of (A — Lx)Lto X is
one-to-one and coincides with (A — Zx) 1 for all » > 0.

Proof. The Corollary follows from the following Closure Lemma (1.4.3in [6]): if
(#, D(¢)) isadissipative linear operator in a Banach space E, and if both D( #)
and (I — #)D(¥) aredense, then ¢ isclosablein E. O

Corollary 2. ByHille-Yosida Theorem, Z x generatesa strongly continuous semi-
group in X, that we call (PX),>o.

Remark 1. Notice that X is closed and strictly smaller than C,(H), so that we
have a priori no way to extend (PtX),zo to Cp(H). This problem will be solved in
Corollary 4 below.

Remark 2. Notice also that very little can be said about D(% x) beyond its ab-
stract definition: this showswhy adirect study of the parabolic equation (18) seems
so hard.

It is now a standard fact (see [5], [11], [17]) that Theorem 4 and the density of
CY(H) in C,(H) imply the following

Theorem 5. For all x € H and T > O, there exists at most one stochastically
continuous solution on [0, T'] to the martingale problem (3).

However, we have proven more than probabilistic uniqueness:

Theorem 6. Thereexistsat most oneweakly right-continuoussemigroupin Cp (H)
(respectively in X) whose infinitesimal generator extends . (resp. ¥x).
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4. Thekernel of measuresfor the Resolvent

This section is devoted to the proof of the following

Theorem 7. For all » > 0, x € H, thereexistsafinitemeasureon H p(X, x, -)
such that

R(A, D)p(x) = L¢(y)p(k,x,dy) Vo e C)(H) (25)

Moreover, for all A € Z(H), themap (A, x) — p(, x, A) ismeasurable.

The main tools will be: 1. Feller Property: R(A, £)(Cy(H)) C Cyp(H); 2. Posi-
tivity (20.b); 3. Schauder-type regularity (21) of R(1, £).

We fix a complete orthonormal system {e;}ren in H. Foral n € N, let H, :=
Span(ex,. . .,en). We will use theidentification of H = 12 c RN given by {e;}. For
al ¢ € Cp(R") we set

o' e Cy(H), o@D = ez e1). ..., (z.en))
7' =" 1o e CURM), F™:={p" 19 e CFM) (26)

Notice that C;3°(R") @ R can beidentified with a dense subset of all C*° functions
on the n-dimensional sphere S, which is compact. Therefore, by Riesz Represen-
tation Theorem for positive distributions on compact spaces, we have that for all
n € N thereexistsafinitemeasurer” (1, x, -) on R" whichisequal to thefunctional
CL®RY) 3 ¢ > RO, LM (x).

Remark 3. By the positivity we know that " (A, x, R") < 1/1. However, since
1 ¢ C°(R™), it might happen that r" (%, x, R") < 1/A. Moreover, it is not evi-
dent that the system {r" (%, x, -) : n € N} is projective. Indeed, if f € C3°(R"),
then setting 7 € Cp(R"™1), F(x1,...,%p41) = f(x1,...,x,), we have that
f ¢ CS°(R"+1), so that we can not say that

/ fO) "G x,dy) = f T o, x, dy) 0
R~ R’H'l

In order to obtain ameasure p(A, x, -) on H such that (25) holds, we have to
prove that:

1 r"(0, x,R") = 1/Afordln € N. Thesystem {r"* (A, x, -) }nen iSpProjectiveand
therefore determines ameasure 7(1, x, -) on RN

2. The measure 7(, x, -) is concentrated on the space /2 ¢ RN, which can be
identified with H by means of the chosen orthonormal system

3. Themeasurep (A, x, -) on H determined by therestrictionof 7 (A, x, -) to #(H),
satisfies (25).

We will prove that properties 1-3 hold in our case, using a unifying technique,
namely the transfer of regularity properties from the resolvent R(A, .#) of the
Ornstein-Uhlenbeck operator to R()., ), by means of the Continuity Method of
Theorem 4.
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However, we stress that the existence of the measures r”* (1, x, -) follows only
from the Positivity and the Feller property of the operator R(), #), while each of
the properties 1-3 could fail to hold for a generic positive operator in C,(H), as
the following remarks show.

Remark 4. Recall the definition given in (26), and consider the closure # of the
space 7 in C;,(H). If we denote by (K}") >0 the Heat semigroup on Cp,(R"), then
we can define K o := (K'p)! fordl ¢ € CY(R"). (K}!);>0 isawell defined
contraction semigroup on %, and therefore has aunique extension to acontraction
semigroupon #. Foral t > Oand x € H, themap C»(R") 3 ¢ > KoM (x)
is equal to a Gaussian measure 1" (¢, x) on R", and the system {u" (¢, x)},en IS
clearly projective, but it is well known that the measure (¢, x) that it determines
on RN is concentrated on RV\/2, and therefore property 2 can not hold. O

Remark 5. Property 3 can fail to hold even if property 2 holds. Suppose that, for
a given positive functional T : C,(H) +— R, there exists a finite measure m on
H whichisequa to T on Z °°. Two such measures must be equal, since #*° isa
determining class. But the same uniqueness does not hold for positive functionals
on Cp(H): indeed, notice that there exist functions ¢ € C;,(H) such that

g=0 & g#0 & supfp(x)ipeF &p=<g} =0 VxeH,

forinstance, any g(x) = a(]x|) witha : R — R continuous,a > 0,a = Ooutsidea
bounded interval and a(0) = 1. By Hahn-Banach Theorem for positive functionals
(see[2], chap. II, § 3, n. 4, Proposition 6) we can define a functional 7 = T on
F> Tg=aforany« € [0, supg] and extend it to a positive linear functional on
Cy(H). Thisimplies that there exist infinitely many positive functionals 7 which
areequal to T and thereforetom on 7> but T Z T onCy(H). O

Remark 6. Suppose now that the functional T isof theform T = T(A, x)¢ =
RO\, £)p(x). Thepositivity of T could be combined with some algebraic relations
linking the functionals {7 (A, x)},0,.x, such as the Resolvent formula. However,
this formula holds for the functionals {T' (A, x)}, but possibly not for the measures
{m(x, x)}, since the space #°°, on which T'(A, x) = m(A, x), isnot invariant for
the operators {R(A, £)}).>0- O

We come to the proof of Theorem 7. Recall the definition (22) of ¥, for al
a €[0,1], et R(h, L)'= (h — L) L1 CY(H) = D(2P).

Proposition 2. For all n € N, there exists a set of finite positive measures on R”
{rh(A,x,) 1A >0,x € H}, such that:
1. For all ¢ € C3°(R") we have

RO Lo (x) = /R o) 0 . dy) 27)

1
2.rf(h,x,R") < R, Lo)1l(x) = T
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Proof. The first assertion follows applying Riesz Representation Theorem to the
positive functional C°(R") 3 ¢ > T = R(A, Lot (x). The second asser-
tion follows from the positivity of T and the fact that 7 (1) = 1/A. O

We want now to prove that the system {rZ(x,x,-) : n € N} is projective. By
Remark 3, this does not follow from Proposition 2.

We prove our first transfer result of properties from Ornstein-Uhlenbeck oper-
ator to operator (¥, D(%)).
Lemmal. If (f, fu :n e N} C CI(H), fu —> f and sup, || fulle < oo, then
RO, L) fy = RO, D) f.
Remark 7. Daniell’sTheorem, Thm. 2.5.5.in[10], saysthat apositivelinear func-
tiona T : Cp(H) — R can be extended to a positive finite measure on #(H) if
andonly if: Tf, + Tf for al sequences f,, f € Cp(H) suchthat f, 1 f, where
4 denotes monotone non-decreasing pointwise convergence. However, (20) gives
only continuity of T through uniform convergence. In Lemma 1 we show that the
continuity of 7" with respect to an intermediate convergence, namely the sr-con-

vergence of uniformly Holder-continuous functions, is a consequence of Schauder
Estimates and the properties of the kernel of the O.U. semigroup (12).

Proof of Lemma 1. Consider theset A of al « € [0, 1] such that
{f. fa in e N} C CJ(H),
fo = f and sup,lifulls < 00 => R(A, L) fn —> R(L, L) f,
VRO, Lo) fo —> VR, Lo) f, and  D2R(\, Lo) fo —> D?R(h, Lo) f.

First, 0 € A: indeed, if sup, || fulle < oo, thenfor all x € H (see (47) and (48)
below and [8], § 9.4.1):
sup, ; 2|V R, fu(x)| < oo, sup, , 112 D2R, f, (1) < oo
[e%e) e—kt 12
VR, M) fy(x) = /0 oz (2VR o) s

o0

2 e M 1-6/2 2
D R(,\,//)f,,(x)zfo 17 (z D R,fn(x)) dt

and the conclusion follows from the Dominated Convergence Theorem.

Moreover, A isopen: arguing asin the proof of Lemma3, wetake ag € A and

a € [0, 1] such that the mappings 7, defined in (24) are contractionsin 2 (H).

We write
ROGZL)(f = f) = (RO, L) f — (R O0) + (r)F0) — (v,)5(0))
+ () O0) = R, L) f) = I+ I+ I3
One can prove inductively on k that for all n, vy, (0) = R(A, Lo,) f» and

) O = ROL Lap) fo + (@ = R(, Za)2 [ (77,050 ]
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and, setting #"1 1= ||G||c,‘j(H;$1(H)) + ”F”CZ(H;H)' by Theorem 3 there exists
C > 0 such that

1) 2 Olz10 = € (1 fulle + 1o = a0l #175,) O l1240)

< (i [l = aolC f]) I fullo

i=0

Sinceag € A, one obtains by induction on k that forall x € H and k > 1,
) O @) 5 )M OE) . V) o) 5 Vi) o)),

and  D%(y;)f L0 (x) = DAy 0)(x), asn— oo

By Theorem 4, if |o — ag| < 81 = 1/(2C¢") the terms I1 and I3 defined above
converge to 0 in C§+9(H) uniformly inn ask — oo. Therefore, foral n > 0
we can find kg such that (|11] + |I3])(ko, n) < n for al n. Fixing kg and letting
I>(kg,n) — Oasn — oo, we obtainthat « € A. Since § does not depend on «g
and0e A, A =]0,1]. O

Corollary 3. Formula (27) holds for all ¢ € CZ(R") andforal A > 0, x €
H,a € [0,1]. In particular, r}(x, x, R") = 1/a for all n € N and the system
{rB(A,x,-) :n € N} isprojective.

Proof. Fix n € N, and let f € CJ(R"). Take any sequence {fi} C CS°(R")

such that sup; || fille < oo and fi — f. Then by the Dominated Convergence
Theorem and Lemma 1

/f(y)r&l(/\,x,dy)=|im/ fiy) ry(h, x, dy)
R k R

=lIMRG, L) 1) = RO, Lo) 11 (0) O

By Kolmogorov’s Extension Theorem and Corollary 3, we havethat thereexists
a unique finite measure 7, (%, x, -) on RN endowed with the product o-algebra,
having r* (A, x, -) asmarginal distributions. Noticethat every ¢ € #¢ hasaunique
continuous extension g on RN. Then formula (27) becomes

RO Zapw) = [ 56 Falx.d2) voe ' (29

R
What we haveto prove now, isthat 7, (A, x, -) isconcentrated on H. The key obser-
vation isthe following: if we are given ameasure m on a measurable space (Y, X)

and a measurable positive function ¢ : Y — [0, oc], then

/de <00 =— ¥ <oo m — amost everywhere (29
Y
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Therefore, if we prove that the function
o
iRV > [0,00],  z={ule W) =) lauf
i=1

hasfinite 7, (%, x, -)-integral, then RN\ H = {z € RV : W(z) = oo} has7(h, x, -)-
measure equal to 0. We set:

v, RV > R z={zut > Y, (2) = Z zil® An (30)
i=1
yiH~R  yi=Wy =] Yn € Co(H) Y= (W)iu
(31)

Lemma 2. If thereexists C(«) > 0 and A > 0 such that

SUP RO L) (x) < @(lﬂm)) VxeH (32)

then7y (X, x, -) restrictsto a finite measure p, (1, x, -) on (H, 4(H)). Moreover
C
[ 1P a2 = SR+ d (33)
H

Proof. Wewill provethat if (32) holds, then theintegral of W on (RN, 74 (%, x, -))
isfinite. Notice that {W,} is an increasing sequence of bounded measurable func-
tionson RN such that W = sup, . ¥,,. Since ¥, € F, by formula (28) we have
foraln

RO 2006 = [ a0 i,y = [ 0,0 7Gx, ),

By (32), we havethat AR(A, Lo) ¥ < C(a)(1+ ) for dl n € N, so by Beppo-
Levi Theorem

/ \II(Z) FQ(A'vxvdZ) :S-jp / qjﬂ(z) Fd()"vx’dz)
RN n RN

— s ROw La)¥n(x) < @(Hw(x)) < +oo

and the assertion follows. Notice now that if = isthe Borel o-algebra of RV, then
the trace of ¥ on H isthe Borel o-algebra of H, #(H). Therefore, 7y (A, x, -)
restrictsto awell defined finite measure o, (1, x, -) on (H, #(H)). O

Lemma 3. ThereexistsC > 1suchthat Vx € H, A > 0,« € [0, 1]

SUP R(A, La)Yn(x) +SUD[VR(A, L) (x)]

C
+SUp [ D*RO., Lo) ()| < S A+ Y @) (34)
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Proof. An explicit computation shows that there exists C > 1 such that (34) holds
for o = 0. Suppose that for ag € [0, 1] there exists C(ag) > 1suchthat Vx € H
and A >0

SUP R(A, Lag) Yn(x) + SUPIVR(A, Log) Yn (x)] (35

C(ao0)
A

+sup | D*R(x, Lag)Yn ()|l = 1+ (x))

Then Lemma 2 applies for ag. We know that if | — ag| is small enough, then
RO., L)y, isthelimitin CZT0(H) of (yy,)(0) ask — oo, where yy, is de-
fined as in (24). By (35) and (33), we have by induction on k € N that setting
H 2 = sup, [|G(X)|l 2,y + SUp, | F(x)]

W)X 0 + V()X ) + 11Dy, (0]

k i k .
Cc c
< (;‘0)[<§[|a—ao|fz (j‘(’)]><l+w>+ > [l —colrz]

Jj=1nk

C(;"O) A+ )

provided | — ag| < 82 := 1/(24 7). We set § := 81 A 82, where §1 was defined
in the proof of Theorem 4. Now we can set in (35), C(xg) = 3V C(0) for all
ag € [0, 1], and the Lemmais proven. O

<3

We can now prove that (27) holdsfor all ¢ € C{ (H): infact, take g € C)(H),
and set ¢, € Fy, p,(x) = p(x,), Where x,, isthe projection of x onto H,.. Then

sup, llenlle < llelle, and ¢, = ¢, so by Lemma 1 and the Dominated Conver-
gence Theorem,

fso(y) pa(k,x,dy)=|im/ 0k (y) pa (X, x,dy)
H k Ju

=|i]£ﬂ RO, Lo)er(x) = R, Lo)p(x)
The measurability of themap (&, x) — pu (1, x, A) forall A € 4(H) follows as
an application of the Monotone Class Theorem. If weset p (A, x, -) := p1(A, x, +),
then Theorem 7 is proven. O

5. Thekernel of measuresfor the Semigroup

In this section we prove the following

Theorem 8. For all t > 0, x € H, there exists a unique probability measure on
H n(t,x,-) suchthat

PXo(x) = /Hw(y) m(t, x,dy) Vo e X =D() (36)
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For all A € #(H), the map (¢, x) — n(t,x, A) is measurable and the family
{m(t, x,-) : t,x} satisfiesthe Chapman-Kolmogorov equation

n(t+s,x,B) = / w(t,y, B) m(s,x,dy) VBe#H), t,s >0, x € H.
H
(37

Proof. We fix a complete orthonormal system {ex }ren. Since D(A*) is densein
H, we can suppose that {e;}reny € D(A*). Similarly to (26), we define the spaces

Fo={¢" 1 € G®D.I lim g0}, 7 i={p 1p e CFRY)

{extren C D(A*) implies #°° C D(¥) and therefore 7o C X. We also define
functions v, € Cp(H) asin (30), noting that now v, € X.

Two probability measures satisfying (36) must coincide: indeed, # ¢ isadeter-
mining class. This proves the uniqueness statement.

Since the operator Zy generates the semigroup (PX),o, thenfor al f € X
we have by Hille-Yosida Theorem

m—00 m—0Q

PXf = lim (1—“:’() f = lim [mRm,t Z)]" finX. (39)

Formula (38) will be our basic tool to deduce properties of (PX);>o from the
properties of {R(1, ¥)},~0 proven in the previous section.

Arguing as section 4, we obtain that for al n € N, there exists a measure
p"(t, x, -) on R" with total massless or equal to 1, such that

PXpH (x) = /R ) P xdy) Ve CERY. (39)

For any f € Cp(R") such that 3lim -« f(x), consider a sequence { fi} C
C&(R") suchthat fi — f.Then f#, fH e 74 and by (38)

PXH — pXfH = (PX 7 — [mRm,t Zx)]" )

+ [mRm, t 0" (fT = ) + (mRm, t Z)]" ' — PX £

Arguing asin the proof of Lemma 1, weobtainthat PX £/ — PX f# ask — oc.
Thisimpliesthat for all 7, x, p" (¢, x, H,) = 1andthefamily {p" (¢, x, ) : m € N}
is projective and determines a unique probability measure p(z, x, -) on RN. More-
over, by (38)

PXy, = (PXym — [mRm, t Zx)]" ¥) + [mRm, t Zx)]" ¥ = L+ I
(40)
By (34), I < C(1+ ) uniformly inm, n, and I1 tendsto 0 asm — oo, SO we get

sup PXy, < CA+y) < oo
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and arguing asinthe proof of LemmaZ2, p(z, x, -) isconcentrated on H and restricts
to awell defined measure (¢, x, -) on (H, ZA(H)).

Formula (39) says that (36) holds for all ¢ € Z#°°. We prove now that (36)
holdsfor al ¢ € X.
Consider, for adl k € N, a cut-off function y; € CSO(R") such that

O0<xkx <1 xx=1on {|zl|ge <k}, and x =0 on {|z|ge = k + 1}.

Forany ¢ € X, set gr(x) 1= @(xr) xx (xx), where x; is the projection of x € H
onto Hy. Then ¢ € 7o and ¢ —> ¢. Now

PXo — PXor = (PXo — [mRm, 1 Zx)]" @) + [mRm, t Zx)]" (0 — )
—_ m
+([mRm, t Zx)]" ok — Po) =0 h+ L+ I3

By (38), 11 and I3 converge to O uniformly in k asm — oo, while at fixed m
I convergesto 0 as k — oo by Theorem 7. The proof of (39) is complete. The
measurability of the map (¢, x) — n(t,x, A), with A € #(H), follows as an
application of the Monotone Class Theorem, and Chapman Kolmogorov equation
(37) is a consequence of the semigroup law of (P,X )t>0. Therefore, the proof of
Theorem 8 is complete. O

We can now prove the existence result for the martingale problem (3). Recall
that the coordinate process on H[%71 is defined by

X, HOTl s g, X, (0) = o(t)

Theorem 9. For all x € H and T > 0, there exists a solution P, on [0, 7] to
the martingale problem (3), such that for all k € D(A), the process {(w(¢), k)}; is
cad-lag for all winaset N ¢ HIOT] with P,(N) = 1 for all x € H. Moreover,
the family {P, }, ismeasurable.

Proof. Itisstandardfrom Theorem8thatforal 7 > Othereexistsaunique Markov
Process {P, }, on H®T1 with transition function {z (¢, x, -)};... For the construc-
tion of the desired cad-lag modification of the coordinate process, we follow [16],
Chapter 111,

We take a countable dense subset of H, Z = {z,,},, and consider

heo : H > R, heo(x) 1= |R(1, A)x|? + 1,

n

Hy o= ihmq PH > R, By (0) =14 [(zm + gR(L A)x, ek>|2} :
k=1
wherel,m,n e N, qg € Q. Weset # = #1 U {ho}. Noticethat »# is contained
in the set of continuousfunctionson H, but not in C;, (H). However, we can define,
by approximation with C,(H) functions, £h for every h € 4. In particular, re-
member that in Lemma 3 it was proven that the measures p (A, x, -) haveintegrable
second moment.
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We show now that for & > 0 big enough, Ao — Lhs > 0. Indeed,

Moo (x) — Lhoo(x) = Moo (x) — TI[R(1, A)Y(BB* + G(x))R(1, A%)]

—2(AR(1, A)x,R(1, A)x) — 2(R(1, A)F(x), R(1, A)x).
Since —(AR(1, A)x, R(1, A)x) > O by (4), wefind, setting w = |R(1, A)x|?,
Moo (X) — Lhoo(x) = Aw? — ciw + A — 2

with ¢1, ¢z positive and independent of x. Therefore, for Ag big enough, Aghso —
PLhoo =: g0 = 0. Since g is continuous and with quadratic growth, we can
define by approximation R (Ao, -£)g~ and prove that it coincides with ... Then,
the process {e 40" ho, (X,)};>0 iS a supermartingale and therefore has right limits
dong Q1 onaset Ny ¢ HIOT! with P, (N1) = 1foral x € H.

Arguing similarly for all functions € #1, wefindaset N ¢ HI®TT with
P.(N) =1foradlx € H,suchthatforal w € N, h € #,themapt — h(w(t))
hasright limitsalong @*.

Fort € RT, denote by &, the set of all sequences {#,}, C Q, withz, | t.

Supposethat w € N and |[R(1, A)w(t,)| — +oo for {t,}, € ;. Then, for any
sequence {s,}, € <, we have

lim|R(L, Aw(sy)| = lim|R(L, Aw(ty)| = +oo

and therefore, lim, ; cq+ [R(1, A)w(s)| = +oo. We denote by M (¢) the set of
al such w.

Takenow w € N — M1(t) =: Mo(t). Therefore, for some sequence {¢,}, €
S:, and hence for al, |R(1, A)w(z,)| is bounded. Then, there exists, along some
{sp}n € S, alimity € H of R(1, A)w(s,) inthe weak topology of H. Suppose
that for {r,}, € &, R(1, A)w(r,) — z # y. Then,wecanfindn,m e N, qg € Q
such that

3 n n 5
§§1+];|(zm+q~y,ek>|2, 1+};|(zm+q~z,ek>|252.

We denote by / the corresponding 4, , , € # 1. By construction, we have
3 . _ 5
= <limh(w(sy)) =limh(w@y)) < =
2 n n 4

which is absurd. Hence, limg |, ;cq+ R(1, A)w(t) = y in the weak topology.
Therefore, foral w € N andr € R, eitherlimy |, ;cq+ [R(L, A)w(s)| = +o0,
orlimg; seq+ R(1, A)w(s) existsin the weak topology. In other words, w(s) has
right weak limitswith valuesin D(A~1) U {oo}, where D(A~1) isthe completion
of H with respect to thenorm |R(1, A) - |. We define X, := limg; sea+ X5, When
such limit exists in the sense specified above, and X, := 0 otherwise. We claim
that for al 7, X; = X, as., whichwill also imply that X, takes valuesin H as.
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Notice that the function v,(x) := |x| A n, n € N, is lower semicontinuous
with respect to the weak topology of H, and the function u,, (x) := v, (R(1, A)x)
belongsto X. Then we haveforal n e N

E[|R(L, A)X;| An] < liminf E[|R(1, A)X,| A n]

slt,seQt

= lim E[P* u,(X,)] =E[|R(L, A)X,| An]
slt,se@t

whichimpliesE[|R(1, A)X;|] < E[|R(1, A)X,|]. Sincetheright hand sideisfinite,
then P, (M1(¢)) = Oforall x € Handt > 0.

Let u, v befunctionsin C;,(H), v being cylindrical with respect to an orthonor-
mal basisin D(A), so that in particular: first v € X, and secondly R(1, A)x, —
R(1, A)x in H impliesv(x,) — v(x). Then

Elu(X)v(X)] = lim  E[u(X,)v(X;)]
sit,seQt

= lim E[u(X:) P ,v(X)] = Elu(X)v(X,)]

sit,s€Q

By the Monotone Class Theorem and the fact that the indicator function of the di-
agona in H x H isBorel, the claim follows. Therefore, o isaright-continuous
modification of {X,};.

Now, since right-continuous real-valued supermartingales have a.s. left-limits
along R, proceeding as before we find that {X;}, is the desired modification of
the coordinate process.

Notice now that for all ¢ € D(¥x) the process

t
f(fm—/ LoXydr  t>0
0

isamartingale by construction. Foral u € D(¥) weset f := u — Zu. Thenthere
existsasequence f, € X NCY(H) suchthat f, — f andu, = R(h, &) fr —>
u. Then {X,(¢)}; isamartingale for al u € D(¥). The measurability of {P,},
follows from the Monotone Class Theorem. O

In Remark 1 we noticed that a priori there is no way to extend a positive semi-
group on X to a semigroup on C,(H). However, Theorem 8 has the following
corollary:

Corollary 4. For all ¢ € C,(H) set

Piop(x) = f () m(t, x,dy) t>0,xe H
H

Then (Py);>0 isa semigroup acting on C,(H). In particular, the process {P,}, is
Feller.
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Proof. If ¢ € Cg(H ), then we have shown that there exists a sequence ¢, €

xXn CZ(H), such that ¢, = @ and |lgnlle < llellg for al n. One can easily prove
by means of the transfer principle, that PX is a bounded operator in X N Cg (H)
foral ¢ > 0. Then

o —> ¢ & supllgnlls < lolle = PXgy = Pip & |Pplle < Ctliwlle
n

By the density of Cz(H) inCp(H), wehavethat P,(C,(H)) C Cp(H). O

Remark 8. If G(-) is constant, then the results of the previous sections can be
repeated also inthe case of F' being bounded and continuous, and without assump-
tions on ¢ in (9). In particular Lemma 1 can be improved, with similar proof,
in the following way: If f,, f € Cy(H) is a sequence such that f, = f,
then R(x, &) fu - RO, &) f. By Daniell’s Theorem, this implies directly
Theorem 7.

6. Schauder Estimate and Maximum Principle

In this section we prove positivity and Schauder-type regularity for the equation
am— YLu=f (41
We assume that Hypothesis 1 and 2 hold.

Proof of Theorem 2. We have to prove that for any f € Cg(H) andu € D(¥)
such that (41) holds, we have

inf f <Au(x) <supf VxeH. (42)
H H

Valentine's Theorem saysthat if EisaHilbert space, thenthespaceLip,(H; E)
of bounded Lipschitz continuous mapsfrom H to E isdensein the space of bound-
ed uniformly continuous maps (see[18]). Thereforethere existsasequence{F,,} C
Lip,(H; H) approximating F uniformly in H. Moreover, approximating G by
means of functions taking valuesinto finite-rank symmetric operators, we can find
asequence {G,} C Lipy(H; fff(H)) suchthat |G (x) — G, (x) || #, 1)y — O uni-
formly inx € H. Then we can write

1
D(¥%y) :=D(¥)  PLou'= Mu+ ETr[G,,Dzu] + (F,, Vu)

c— Lou= f+ %Tr[(G,, - G)Dzu] +{((F,— F),Vu)=: f+g, (43

By Chapters 7 and 9 of [8], there exist H-valued processes {X,, (¢, x)};>0,x such
that, if ¢, g € Cp(H) satisfy

rp— Lnp =g, then o= / e ME[g(X,(t, x)]dt.  (44)
0
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Therefore (43) and (44) imply

iplf(f +8gn) < Au(x) < sup(f + gn) VxeH
H

Since ||gnllo > 0asn — oo, the Theorem is proven. O

Proof of Theorem 3. We haveto prove that there existsaconstant C = C(A) > 0
such that for al f e CZ(H) and u € D(¥) satisfying equation (41), we have

I-#ulle + llullz4o < Clifllo (45)

We follow [3] and [7]: see aso [12] for another approach. Recall the defini-
tion (12) of the Ornstein-Uhlenbeck semigroup (R;);>o. Setting || f1l1 := || fllo +
U,y IV f ()] for f € CL(H), wehave

2
Y iflo Yi>0,xeH (46)

feCp(H) = |D?R, f(x)|| <

f€Cyp(H) = |D*Rif)| < —Ifl1 Vt>0,xeH (47)

\/_
wherev isasin (7): seeaso [8], § 9.4.1. By interpolation we obtain
1-0 2-9
0 2 Zv
f e CytH) = ID*R f) <3551/l (48)

which implies D2R (%, .4) f (x) € (H). For v € C2(H) we set

[D%)g,.4 = sup{ sup t‘9||R,<<D2v-h,h>)—<Dzv-h,h>||o}
|h|<1 | t€]0,1]

Then a computation shows that (see respectively [7] and [3] for details):
[D%u]s < 21+ 3¢ (1/2)6) (1D?vll0 + [D?lo. 4 ), (49)

21 0 279
[D?RGv, M) flo.t < 6————IIfllo- (50)

We write equation (41) in the following way:
1 2
A— Mu= f+ ETr[GD u] + (F, Vu)

Then by (50)

1-0
20

27
[D?ulo, i < GT

Using the interpolatory inequalities:

(1f 1l + 1 Fllcg i, 1y | Villo + el D2ulo + M| Dullo)

2 146 1
2 2 2
[D%ullo = Co ||u||0+9[D i IVulle < Co llullg™ [D?ul 2™
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and Young'sinequality, we obtain by (49)

1-9
72—t

272
[D%u]y < 120=———

—— (1716 + (¢ + Dl + € ullo)

By (9), we can choose now r > 0 such that (¢ + r)Z% v2-9120/6 < 1 and using
the Maximum Principle, we obtain

ID?ullg < Clifllo 0

Remark 9. Using a Localization technique analogous to the onein [3], we could
avoid the hypothesis (9) on . On the other hand this would require, with the tech-
niques presently available, strong assumptions on G such as uniform continuity
with respect tothenormon H x — |R(1, A)x|.

Remark 10. Inthispaper werestrict to differential operatorsof theform (14). The
reason isthat, up to now, Schauder Estimates for the Ornstein-Uhlenbeck operator
(M, D(AM)) can be proven only for the ¥ (H)-norm of the second derivatives:
see [7]. However, notice that the operator 2./ is not of the form (14), nonetheless
it satisfies Schauder-type regularity and its semigroup is determined by a kernel
of probability measures. A detailed characterization of D(.#) could alow to treat
more general operators than (14).
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