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Abstract
Optimization for material processing parameters is a typical problem of multi-objective optimization, therefore selection 
and use of proper multi-objective optimization approach is indispensible. The inherent characteristic of newly proposed 
probabilistic methodology for multi-objective optimization is that it is with the feature of optimization of multiple objec-
tives at the same time in viewpoint of system theory and in spirit of probability theory. In the present paper, the probabilistic 
methodology is employed to perform the designs of materials processing for improving quality and cost saving at the same 
time. The laser welding process of ANSI 304 austenitic stainless steel by using a pulsed Nd: YAG laser welding system and 
thin-wall machining of milling aluminum alloy 2024-T351 are taken as two examples. The quantitative optimum design 
of materials processing is performed equitably by conducting the assessment of preferable probability of each alternative. 
The studies indicate that: (1). the optimized parametric combination for the laser welding process of 2 mm thickness ANSI 
304 austenitic stainless steel by using a pulsed Nd: YAG laser welding system is at laser parameters of 2.7 kW peak power, 
welding speed of 2 cm/min and pulse duration of 4 ms; (2). the optimized combination parameter for the thin-wall machining 
of milling aluminum alloy 2024-T351 is at tool diameter of 8 mm, feed per tooth of 0.06 mm/z, axial cut depth of 24 mm 
and radial cut depth of 0.625 mm. The optimal configurations guarantee the comprehensive quality of product and reducing 
energy consumption.

Keywords Material processing · Multi-objective optimization · Probability theory · Preferable probability · Optimum 
design

Abbrevations
MOO  Multi-objective optimization
MCDM  Multi-criteria decision–making
VIKOR  VIšekriterijumsko KOmpromisno Rangiranje
TOPSIS  Technique of ranking Preferences by Similar-

ity to the Ideal Solution
AHP  Analytical Hierarchy Process
MOORA  Multi-Objective Optimization on the basis of 

Ratio Analysis
PMOO  Probabilistic methodology for multi-objective 

optimization

1 Introduction

Presently, with the rapid development of high technology, 
it has more requirements for the performance of processed 
products, therefore the pursuit of product performance 
optimization has become one of the key things for modern 
product design and manufacturing. Thus increasing studies 
focused on optimization of multi-objective process param-
eters of product manufacturing rapidly. The aim of multi-
objective optimization was to find a vector set composed of 
decision variables that can satisfy the constraints of deci-
sion variables and meet the requirements of the target to 
be optimized. The objective functions to be optimized that 
describe the performance evaluation indexes are often con-
tradictory, which makes the optimization of the objective 
functions operate under the condition of incommensurabil-
ity. Optimization of one objective makes others increase 
at the expense of some target values in multi-objective 
optimization usually. At the same time, multi-objective 
optimization involves the selection of decision variables 
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in high-dimensional space, so it is difficult to objectively 
judge the advantages and disadvantages of the optimal 
solution in common view. It indicates the great importance 
of a rational evaluation approach. For example, in the pro-
cessing of ceramic materials, the performance of machine 
tools, processing environment and processing cost should be 
considered, and then the processing parameters of machine 
tools should be designed to achieve ideal processing qual-
ity, it is a typical multi-objective optimization problem. In 
machining, in order to achieve multiple machining goals, 
choice of machining parameters is always made relying on 
the experience of predecessors or some common-sense laws. 
This often leads to high processing cost, waste of manpower 
and material resources and low processing quality, which 
does not meet the requirements of sustainable development. 
Especially, in nowadays, it is strongly required to realize the 
coordinated and unified development of environmental pro-
tection and economic development through the evaluation of 
resources, replacement products and services, which jointly 
promotes the environment-friend design worldwide. In order 
to meet the needs of coordinated and unified development, 
it is necessary to optimize the initial processing parameters 
for the traditional mechanical processing industry, so as to 
reduce the consumption of resources and improve product 
quality. Undoubtedly, the application of multi-objective opti-
mization in all aspects of manufacturing reduces the waste 
of resources and ensures the reliability of processing quality. 
Generally speaking, the benefit of optimizing the process 
parameters of machining is to conform to the requirements 
of high quality of product, cost saving and reducing waste of 
machining resources, it brings new development momentum 
to enterprises and increase the market share of enterprises 
as well.

Sustainable development of manufacturing technology 
with automation has gained more attention these years. 
Therefore, in order to solve the optimal problem of materi-
als processing with multiple objectives, it is of great sig-
nificance to study multi-objective optimization in material 
processing. The interactive and automatic evaluation of 
producibility of welding components in a multidisciplinary 
optimization design environment was conducted, which 
involves multiple requirements of functions in one single 
welded component structure [1, 2]. However, in the early 
design and analysis, the producibility evaluation of welding 
part relies on physical testing and expert judgment instead of 
rational assessment, which is usually empirical and expen-
sive especially under condition of a component with com-
plex geometry. The successive approach was to follow the 
rule of “product performance first” and “producibility sec-
ond”, which might lead to a result of well optimum designed 
performance and problematic producibility within a system; 
and finally, the various problems occur due to manufactur-
ing defects and quality varying. The manufacturing defects 

and quality variation undoubtedly result in problems of 
safety and satisfaction of customer in practical applications 
of these welded components. Therefore, it is quite neces-
sary to use a rational assessment to guarantee the automatic 
and interactive welding-producibility [1–7]. In the past, the 
producibility assessment of welding part concerned weld-
ing simulation, metamodel methods and weighting factors 
[1–7]. And finally, the optimization analysis still involves 
either adding all weighting responses into a single objective 
or Pareto solution set or grey relational analysis for Taguchi 
orthogonal array. However, the reliability of these kind of 
algorithms is problematic with uncertainty [8, 9].

The optimization of thin-wall machining was once 
performed by using Pareto-optimal solution with crucial 
requirements of enhanced energy efficiency, product qual-
ity, and productivity as objectives [10]. However, the result 
is problematic due to the uncertainty of Pareto-optimal solu-
tion set, which could not give a definitive consequence [8].

In fact, the inherent essence of optimization of multiple 
objectives is the “simultaneous optimization of multiple 
objectives” in a system inevitably. However, the previous 
methods of multi-objective optimization (MOO) and multi-
criteria decision - making (MCDM) in the past took the 
“additive” algorithm as the actual algorithm for indexes in 
parameterization with weighting factors, or Pareto solution 
set with uncertainty, or grey relational analysis, etc. [5–10]. 
Till now, the commonly used methods include, VIKOR 
(VIšekriterijumsko KOmpromisno Rangiranje), TOPSIS 
(Technique of ranking Preferences by Similarity to the Ideal 
Solution), MOORA (Multi-Objective Optimization on the 
basis of Ratio Analysis), and AHP (Analytical Hierarchy 
Process), etc., are not be considered as fully quantitative, 
which all include uncertainties actually [10–15].

In fact, the “additive” algorithm for evaluating multiple 
indexes is equivalent to the “union” in the spirits of prob-
ability theory and set theory, which is definitely inconsistent 
with the essence of “simultaneous optimization of multiple 
indexes” [8]. Appropriately, in the respect of probability 
theory, “simultaneous optimization of multiple indexes” is 
to take the form of “joint probability” of the corresponding 
multiple events actually.

Additionally, in the additive algorithm there is a prob-
lem of choosing the scaled factor (denominator) of the nor-
malization procedure of different objective, different scaled 
factors could often lead to quite different consequences [8, 
16–18]. Therefore, the previous algorithms could not be con-
sidered as rational approaches in some sense due to their 
uncertainty and misusing of “union” in the spirits of prob-
ability theory and set theory.

Considering above situation, a probabilistic methodol-
ogy was proposed [8]. In the new methodology, each attrib-
ute/objective of the multi-objective optimization problem 
was taken as an independent event from the perspective of 
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probability theory, furthermore the entire thing of the multi-
objective optimization was taken as a “joint event” of all 
individual events, thus the overall/total probability of “joint 
event” was the product of each individual event in the entire 
thing [8]. This methodology has the advantages of taking the 
simultaneous optimization of multiple objectives in the spirit 
of probability theory, which results in a definitive solution 
and an overall planning approach entirely.

In this paper, the probabilistic methodology for multi-
objective optimization (PMOO) is used to perform the opti-
mal designs of materials processing of quality improvement 
and cost saving. The laser welding process of ANSI 304 aus-
tenitic stainless steel by using a pulsed Nd: YAG laser weld-
ing system and thin-wall machining of milling aluminum 
alloy 2024-T351 are taken as two examples. By performing 
the assessment of preferable probability of each scheme, the 
quantitative optimum designs of materials processing are 
thus completed equitably.

The importance of this paper is to present a reason-
able approach which enables the influence of the process 
variables on the producibility, product quality and energy 
efficiency, and the evaluations of these responses in indus-
trial environment to be conducted properly. The innova-
tion of the work is the assessment of these process parame-
ters and responses are using the probabilistic multi-objective 
methodology.

2  Brief statement of the probabilistic 
methodology for multi‑objective 
optimization

2.1  The characterization of preference 
in optimization

A new concept of preferable probability was put forward 
in the probabilistic methodology for multi-objective opti-
mization to represent the preference degree of an attribute 
(objective) in the assessment [8]. In the treatment, all attrib-
utes (objectives) are classified into two types preliminarily, 
i.e., beneficial and unbeneficial kinds, and furthermore the 
quantitative assessment of the partial preferable probability 
of each performance index is conducted according to its type 
individually [8]. Moreover, the simultaneous optimization 
of multiple objectives could be done by taking the product 
of entire “partial preferable probability” of all objectives to 
form an overall/total preferable probability. It implies that 
each objective is analogically an “individual event”. There-
after, the total preferable probability is the unique index of 
the overall “joint event” (alternative), thus the optimization 
problem of these multiple objectives is transferred into a 
single objective one, finally the total preferable probability 

of each scheme/alternative is the decisive indicator for the 
optimization.

2.2  Quantitative assessment of preferable 
probability

The partial preferable probability is as a quantitative indica-
tor of preference degree of the performance utility value of 
an attribute.

As to the characterization of the partial preferable prob-
ability of a beneficial type of attribute, for simplicity the par-
tial preferable probability is assumed to be proportional to 
the performance utility value of the attribute index directly 
[8],

In Eq. (1), χij expresses the utility value of the index of 
the j-th attribute of the i-th scheme [8]; Pij indicates the cor-
responding partial preferable probability of χij; n reflects the 
total number of the schemes; m is the number of attributes; γj 
is the coefficient of the j-th attribute in the preferable prob-
ability assessment.

Equivalently, the partial preferable probability of an 
unbeneficial attribute was assumed to be negatively linear 
correlated to the corresponding performance utility value of 
the attribute index,

where ηj indicates the coefficient of the j-th attribute in the 
preferable probability assessment, χjmax and χjmin present 
the maximum and minimum values of the j-th attribute per-
formance utility index within the involved scheme group, 
individually [8].

Furthermore, in accordance with the normalization of 
probability, it derives the expressions of coefficients of γj 
and ηj as [8],

where � j is the arithmetic mean value of the j-th perfor-
mance utility index within the involved scheme group [8].

Moreover, according to probability theory, the product of 
all partial preferable probabilities Pij results in the total pref-
erable probability (joint probability) of the i-th scheme, i.e.,

Subsequently, the total preferable probability Pi is the 
unique and decisive indicator to determine the status of the 
scheme of the optimization comparatively. In general, the 

(1)Pij = �j�ij, i = 1, 2,… , n; j = 1, 2,… ,m.

(2)
Pij = �j(�jmax + �jmin − �ij), i = 1, 2,… , n; j = 1, 2,… ,m.

(3)�j =
1

n� j

, �j =
1

n(�jmax + �jmin − n� j)
,

(4)Pi = Pi1 ⋅ Pi2 ⋅ ⋅ ⋅ Pim =

m
∏

j=1

Pij.
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winner is the alternative scheme which has the highest value 
of total preferable probability among all schemes [8].

3  Utilization of the probabilistic 
methodology of multi–objective 
optimization in material processing

3.1  Utilization in material laser welding

Laser welding is superior to other welding methods such as 
friction stir welding and arc welding, etc. [1, 2, 9].

In order to achieve a high quality at low costs, optimi-
zation of process parameters is the necessary step. The 
welding geometry of the laser welding process of ANSI 
304 austenitic stainless steel by using a pulsed Nd: YAG 
laser welding system (Han’s Laser WF300) was studied [9]. 
Taguchi orthogonal array based grey relational analysis was 
employed to conduct the optimization of laser welding pro-
cess parameters [9]. However, the intrinsic defects of grey 
analysis of subjective factor and “additive” algorithm in 
evaluation of multiple indexes made the evaluation results 
short of rationality [8, 9].

In the study, a 2 mm thick ANSI 304 stainless steel was 
employed at three different levels of three variables, i.e., 
peak power (A), welding speed (B) and pulse duration (C). 
The weld bead geometry with full penetration (P), narrow 
bead width (W) and minimum crater (H) are taken as the 
multiple responses of the optimization [9].

In the welding process, shielding was conducted by using 
argon gas with a flow rate of 20 l/min [9]. Table 1 shows the 
parametric design of the experiment.

Table 2 cites the experimental results with Taguchi array 
 L9(34).

According to the aim of preference of the optimal design, 
the response penetration (P) belongs to beneficial type of 
index, while the responses bead width (W) and crater (H) 
attribute to unbeneficial type of indexes in the assessment. 
The results of assessment for this welding problem by means 
of probabilistic multi-objective optimization are shown in 
Table 3.

It can be seen that the scheme No. 5 is with the highest 
total preferable probability at first glance, therefore the pre-
liminary optimum parameters of variables for this welding 
problem are corresponding to those of the scheme No. 5, 
which is with the parametric combination of A2B2C3 at this 
stage.

Furthermore, range analysis of the total preferable prob-
ability can be conducted, of which the result is shown in 
Table 4. The impact order of parametric effect is B > A > C, 

Table 1  Parametric designs of welding ANSI 304 austenitic stainless 
steel with a pulsed Nd: YAG 

Process parameter Notation Level

Peak power (kW) A 2 2.7 3
Welding speed (cm/min) B 1 2 4
Pulse duration (ms) C 4 7 10

Table 2  Experimental design 
and results with Taguchi array 
 L9(34)

Run No Parametric design Result

A (kW) B (cm/ min) C (ms) Penetration, 
P (μm)

Crater, H (μm) Width, W (μm)

1 2 1 4 1002 470.5 1599
2 2 2 7 1190 3.33 1483
3 2 4 10 1119 0.1 1306
4 2.7 1 7 2000 828.2 2564.34
5 2.7 2 10 2000 239.2 1084.5
6 2.7 4 4 2000 124.12 1531
7 3 1 10 2000 2000 1613
8 3 2 4 2000 514.28 1304
9 3 4 7 2000 32.89 2105.26

Table 3  Assessment results by means of probabilistic approach

Run no Partial preferable probability Total prefer-
able prob-
ability

Rank

PP PH PW Pi × 103

1 0.0654 0.1109 0.1123 0.8155 7
2 0.0777 0.1448 0.1187 1.3358 6
3 0.0731 0.1451 0.1284 1.3609 5
4 0.1306 0.0850 0.0594 0.6598 8
5 0.1306 0.1277 0.1405 2.3441 1
6 0.1306 0.1361 0.1160 2.0625 2
7 0.1306 7.25 ×  10−6 0.1116 0.0001 9
8 0.1306 0.1078 0.1285 1.8086 3
9 0.1306 0.1427 0.0846 1.5763 4
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and the final optimal parametric combination predicted 
for this laser welding problem is A2B2C1, which is closely 
accompanied by scheme No. 5.

3.2  Utilization in material machining

The machining of milling aluminum alloy 2024-T351 
specimens on a computer numerical control (CNC) verti-
cal machining center (MC-3/400) was performed [10]. The 
wall thickness was reduced from 2.5 mm to 1.25 mm. End 
mills of solid carbide flat-bottom were used to conduct 
the machining experiments. The dry mode of cutting was 
employed to perform the machining study. It aimed to simul-
taneously improve the productivity of the thin-wall cutting 
process, and reduce the power consumption, surface rough-
ness, and in-process wall deflection.

The tool diameter di, feed per tooth fz, axial cut depth ad 
and radial cut depth rd, were used as input parameters, which 
were controllable with 3 levels. The measurement of surface 
roughness (Ra) is conducted with a non-contact profilom-
eter (Taylor Hobson Talysurf CCI Lite). The in-process wall 
deflection (Df) was detected with linear variable differential 
transformer (Solartron AX/5/S) in-process.

The design of the experiments is shown in Table 5 with 
81 tests [10]. The 81 tests were conducted to perform the 
optimization of the thin-wall machining, which was once 
analyzed by using Pareto-optimal solution with crucial 
requirements of enhanced energy efficiency, product qual-
ity, and productivity [10].

Furthermore, a specific parameter Qi was introduced to 
characterize the quality of product, which was defined by 
using the weighting additive algorithm of surface roughness 
and wall deflection [10]. A higher Qi value indicates superior 
surface finish and dimensional accuracy; the removal rate Py 
was defined using the volume of material removed Vm  (mm3) 
divided by the machining time tm (s), Py = Vm/tm, which was 
used to characterize the rate of cutting amount. The cut-
ting power Pc was used to reflect the power consumption in 
the machining. As a result, the removal rate Py and specific 

parameter Qi are beneficial type of performance indexes, 
and the cutting power Pc is unbeneficial type of performance 
index.

In the experiment, there appeared 3 abnormal samples, 
says No. 17, No. 66 and No. 78, which gave no experimental 
results due to the tool failure, here they are excluded in our 
analysis.

The effective experimental data of this machining prob-
lem is shown in Tables 6 and 7. The assessment results are 
shown in Tables 8 and 9 by means of probabilistic methodol-
ogy for multi-objective optimization. 

It can be seen that the experimental scheme No. 62 is with 
the highest total preferable probability, the corresponding 
Py, Pc and Qi are 6640.63  mm3/min, 275.76 W, and 0.679, 
respectively, see Tables 8 and 9. Therefore the optimum 
input parameters of variables for this machining problem are 
corresponding to those of the scheme No. 62, i.e., di = 8 mm, 
fz = 0.06 mm/z, ad = 24 mm and rd = 0.625 mm from Table 5.

4  Conclusions

By using the probabilistic methodology for multi-objective 
optimization, two examples of materials processing are con-
ducted. By performing the assessment of preferable prob-
ability of each alternative scheme, the optimal design is thus 
completed. The studies indicates that,

(1) for the laser welding process of 2 mm thickness ANSI 
304 austenitic stainless steel with a pulsed Nd: YAG 
laser welding system, the optimized parametric com-
bination is at laser parameters of 2.7 kW peak power, 
welding speed of 2 cm/min and a pulse duration of 
4 ms;

(2) for the thin-wall machining of milling aluminum alloy 
2024-T351, the experimental scheme No. 62 is with 
the highest total preferable probability, the correspond-
ing removal rate, cutting power and specific parameter 
are 6640.63  mm3/min, 275.76 W, and 0.679, respec-
tively. The optimum input parameters (factors) for this 
machining problem are at tool diameter of 8 mm, feed 
per tooth of 0.06 mm/z, axial cut depth of 24 mm and 
radial cut depth of 0.625 mm correspondingly.

The optimization results exhibit the superiority of the 
probabilistic methodology for multi-objective optimiza-
tion to guarantee the comprehensive quality of product and 
reducing energy consumption.

Table 4  Result of range analysis of total preferable probability

A B C

Level 1 1.1707 0.4918 1.5622
Level 2 1.6888 1.8295 1.1906
Level 3 1.1283 1.6666 1.2351
Range 0.5604 1.3377 0.3716
Impact order 2 1 3
Optimum conf 2 2 1
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Table 5  Design of the 
experiment

No Input variable No Input variable

di (mm) fZ (mm/Z) ad (mm) rd (mm) di (mm) fZ (mm/Z) ad (mm) rd (mm)

1 12 0.06 8 0.3125 42 4 0.04 12 0.625
2 12 0.02 8 0.3125 43 4 0.04 24 0.3125
3 12 0.04 12 0.625 44 12 0.06 24 1.25
4 12 0.02 12 0.625 45 12 0.02 8 0.625
5 8 0.06 24 0.3125 46 8 0.02 12 0.3125
6 8 0.06 8 1.25 47 8 0.06 24 1.25
7 8 0.02 8 1.25 48 8 0.02 8 0.625
8 4 0.06 8 0.3125 49 12 0.04 8 1.25
9 4 0.02 8 1.25 50 4 0.04 8 1.25
10 8 0.02 12 1.25 51 8 0.02 24 0.3125
11 12 0.04 8 0.3125 52 8 0.06 12 0.3125
12 12 0.06 24 0.3125 53 12 0.04 24 0.3125
13 12 0.02 8 1.25 54 4 0.02 12 0.625
14 12 0.04 12 1.25 55 8 0.04 24 1.25
15 12 0.04 24 0.625 56 4 0.02 24 0.3125
16 8 0.02 24 1.25 57 8 0.04 12 0.625
17 4 0.04 24 1.25 58 4 0.06 24 0.625
18 12 0.02 24 1.25 59 8 0.02 8 0.3125
19 12 0.02 12 0.3125 60 4 0.04 24 0.625
20 8 0.04 24 0.625 61 4 0.06 8 1.25
21 4 0.06 8 0.625 62 8 0.06 24 0.625
22 4 0.02 24 1.25 63 12 0.06 12 1.25
23 8 0.04 24 0.3125 64 8 0.06 8 0.3125
24 4 0.06 24 0.3125 65 12 0.02 12 1.25
25 4 0.06 12 0.3125 66 4 0.06 12 1.25
26 4 0.02 8 0.625 67 12 0.06 12 0.625
27 4 0.02 12 1.25 68 4 0.04 12 0.3125
28 12 0.06 8 1.25 69 12 0.04 8 0.625
29 4 0.04 8 0.3125 70 12 0.04 24 1.25
30 8 0.04 12 0.3125 71 8 0.04 8 0.3125
31 4 0.02 8 0.3125 72 8 0.04 8 0.625
32 8 0.02 24 0.625 73 4 0.04 12 1.25
33 12 0.04 12 0.3125 74 12 0.02 24 0.625
34 4 0.04 8 0.625 75 8 0.02 12 0.625
35 8 0.06 8 0.625 76 8 0.06 12 0.625
36 12 0.06 8 0.625 77 8 0.06 12 1.25
37 12 0.06 24 0.625 78 4 0.06 24 1.25
38 12 0.02 24 0.3125 79 8 0.04 12 1.25
39 4 0.02 12 0.3125 80 8 0.04 8 1.25
40 4 0.06 12 0.625 81 12 0.06 12 0.3125
41 4 0.02 24 0.625
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Table 6  Experimental results of 
the former 40 samples

No Evaluation performance index No Evaluation performance index

Py, A,  (mm3/min) Pc, B, (W) Qi, C Py, A,  (mm3/min) Pc, B, (W) Qi, C

1 1119.4 139.48 0.779 22 6181.82 170.95 0.338
2 426.231 112.28 0.929 23 2623.46 148.39 0.847
3 2063.11 235.51 0.717 24 4039.07 123.74 0.532
4 1093.8 204.48 0.801 25 2013.16 122.40 0.527
5 3692.09 195.56 0.789 26 964.691 88.02 0.760
6 4854.06 217.67 0.595 27 3086.54 107.96 0.503
7 1855.67 114.25 0.799 28 4447.67 299.32 0.608
8 1340.69 117.31 0.636 29 957.447 104.90 0.698
9 2057.01 81.11 0.634 30 1305.91 86.63 0.849
10 2785.87 163.54 0.708 31 515.429 70.30 0.834
11 795.88 122.46 0.815 32 2492.67 129.72 0.869
12 3396.98 504.59 0.669 33 1196.06 183.34 0.731
13 1693.04 220.40 0.659 34 1799.15 125.63 0.621
14 4753.03 377.12 0.527 35 2194.49 99.47 0.713
15 4148.59 329.30 0.690 36 1946.57 176.32 0.733
16 5585.98 235.21 0.624 37 5902.78 593.80 0.635
18 5101.7 614.99 0.476 38 1284.42 244.71 0.842
19 640.06 136.28 0.868 39 773.509 80.045 0.752
20 4690.37 208.79 0.745 40 3796.53 145.94 0.341
21 2528.09 135.48 0.534 41 2898.83 102.47 0.553

Table 7  Experimental results of 
the latter 38 samples

Bold values show the status with highest total preferable probability from the evaluation

No Evaluation performance index No Evaluation performance index

Py, A,  (mm3/min) Pc, B, (W) Qi, C Py, A,  (mm3/min) Pc, B, (W) Qi, C

42 2701.27 133.51 0.418 61 5351.52 125.44 0.379
43 2882.44 119.18 0.632 62 6640.63 275.76 0.679
44 13,515.9 1049.16 0.238 63 6692.91 444.32 0.489
45 728.571 138.97 0.859 64 1220.10 71.19 0.824
46 700.678 65.49 0.933 65 2542.37 305.00 0.585
47 14,683.3 505.15 0.265 67 2927.67 277.44 0.661
48 828.281 59.69 0.934 68 1437.43 110.99 0.602
49 3161.81 267.37 0.615 69 1372.69 166.39 0.757
50 3821.18 109.93 0.558 70 9568.48 985.51 0.289
51 1404.7 99.71 0.954 71 869.516 60.07 0.898
52 1834.53 117.71 0.783 72 1553.93 93.03 0.786
53 2407.17 408.18 0.730 73 5736.78 143.52 0.461
54 1447.77 90.72 0.539 74 2193.86 308.06 0.793
55 10,436.6 391.94 0.396 75 1243.50 92.90 0.872
56 1549.21 82.01 0.768 76 3298.84 152.88 0.628
57 2334.45 122.92 0.760 77 7299.62 310.31 0.383
58 7619.52 153.99 0.350 79 5193.48 227.31 0.552
59 466.691 38.59 0.988 80 3456.85 165.43 0.665
60 5414.01 151.42 0.437 81 1683.54 185.53 0.692
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Table 8  Assessment results by 
means of probabilistic approach 
of the former 40 samples

No Partial preferable probability Total prefer-
able prob-
ability

No Partial preferable probability Total prefer-
able prob-
ability

PA PB PC Pt ×  106 PA PB PC Pi ×  106

1 0.0044 0.0138 0.0151 0.9258 22 0.0244 0.0134 0.0066 2.1448
2 0.0017 0.0142 0.0181 0.4325 23 0.0104 0.0137 0.0165 2.337
3 0.0081 0.0124 0.0139 1.4115 24 0.0159 0.0141 0.0103 2.3192
4 0.0043 0.0129 0.0156 0.8664 25 0.0079 0.0141 0.0102 1.1467
5 0.0146 0.013 0.0153 2.9099 26 0.0038 0.0146 0.0148 0.8206
6 0.0192 0.0127 0.0116 2.8135 27 0.0122 0.0143 0.0098 1.7031
7 0.0073 0.0142 0.0155 1.6161 28 0.0176 0.0115 0.0118 2.3871
8 0.0053 0.0142 0.0124 0.9265 29 0.0038 0.0143 0.0136 0.7354
9 0.0081 0.0147 0.0123 1.4698 30 0.0052 0.0146 0.0165 1.2427
10 0.011 0.0135 0.0138 2.041 31 0.002 0.0148 0.0162 0.4897
11 0.0031 0.0141 0.0158 0.701 32 0.0098 0.014 0.0169 2.3235
12 0.0134 0.0085 0.013 1.4838 33 0.0047 0.0132 0.0142 0.8853
13 0.0067 0.0126 0.0128 1.0835 34 0.0071 0.014 0.0121 1.2035
14 0.0188 0.0104 0.0102 1.993 35 0.0087 0.0144 0.0139 1.7313
15 0.0164 0.0111 0.0134 2.4308 36 0.0077 0.0133 0.0143 1.456
16 0.0221 0.0124 0.0121 3.3271 37 0.0233 0.0072 0.0123 2.0729
18 0.0201 0.0069 0.0093 1.2854 38 0.0051 0.0123 0.0164 1.0208
19 0.0025 0.0139 0.0169 0.5918 39 0.0031 0.0147 0.0146 0.6563
20 0.0185 0.0128 0.0145 3.4388 40 0.015 0.0137 0.0066 1.3651
21 0.01 0.0139 0.0104 1.4394 41 0.0114 0.0144 0.0108 1.7684

Table 9  Assessment results by 
means of probabilistic approach 
of the latter 38 samples

Bold values show the status with highest total preferable probability from the evaluation

No Partial preferable probability Total prefer-
able prob-
ability

No Partial preferable probability Total prefer-
able prob-
ability

PA PB PC Pt ×  106 PA PB PC Pi ×  106

42 0.0107 0.0139 0.0081 1.2064 61 0.0211 0.014 0.0074 2.1853
43 0.0114 0.0141 0.0123 1.9755 62 0.0262 0.0118 0.0132 4.0992
44 0.0534 0.0006 0.0046 0.139 63 0.0264 0.0094 0.0095 2.3578
45 0.0029 0.0138 0.0167 0.6648 64 0.0048 0.0148 0.016 1.1443
46 0.0028 0.0149 0.0181 0.7482 65 0.01 0.0114 0.0114 1.3034
47 0.058 0.0085 0.0052 2.5381 67 0.0116 0.0118 0.0129 1.7557
48 0.0033 0.015 0.0182 0.8905 68 0.0057 0.0142 0.0117 0.9463
49 0.0125 0.012 0.012 1.7861 69 0.0054 0.0134 0.0147 1.0719
50 0.0151 0.0143 0.0108 2.3343 70 0.0378 0.0015 0.0056 0.3165
51 0.0055 0.0144 0.0185 1.4824 71 0.0034 0.015 0.0175 0.8984
52 0.0072 0.0141 0.0152 1.5601 72 0.0061 0.0145 0.0153 1.3603
53 0.0095 0.0099 0.0142 1.337 73 0.0227 0.0138 0.009 2.7959
54 0.0057 0.0145 0.0105 0.8711 74 0.0087 0.0114 0.0154 1.5187
55 0.0412 0.0101 0.0077 3.2197 75 0.0049 0.0145 0.017 1.2078
56 0.0061 0.0147 0.0149 1.3398 76 0.013 0.0136 0.0122 2.1684
57 0.0092 0.0141 0.0148 1.9166 77 0.0288 0.0113 0.0074 2.4335
58 0.0301 0.0136 0.0068 2.7881 79 0.0205 0.0125 0.0107 2.7618
59 0.0018 0.0153 0.0192 0.5416 80 0.0136 0.0135 0.0129 2.3739
60 0.0214 0.0137 0.0085 2.4803 81 0.0066 0.0132 0.0135 1.1768
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