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Abstract
One of the key problems of the modern day is the presentation of an identity verification system that can perform sufficient 
accuracy in identity verification, is resilient to assaults and noises, and can be recorded in the simplest possible method. In 
this study, a new speaker feature extraction which based on discrete wavelet transform (DWT) and linear prediction cod-
ing (LPC) algorithm (WLPCA) are investigated. This paper's primary objective is to evidence the performance of the new 
method for speaker identification by a Gaussian mixture model (GMM). The proposed method improves the recognition rate 
over the Mel-frequency cepstral coefficient (MFCC). Experimental evaluation of the process performance is performed on 
two speech databases; our recorded database and the publicly available TIMIT database. We show that the speech features 
derived by the newly proposed method are more suitable for GMM (91.53%), in terms of the time-consumed, by requiring 
less Gaussian mixtures than MFCC (85.77%). For testing the presented method in a noisy environment, Additive white 
Gaussian noise (AWGN) was added to the TIMIT database, where a slight improvement in the performance of the presented 
method (60.02%) over the MFCC (59.89%) was observed.
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1  Introduction

The information located in person’s sound waves by using 
the process of automatic recognition is called speaker rec-
ognition [1]. To confirm a person's identity, the person’s 
voice can be used to trigger such authority utilizing speaker 
recognition techniques. Applicable services are voice dial-
ing, telebanking, teleshopping, remote access of comput-
ers, security control for confidential information, database 
access services, forensic purposes, information services, 
reservation services, and voice mail [2]. Speaker recogni-
tion has two classifications, speaker verification and speaker 
identification [3–5]. Speaker verification is described as the 

procedure of recognizing or refusing the identity declared 
by one of the speakers. Speaker identification defined as the 
identification of the person who speaks among the registered 
speakers.

Identifying a speaker is accomplished by comparing sam-
ples from an unknown test speaker with those of unknown 
speakers. Based on the best model match to his/her speech, 
the unknown person is identified as a speaker. In speaker 
verification, when an unknown person is claiming to be 
the owner of the identity, his speech is compared with the 
claimed person's model. Therefore, the authentication pro-
cess is accepted if the match level is excellent and above a 
specified threshold [6]. The number of taken decisions is 
a fundamental difference between identification and veri-
fication. In identification, the number of registered models 
is the same as the number of decisions, therefore, the rise 
of models number can hurt the performance. In addition, 
acceptance or rejection are the only choices in the verifica-
tion process. Hence, the verification performance does not 
depend on the number of models [7].

Text-dependent or text-independent speaker recognition 
systems are another characteristic of these systems. Text-
dependent based on an individual's speech utterance of a 
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specific word or phrase. On the other hand, the speaker 
recognition system is identified regardless of the spoken 
word or phrase called text-independent [6, 8].

The feature extraction process consists of getting the 
signal's parameters (characteristics) to be used for the clas-
sification of the signal. Pattern recognition problems can 
be solved by extracting prominent features. The recogni-
tion of the speaker requires identifying the desired person 
from the speech signal based on a unique identification 
feature [6]. Speech signals are controversial because of the 
features they contain. Various features have been found to 
perform better for certain applications than others. So far, 
we have not found a feature that is ideal for all applica-
tions [6].

Most feature extraction methods use the Karhunen–Loeve 
Transform (KLT) [9, 10]. With outstanding results, these 
methods were applied to cases of text-independent speaker 
recognition [8]. The KLT transform is the best conversion 
in terms of minimum mean square error (MMSE) and maxi-
mum energy packing. Moreover, the most popular identifica-
tion systems use Mel-frequency cepstral coefficient (MFCC) 
[11] and linear prediction cepstral coefficients (LPCC) [12, 
13] as features. MFCC and LPCC have excellent features 
in speaker identification. The MFCC has the disadvantage 
of employing the short-time Fourier transform (STFT), 
which has double resolution time–frequency signal and the 
assumption that is fixed. Thus, it is difficult to identify explo-
sive phonemes because of these characteristics.

Furthermore, the wavelet-transform is being studied by 
some researchers for extracting the speaker feature [14–16]. 
Wavelet transform [17, 18] has been widely used in various 
fields of science and engineering. The operation involves 
signal analysis using dilated and translated versions of a 
base signal called the mother wavelet. Using the wavelet 
analysis, we can express signals of interest by a set of coef-
ficients (wavelet coefficients), and we can implement signal 
processing algorithms by adjusting these coefficients. From 
a mathematical standpoint, the mother wavelet scale can be a 
real positive value, and the translation value can be any real 
number [19]. In practice, however, to improve calculation 
efficiency, the translation and scale parameters are frequently 
limited to discrete lattices [20, 21].

The paper has been structured into five distinct parts. 
The first component of the investigation starts by present-
ing a comprehensive background. Subsequently, this study 
undertakes an exhaustive examination of scholarly literature 
sources in order to ascertain the current status of research 
pertaining to the topic. The article continues by outlining the 
technique used in the investigation, followed by the presenta-
tion and analysis of the results. The researchers ultimately 
engage in a discussion of these results within the context 
of the existing literature, derive conclusions, and provide 

suggestions about the optimal use of a text-independent 
speaker identification system.

2 � Literature review

The subject of speaker recognition [22] began to develop in 
the mid-twentieth century. The first known published paper 
on this topic was in the 1950s [23, 24]. This research was 
interested in preserving the personal qualities of the speak-
ers through the analysis of speech. As [23] pointed out the 
need to identify the speaker for the emergence of commu-
nication networks in early the 1950. Most of the early stud-
ies were based on text-dependent analysis to facilitate the 
task of identification. In 1959, [24] tried to facilitate the 
identification process and started to compare the formants 
of speech. Human experience incarnation of the speaker's 
first recognition has been used until now to deal with the 
speaker identification forensic [25]. Legal experts have 
used this type of approach for various analyses of criminal 
forensics [26, 27]. Pruzansky et al. [28, 29] used a text-
dependent approach to make an automatic statistical com-
parison of speakers by analyzing 10 speakers, where each 
speaker utters a few unique words. At least to identify a 
speaker, it was clear that a text-dependent analysis method 
was needed [22]. However, for speaker verification, there 
were cases where a text-dependent analysis could perform 
better than the text-independent method [30]. The Gauss-
ian Mixture Model (GMM) and Support Vector Machine 
(SVM) approaches are currently the most popular modeling 
techniques. Classifiers such as artificial neural networks have 
been used [8, 22].

As per [31, 32] presented a technique for speaker iden-
tification using a frame linear predictive coding spectrum 
(FLPCS). The FLPCS technique can be used to reduce the 
size of a speaker's feature vector. In classification, the gen-
eral regression neural network (GRNN) and the GMM were 
used. In a very short time, GMM can achieve a higher recog-
nition rate with feature extraction using the FLPCS method. 
Avci [33] presented a discrete wavelet adaptive network 
model based on the fuzzy inference system (DWANFIS). 
The DWANFIS model has two layers: discrete wavelet and 
an adaptive network based on a fuzzy inference system. For 
the sample speakers, the classification rate was approxi-
mately 90.55%.

E. Avci and D. Avci [34] presented a genetic wavelet 
adaptive network model based on a fuzzy inference system 
(GWANFIS). The model was made up of three layers: a 
genetic algorithm, a wavelet, and an adaptive network based on 
a fuzzy inference system (ANFIS). The classification rate was 
approximately 91%. As a feature selection technique, Singular 
Value Decomposition (SVD) followed by QR Decomposition 
with Column Pivoting (QRcp) was proposed by Chakroborty 
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and Saha [35]. The method was accomplished by extracting 
the most salient information from the speaker's data. The pro-
posed SVD-QRcp-based method outperforms the F-Ratio 
based method, and the proposed feature extraction tool out-
performs the baseline MFCC and Linear Frequency Cepstral 
Coefficients (LFCC).

As per [36] presented feature analysis and compensator 
design for speaker recognition in stressed speech conditions. 
MFCC, linear prediction (LP) coefficients, LPCC, reflec-
tion coefficients (RC), arc-sin reflection coefficients (ARC), 
and log-area ratios (LAR) were six speech features that were 
widely used for speaker identification and were analyzed for 
evaluation of their characteristics under a stressed condition. 
To evaluate speaker identification results with different speaker 
features, the GMM and Vector Quantization (VQ) classifiers 
were used. This analysis aided in the selection of the best fea-
ture set for stressed-out speaker recognition.

As per [37] demonstrated speaker identification using 
empirical mode decomposition (EMD), a feature extraction 
method, and an artificial neural network. The EMD is a non-
linear, non-stationary data analysis technique that uses adap-
tive multi-resolution decomposition. The proposed system's 
performance and training time were validated using back-prop-
agation neural networks (BPNN) and GRNN. The experimen-
tal results showed that the GRNN outperformed the BPNN in 
terms of feature extraction using the EMD method.

Daqrouq [38] presented a text-independent speaker iden-
tification method using wavelet transform (WT) and neural 
networks. In the text-independent speaker identification sys-
tem, the use of a discrete wavelet transform approximating 
sub-signals of the original signal via several levels instead 
of the original imposter had a good performance on Addi-
tive white Gaussian noise (AWGN) facing, particularly on 
levels 3 and 4. As per [39, 40] used a fused Mel feature 
set and GMM to develop a method for text-independent 
speaker identification. Each speaker's MFCC and Inverted 
Mel Frequency Cepstral Coefficient (IMFCC) features 
were obtained. The identification efficiency of this method 
was 93.88%. As per [41–43] presented a text-independent 
speaker identification system using an average framing lin-
ear prediction coding (AFLPC) technique. The distinguished 
speaker's vocal tract characteristics were extracted using the 
AFLPC technique during the feature extraction stage, and 
the size of the feature vector was optimized. The proba-
bilistic neural network (PNN) classifier outperformed the 
wavelet packet (WP) and AFLPC in terms of recognition 
rate 97.36%.

3 � Methodology

The Discrete Wavelet Transform (DWT) is a mathematical 
technique used to split a given signal into a set of coef-
ficients, which correspond to various frequency bands 
and temporal scales. This characteristic makes it a potent 
instrument for extracting speech signal elements that are 
pertinent to speaker identification. Linear predictive cod-
ing (LPC) is a statistical technique used for modeling the 
correlation between previous and current values of a given 
signal. The use of this technique enables the anticipation 
of forthcoming signal values. The DWT and LPC are two 
complementing methodologies that may be effectively 
used to enhance the precision of speaker identification 
systems [30].

3.1 � Wavelet Speaker Identification Method

By employing low pass and high pass filters, g and h gener-
ated from wavelets parents; scaling and mother functions 
denoted by φ and Ψ, respectively, we obtain approximation 
and detail coefficients of a speech signal X through the DWT 
and are given by:

aX(j + 1, k) =
��
aX(j) ∗ g

�
↓ 2

�
(k) =

∑
m�Z

g2k−max(j,m),

where j ∈ {1, 2,… , J} , k ∈
{
1, 2,… , nj − 1

}
, * is convo-

lution, ↓ is decimation, and nj represents the number of DWT 
coefficients at level j . We assume that

DX(2) =
{
dX(2, 0), dX(2, 1),… , dX

(
2, nj − 1

)}
,…

DX(J) =
{
dX(J, 0), dX(J, 1),… , dX

(
J, nj − 1

)}
, and

are the DWT sub-signals.
First of all, we divide the speech signal into windows and 

decompose each window separately into DWT sub-signals. 
And then, each sub-signal DX(1),DX(2),… ,DX(J), and A(J) 
is divided into S frames as follows:

For each frame dXs LPC coefficients of a specific length 
are obtained as follows:

Then are averaged as follows:

(1)

And dX(j + 1, k) =
((
aX(j) ∗ h

)
↓ 2

)
(k)

=
∑

m�Z
h2k−maX(j,m), respectively

DX(1) =
{
dX(1, 0), dX(1, 1),… , dX

(
1, nj − 1

)}
,

(2)AX(J) =
{
aX(J, 0), dX(J, 1),… , aX

(
J, nj − 1

)}
,

(3)DX(j) =
{
frameX1, frameX2,… , frameXS

}

LPCDX (j)
=
{
lpcfX1 ,lpcfX2 ,… , lpcfXS

}
.
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Then the feature extraction vector of one window is con-
sidered as:

The feature extraction matrix contained WLPCA of all 
widows is fed to the GMM classifier. Consider F is a fea-
ture matrix extracted by WLPCA for speaker X , its mixture 
density is defined as

The density bX
i
(F) is a linear weighted combination of M 

unimodal Gaussian densities.

where μX
i
 is the mean vector, and ΣX

i
 is the covariance matrix. 

Then the mixture weights pX
i
 satisfy the constraint.

The parameters for a speaker X's density model are 
extracted as

The iterative Expectation–Maximization (EM) algorithm 
is used to estimate the maximum likelihood speaker model 
parameters. In this study, a simple maximum-likelihood clas-
sifier was used for identification. For a reference database 
speakers � = {1, 2,..., Y) represented by models �1, �2,…,�Y , 
we have to recognize the speaker model of the maximum 
posterior probability for the input feature vector sequence, 
F = {f1, f2,… , fT} [44–46].

(4)wlpcaDX (j)
=

∑
S(LPCDX (j)

)

S

(5)WLPCA =
{
wlpcaDx(1)

,wlpcaDx(2)
,… ,wlpcaDx(J)

}

(6)p(F∕�X) =

M∑

i=1

pX
i
bX
i
(F)

(7)

bX
i
(F) =

1

(2�)D∕2
|||
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|||
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i
)�
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ΣX
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)−1
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i
)}s

(8)
M∑

i=1

pX
i
= 1

(9)�X =
{
pX
i
,�X

i
,ΣX

i

}
, i = 1,… ,M

4 � Results and discussions 

4.1 � Recorded database

Speech signals with a spectral frequency of 4000 Hz and 
a sampling frequency of 8000 Hz were recorded using a 
PC sound card. The recordings involved 50 people. Each 
participant recorded a minimum of 20 different Arabic utter-
ances. The speakers ranged in age from 20 to 45 years old, 
with 28 men and 22 women speaking. The recording pro-
cedure was carried out in a typical university office setting. 
This database was used in the first stage of our investigation. 
All experiments were conducted using the text-independent 
speaker identification system. The normalized and silence 
removed signals were given to the WLPCA (discrete wavelet 
transform using a linear prediction coding algorithm) for 
feature vectors extraction. Then the GMM was utilized to 
model the feature vectors obtained for each speaker. Half 
of the speaker's signals were used for training, with the 
other half reserved for testing. All speakers in our database 
were used for algorithm evaluation. This section's two main 
objectives are to investigate the best WLPCA parameters 
and compare WLPCA as a new method with the well-known 
feature extraction method, MFCC. The experiments were 
conducted concerning the recognition rate.

In the first experiment, the system was run for six several 
LPC coefficient vector lengths 5, 10, 12, 15, 20, and 30. Four 
decomposition levels of the DWT with window length 400 
and 10 Gaussian mixtures we applied. Table 1 summarizes 
the results of this experiment for the DWT. The presented 
results are conducted in terms of recognition rate calculated 
as the ratio of the number of times the speakers are cor-
rectly recognized by the total number of test signals. The 
best result was observed for 12 LPC coefficients.

Table 1   The effect of the 
number of LPC coefficients on 
the recognition rate

1 Number of Gaussians = 10, Window length = 400, DWT Level = 4

Number of LPC coefficients

5 10 12 15 20 30

Recognition rate1 0.9357 0.9357 0.9390 0.9214 0.8976 0.8643

Table 2   The effect of the number of DWT levels on the recognition 
rate

2 Number of Gaussians = 10, Window length = 400, Number of LPC 
coefficients = 12

DWT levels

3 4 5

Recognition rate2 0.9286 0.9390 0.9190
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In the next experiment, the process was repeated for dif-
ferent DWT decomposition levels 3, 4, and 5, with 12 LPC 
coefficients. Window length was 400, and Gaussian mixtures 
were set to 10. Table 2 presents the results of this experi-
ment. The best recognition rate (0.939) of the presented 
method was observed for 4 DWT decomposition levels.

Table 3 contains the results of the recognition rates cal-
culated for different window lengths. The system parameters 
were set as follows: the DWT level is 4, the number of the LPC 
coefficients is12 and the number of Gaussian mixtures is 10. 
By analyzing the results tabulated in Table 3, we can notice 
that the best performance is at window length 400 (relatively 
small window size). The reason behind this is the ability to 
divide the signal into more windows. So, we can gain more 
features over the same length of the signal. On the other hand, 
a smaller window than 400 could be of less benefit.

In the next part of this study, we compare WLPCA with 
other published well-known feature extraction methods. A 
AFLPC method with wavelet packet (WPLPCF) at WP level 
2 [41, 42], the conventional LPC [47], AFLPC [41, 42] and 
MFCC [48]. With 10 Gaussian mixtures, the proposed method 
gave the best recognition rate as summarized in Table 4.

The results of WP were auspicious as much as DWT. The 
limitation for WP is the feature extraction vector length in 
comparison to DWT. However, it is difficult to increase the 
WP level as the window length is constant. In contrast to WP, 
DWT has more flexibility in terms of decomposition level. 
In the case of WP at level two, the feature extraction vector's 
length is near to the length of the vector obtained by DWT at 
level 4.

The proposed method produced better results than the 
MFCC method overall suggested Gaussian mixtures. The rea-
son behind that is that the LPC coefficients in our method are 
obtained through different frequency passbands. The decom-
position offers that into several DWT levels. Additionally, the 
averaging over the frames over each sub-signal can help gain 
more accurate results.

4.2 � TIMIT database

A real standard database could be an essential tool for proving 
out a recognition algorithm. For the generalization of our new 
method, a standard common database is required. Without a 
doubt, the TIMIT database has been one of the most widely 
used standard databases [49]. There are 630 speakers of the 
same dialect in this database. that are divided into 438 males 

and 192 females. 10 utterances were recorded for each speaker 
with an 8000Hz sampling frequency, a wideband microphone 
was used in a clean environment.

In the next experiment, WLPCA and MFCC are tested 
using the TIMIT database. The signals were preprocessed by 
silence removing algorithm. GMM was trained using 8 utter-
ances out of the 10 for each class (speaker). The remaining 
two utterances were used for testing. The TIMIT database 
recognition rate was calculated by running experiments on 50 
randomly selected speaker sets from a total of 630 speakers 
and averaging the resulting recognition rates. Figure 1 illus-
trates the results of the TIMIT database. The experiment was 
performed for 5, 10, 20, and 30 Gaussian mixtures. 10 random 
sets were taken for calculating 10 average recognition rates 
for each of these Gaussian mixture numbers. As shown in the 
figure, the WLPCA has better performance, particularly with 
a small number of Gaussian mixtures.

In contrast to WLPCA, MFCC behaved better with a high 
number of Gaussian mixtures. Nevertheless, the running 
time is increased to the extent that the number of Gaussian 
mixtures is increased. For instance, MFCC with 30 Gauss-
ian mixtures needs 7.5 min to get the max recognition rate 
for a set of 50 speakers. Considering that, WLPCA needs 
3.8 min to get the max recognition rate. So, we can state that 
WLPCA requires a smaller number of Gaussian mixtures 
and requires less running time than MFCC.

Cross-validation continuously processes recognition 
performance by excluding a few instances (10% for tenfold 
cross-validation) to be used as the test set during the training 
process [15pdz, 19pdz]. We ran a tenfold cross-validation 
test to compare our algorithm to the validation technique. 
In addition, a 20-fold cross-validation test was carried out. 

Table 3   The effect of window 
length on the recognition rate

3 Number of Gaussians = 10, DWT levels = 4, Number of LPC coefficients = 12

Windows length

100 200 300 400 500 600 700 1000

Recognition rate3 0.9133 0.9371 0.9181 0.9390 0.9124 0.8952 0.8952 0.8762

Table 4   Recognition rate comparisons between several feature extrac-
tion methods4

4 Window length = 400, number of extracted features using LPC = 12, 
DWT Level = 4

Feature extraction 
methods

Number of Gaussian Mixtures

3 5 7 10

WLPCA 0.9048 0.9238 0.9333 0.9390
WPLPCF 0.9022 0.9280 0.9304 0.9380
LPC 0.7810 0.8119 0.8381 0.8505
AFLPC 0.7833 0.8310 0.8476 0.8105
MFCC 0.8786 0.9071 0.9071 0.9038
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Table 5 shows tenfold cross-validation and 20-fold cross-val-
idation tests results. 10 random sets were taken for calculat-
ing each recognition rate for five and thirty Gaussian mixture 
numbers. As shown in the table, that our proposed method is 
stable and not sensitive to the validation technique.

In the next experiment, WLPCA and MFCC were tested 
in a noisy environment. Additive white Gaussian noise 
(AWGN) was added to the TIMIT database signals. TIMIT 
has about 59 dB signal-to-noise ratio (SNR). We conducted 
the identification experiment over 0 dB and 10 dB SNR. The 
analysis was performed for 5 and 30 Gaussian mixtures. 10 
random sets were taken for calculating each recognition rate 
for each of these Gaussian mixture numbers in 0 dB and 10 
dB SNR environments. Table 6 summarizes the recognition 
rate for 5 and 30 Gaussian mixtures in 0 dB and 10 dB SNR 
environments. The results show that our method performs 
slightly better than MFCC method.

5 � Conclusion

This research has a new speaker feature extraction method 
based on a discrete wavelet transform using a linear pre-
diction coding algorithm (WLPCA) is proposed. It leads to 
some improvement in the recognition rate over MFCC. The 
proposed method was tested regarding the linear prediction 
coding coefficients length, the discrete wavelet-transform 

level, the window length, and the Gaussian mixture num-
ber. Experimental evaluation of the method performance 
was performed on two speech databases; our recorded 
database and the publicly available TIMIT database. The 
presented work compares the proposed method's perfor-
mance with the MFCC method in the computation of the 
feature extraction in speaker recognition. It showed that 
the speech features derived by the newly proposed method 
resulted in a more suitable representation, in terms of the 
time-consumed, by requiring less Gaussian mixtures in 
comparison to MFCC. It also showed a slight improvement 
in the implementation of the newly proposed method over 
the MFCC in a noisy environment. The idea behind that 
is that the LPC coefficients in our method are obtained 
through different frequency passbands. The decomposition 
offers that into several DWT levels. Additionally, the aver-
aging over the frames through each sub-signal can help 
gain more accurate results.
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Fig. 1   The results of the TIMIT database
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