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Abstract
The present study is committed to devising efficient spatial discretization with two non-central difference formulae incor-
porated in the method of lines (MOL). The method is then implemented numerically on the renowned dispersive evolution 
equation, the Korteweg-de Vries (KdV) model while infusing Euler and fourth-order Rung-Kutta (RK4) methods, respec-
tively. The resulting schemes are proven to be numerically stable using Fourier’s stability approach, with the MOL matrix 
admitting negative real eigenvalues. Moreover, this proposal has been assessed on certain initial-boundary value problems 
of the KdV model by examining so many factors, like the percentage errors, absolute error differences, the error norms, and 
the invariants I

k
, for k = 1, 2, 3, among others. In this work, we solve KdV by applying a new approach of MOL to improve 

the results presented in some published articles. Lastly, the assessment revealed that our proposal was found to be better than 
those of the exponential finite-difference method (Exponential) and the Heat Balance Integral (HBI) methods, respectively, 
which serve as competing approaches for validation, in terms of both the accuracy and efficiency. The numerical examples 
are obtained by using MATLAB.

Keywords Method of lines · KdV equation · Stability analysis · Non-central formula · Partial differential equations

1 Introduction

The Korteweg-de Vries equation (KdV) is a renowned dis-
persive evolution equation that was initially devised to prop-
agate long waves with finite-small amplitudes in dispersive 
medium [1]. In fact, the KdV equation models weakly non-
linear long waves, integrating dispersion and leading order 
nonlinearity. The model is equally found to have immense 
applications in various areas of wave and fluid phenomena, 
including plasma physics [2], bubble-liquid mixtures [3], 
and anharmonic crystals [4], to mention a few. To more rel-
evant works, we refer the readers to see [5–11].

Further, various exact solitary wave solutions for the KdV 
equation existed in the open literature through the utiliza-
tion of many analytical approaches, see Gardner et al. [12] 
as an instance, where dissimilar exact analytical solutions 
were acquired, with the help of scattering theory. More so, 
different initial-boundary problems featuring the KdV equa-
tion were solved numerically to get hold of the correspond-
ing numerical solutions using diverse proficient computa-
tional schemes, including finite difference method, spectral 
method, and finite element method [13–15] to mention a 
few. Also, all kinds of explicit solutions of the KdV equa-
tion were explored by Ma and You [16, 17]. In addition, the 
method of lines (MOL) is a universal numerical approach 
that tackles assorted classes of partial differential equations 
via the application of finite difference approximation on the 
related spatial derivatives; while the temporal derivatives are 
represented using ordinary differential equations (ODEs), for 
example see [18–20]. In particular, Schiesser [21] deployed 
MOL to examine a class KdV equations with central finite 
formula, while the resulting ODEs were solved with the help 
of Euler’s method.

This work aim to present the solution of KdV equation by 
applying modification of the method of lines. However, in 
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the present study, we are set to devise efficient spatial discre-
tization using the 5-point and 7-point non-central difference 
formulae incorporated in MOL to solve the class of the KdV 
equation. Indeed, we will be seeking the help of the Euler 
and RK4 numerical methods to solve the resulting ODEs. 
The stability of our proposal will be established using Fou-
rier’s stability approach. Moreover, we will be examining the 
various factors to assess the suitability of our approaches, 
including, the percentage errors, absolute error differences, 
the error norms, and the invariants Ik, for k = 1, 2, 3, among 
others. Lastly, certain promising numerical approaches will 
be sought from the literature to validate the accuracy and 
efficiency of our proposed schemes.

The paper is arranged as follows: In Sect. 2, we describe 
non-central 5-point formula and 7-point formula in MOL. 
The stability analysis of the proposed formula is investi-
gated in Sect. 3. Some numerical examples and comparisons 
are given in Sect. 4. Finally, the conclusion is displayed in 
Sect. 5.

2  Non‑central m‑point formula in MOL

The MOL is a universal approach for tackling diverse 
classes of partial differential equations (PDEs) through 
the application of finite difference approximation on the 
related spatial derivatives; while the temporal derivatives 
are represented using ODEs, read the known work by 
Schiesser in [21]. Indeed, MOL is a semi-discretization 
method that transforms the governing PDE to a coupled 
system of first-order ODEs and further approximates 
the spatial partial derivatives through finite difference 
relationships. In light of the finite difference method, 
a second-order finite difference approximation, which 
is often encountered, is utilized with a 3-point central 
difference, which at times necessitates the choice of the 
values of the dependent variable outside the endpoints.

Nevertheless, Hicks and Wei [22] introduced non-
central difference approximations, which significantly 
improves the difference scheme. In this regard, a 5-point 
difference approximation was suggested, and further 
proven with regard to the MOL matrix to admit negative 
real eigenvalues, which guarantees the stability of the 
method. Further, in [23], Amr and Bakodah introduced 
a suitable spatial discretization that gave the best result 

with MOL. In the same vein, we recall the work by Bako-
dah [24] that applied yet a reliable spatial discretization 
with MOL; specifically, a non-central 7-point formula to 
a class of Burgers’ equation. Indeed, an efficient scheme 
was derived, which later revealed interesting computa-
tional results with high accuracy.

However, in this study, we shall simultaneously incor-
porate the non-central 5-point and non-central 7-point for-
mulae into the MOL to solve the KdV equation. Remem-
ber that, the KdV equation is a real-valued dispersive 
evolution equation with vast applications in various areas 
of wave and fluid phenomena. Moreover, in the present 
study, we will be considering the KdV equation of the 
following form

with � and � serving as positive real constants. Further, we 
prescribe the initial condition for (1) as follows

together with the following 2-point boundary data

where f(x) is a given smooth function.
Moreover, to begin the MOL procedure, we start off by 

subdividing the rectangle a ≤ x ≤ b , and 0 ≤ t ≤ T , into 
uniform (equal-sized) rectangular meshes by the lines 
xi = i h, (i = 1, 2, 3, ...) and the lines tj = j k, (j = 1, 2, 3, ...). 
Additionally, the spatial partial derivatives ux , and uxxx, 
the dispersion term, will be replaced with the non-central 
m-points as rightly deployed in [23].

2.1  5‑point formula in MOL

We give the procedure of MOL in the presence of the 
non-central 5-point formula, to discretize the dispersion 
term, uxxx and ux . For brevity, we refer to this method as 
MOL5, standing for MOL incorporating the non-central 
5-point difference approximation. Therefore, on applying 
the non-central 5-point formula [23] to Eq. 1), a coupled 
system of ODEs in ui as unknown functions in t is revealed 
as follows:

(1)ut + � u ux + � uxxx = 0,

(2)u(x, 0) = f (x), a ≤ x ≤ b,

(3)u(a, t) = 0, u(b, t) = 0, t > 0,
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 Hence, we have got above a coupled system of ODEs, fea-
turing only the independent variable t. More so, this system 
will independently be solved computationally in the present 
study with the aid of the Euler and fourth-order Rung-Kutta 
methods.

2.2  7‑point formula in MOL

In the same passion, we give the procedure of MOL in 
the presence of the non-central 7-point formula, to dis-
cretize the dispersion term, uxxx and ux, as in [23]. We also 
refer to this method as MOL7, meaning the MOL incor-
porating non-central 7-point difference approximation. 
Then, on applying the non-central 7-point formula [23] 
to Eq. (1), a coupled system of ODEs in ui as unknown 
functions in t is yielded as follows:

(4)
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=
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Equally, the obtained coupled system of ODEs above, fea-
turing only the independent variable t,  will independently 
be solved computationally with the help of the Euler and 
fourth-order Rung-Kutta methods.

3  Stability analysis

The present section establishes the stability conditions of the 
proposed MOL5 and MOL7 schemes for the solution of the 
governing KdV model. In fact, the stability analysis of any 
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numerical scheme is a vital factor for the determination of 
a stable approximate solution (when existed), or otherwise. 
Hence, it is therefore relevant to establish the stability results 
for MOL for the treatment of the PDE of interest. Moreover, 
the nature of the resulting eigenvalues of the matrix, emanat-
ing from the implementation of MOL, is critical in examin-
ing a satisfactory solution for the given equation.

In particular, Kreiss and Scherer [25] have worked out the 
local stability conditions of the Rung-Kutta method when 
actualized on PDEs. More so, it was discovered with regard 
to the Rung-Kutta method that the method is only numerically 
valuable when it is stable for adequately small k/h;  with k 
representing the time-step.

Furthermore, the standard Fourier’s analysis is the universal 
approach that deeply examines the stability of diverse differ-
ence schemes, let alone the stability of the MOL as a case 
of concern. Indeed, we will be using this method to get hold 
of the stability conditions of the proposed MOL5 and MOL7 
schemes for the governing KdV equation. Beginning with the 
MOL5, which revealed the coupled system of ODEs in (4), 
we first assume ui to be constant in the nonlinear term, with

Additionally, we seek a trail solution of the N ODEs 
expressed in (4) in order to get some vital information with 
regard to the resulting eigenvalues. Indeed, this trial solution 
must holistically satisfy all the variations of u(x, t) in both 
x and t variables, (alternatively i and t). Thus, we make use 
of a generalized product solution expression of the follow-
ing form

where the function Ξ(x) is further assumed based on Van 
Neumann’s suggestion as follows

� = max
i

ui.

(6)u(x, t) = CΨ(t) Ξ(x),

(7)Ξ(x) = ejKx, j =
√
−1,

with K denoting the Fourier’s number. Then, upon substitut-
ing of (6) and (7) in (4), one gets

where � = max(ui) . Hence,

A l t e r n a t i v e l y ,  u p o n  u s i n g  t h e  r e l a t i o n 
sin(2Kh) = 2 sin(Kh) cos(Kh), the latter equation reduces 
to the following system

where,

Furthermore, since | sin(a)| ≤ 1 and | cos(a)| ≤ 1 , we observe 
that the eigenvalues of the system (4) admit negative real 
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Table 1  Absolute error 
differences for Example 1

t = 0.005

x 0 0.2 0.4 0.7 1.2 1.8
MOL5 (Euler) 0 2.9637×10−05 0.0057 5.2267×10−04 1.6022×10−09 2.8380×10−15

MOL5 (RK4) 0 2.7518×10−05 0.0057 5.2262×10−04 1.6019×10−09 2.8379×10−15

MOL7 (Euler) 0 1.2555×10−04 0.0096 5.7651×10−04 2.5177×10−09 9.4768×10−15

MOL7 (RK4) 0 1.2546×10−04 0.0096 5.7651×10−04 2.5177×10−09 9.4684×10−15

t = 0.01

x 0 0.2 0.4 0.7 1.2 1.8
MOL5 (Euler) 0 5.7693×10−05 0.0113 0.0011 3.2849×10−09 5.7327×10−15

MOL5 (RK4) 0 5.3492×10−05 0.0112 0.0011 3.2844×10−09 5.7326×10−15

MOL7 (Euler) 0 2.4698×10−04 0.0189 0.0012 5.1251×10−09 1.8992×10−14

MOL7 (RK4) 0 2.4681×10−04 0.0189 0.0012 5.1251×10−09 1.8975×10−14
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part, which indeed indicates that the coupled system of N 
equations is stable.

In a similar way, the numerical scheme for MOL7, which 
was implemented earlier and resulted in the coupled system 
of N equations in (5) admits the following eigenvalues

which also possesses negative real parts, indicating that the 
coupled system of N equations is stable.

� =
−�

360 h3

[
16 sin(K h)(cos(K h) − 1) + 4 sin3(K h)

]

−
� �

360 h

[
3 sin(K h)(14 − 6 cos(K h)) + 4 sin3(K h)

]
,

4  Numerical results and discussion

In the present section, we demonstrate the applicability of 
the derived numerical methods, the MOL5, and MOL7, on 
two initial-boundary value problems of the KdV model. 
More so, as MOL is a semi-discretization method that trans-
forms the governing PDE into a coupled system of first-
order ODEs in t, and further approximate the spatial partial 
derivatives through finite difference approximations; these 
resulting ODEs will concurrently be solved using the Euler 
and fourth-order Rung-Kutta (RK4) methods, respectively.

Moreover, we will be computing the absolute error differ-
ence between the approximate and the corresponding exact 
analytical solutions at various mesh points, in addition to the 
determination of the discrete L2 and L∞ error norms using

Table 2  Solution of Example 1 
using the proposed MOL5 and 
the competing methods [27, 28] 
when k = 0.005

x Present (Euler) Present (RK4) Exponential [27] HBI [28] Exact

0 0 0 0 0 0
0.10 0.00033146 + 0.00033391 + 0.00224711 + 0.00026665 + 0.00025688
0.20 0.0031219 + 0.00311983 + 0.00355567 + 0.00320978 + 0.00309232
0.30 0.0377727 + 0.03777229 + 0.03777912 + 0.03794787 + 0.03658528
0.40 0.3614604 + 0.36144685 + 0.35698115 + 0.36617907 + 0.35574606
0.50 0.8589594 + 0.85897444 + 0.86070242 + 0.85626815 + 0.86305608
0.60 0.1741572 + 0.17415885 + 0.17729622 + 0.17201146 + 0.17787428
0.70 0.0157485 + 0.01574858 + 0.01512775 + 0.01568004 + 0.01627120
0.80 0.0013251 + 0.00132506 + 0.00113721 + 0.00131099 + 0.00136083
0.90 0.0001101 + 0.00011012 + 0.00009312 + 0.00010880 + 0.00011294
1.00 0.00000914 + 0.00000914 + 0.00000779 + 0.00000902 + 0.00000937
1.10 0.00000076 + 0.00000076 + 0.00000065 + 0.00000075 + 0.00000078
1.20 0.00000006 + 0.00000006 + 0.00000005 + 0.00000006 + 0.00000006
1.30 0.00000001 + 0.00000001 + 0.0 + 0.00000001 + 0.00000001
1.40 0.0 + 0.0 + 0.0 + 0.0 + 0.0
1.50 0.0 + 0.0 + 0.0 + 0.0 + 0.0
1.60 0.0 + 0.0 + 0.0 + 0.0 + 0.0
1.70 0.0 + 0.0 + 0.0 + 0.0 + 0.0
1.80 0.0 + 0.0 + 0.0 + 0.0 + 0.0
1.90 0.0 + 0.0 + 0.0 + 0.0 + 0.0
2.00 0.0 + 0.0 + 0.0 + 0.0 + 0.0

Table 3  Percentage errors 
associated with Example 1

t Method x = 0.2 x = 0.4 x = 0.6 x = 0.8 x = 1.0

t = 0.005 MOL5 (Present) Euler 0.9584 1.6063 2.0897 2.6287 2.4873
RK4 0.8899 1.6025 2.0888 2.6286 2.4869
HBI [28] 3.7987 2.9327 3.2960 3.6626 3.6652

t = 0.01 MOL5 (Present) Euler 1.9366 3.2630 4.1172 5.1850 4.9147
RK4 1.7955 3.2552 4.1153 5.1848 4.9139
HBI [28] 7.7419 5.9806 6.4701 7.1909 7.1909
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and

where ue
i
 is an exact analytical solution. Equally, respective 

percentage errors will be determined using

L2 =

√√√√
h

N∑

i=0

|ue
i
− ui|,

L∞ = max
i

|ue
i
− ui|,

PE =
|ue

i
− ui|
|ue

i
|

× 100.

Further, a bright soliton solution of the KdV equation, taking 
the following form

will be considered for comparative examination, where C,  
and Bi for i = 1, 2, 3 are constants to be determined. Also, 
as the KdV equation is known to possess different invariant 
polynomials, the following three invariant cases

u(x, t) = C sech2(B1x + B2t + B3),

Table 4  Solution of Example 1 
using the proposed MOL5 and 
the competing methods [27, 28] 
when k = 0.01.

x Present (Euler) Present (RK4) Exponential[27] HBI [28] Exact

0 0 0 0 0 0
0.1 0.00039483 0.00039968 0.00405629 0.00026665 0.00024746
0.2 0.00303684 0.00303264 0.00389535 0.00320979 0.00297915
0.3 0.03760039 0.03759955 0.03764657 0.03794800 0.03527076
0.4 0.35679041 0.35676369 0.34792815 0.36618040 0.34551632
0.5 0.86156584 0.86159541 0.86481172 0.85627126 0.86931951
0.6 0.17634030 0.17634377 0.18273885 0.17201208 0.18391225
0.7 0.01581746 0.01581756 0.01458343 0.01568009 0.01688449
0.8 0.00133933 0.00133933 0.00141257 0.00131099 0.00141268
0.9 0.00011144 0.00011144 0.00007766 0.00010881 0.00011724
1.0 0.00000925 0.00000925 0.00000672 0.00000902 0.00000972
1.1 0.00000076 0.00000077 0.00000056 0.00000075 0.00000081
1.2 0.00000006 0.00000006 0.00000005 0.00000006 0.00000007
1.3 0.00000001 0.00000001 0.00 0.00000001 0.00000001
1.4 0.00 0.00 0.00 0.00 0.00
1.5 0.00 0.00 0.00 0.00 0.00
1.6 0.00 0.00 0.00 0.00 0.00
1.7 0.00 0.00 0.00 0.00 0.00
1.8 0.00 0.00 0.00 0.00 0.00
1.9 0.00 0.00 0.00 0.00 0.00
2.0 0 0 0 0 0

Table 5  Invariant of Example 1 
when h = 0.1

Method t I1 I2 I3 L2 L∞

MOL5 Euler 0.0050 0.1453 0.0899 0.0625 0.0081 0.0057
0.0100 0.1453 0.0900 0.0629 0.0158 0.0113

RK4 0.0050 0.1453 0.0899 0.0625 0.0080 0.0057
0.0100 0.1453 0.0900 0.0629 0.0158 0.0112

MOL7 Euler 0.0050 0.1453 0.0899 0.0625 0.0128 0.0096
0.0100 0.1453 0.0899 0.0626 0.0252 0.0189

RK4 0.0050 0.1453 0.0899 0.0625 0.0128 0.0096
0.0100 0.1453 0.0899 0.0626 0.0252 0.0189
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Fig. 1  Comparison between the proposed MOL5 and exact solutions for Example 1

Fig. 2  Comparison between the proposed MOL7 and exact solutions for Example 1

Table 6  Percentage errors 
associated with Example 2

t Method x = 0.4 x = 0.8 x = 1.2 x = 1.6 x = 2.0

t = 0.005 MOL5(Present)
 Euler 3.0328 5.1117 0.3600 1.2045 0.6979
 RK4 2.9783 3.1899 0.1995 1.1468 0.3746

HBI [28] 2.8928 3.3738 1.1503 3.2403 3.2848
t = 0.01 MOL5(present)

 Euler 6.1875 6.9867 0.6832 1.1895 1.3895
 RK4 6.0744 3.1537 0.3610 1.0740 0.7474

HBI [28] 5.7381 6.6342 2.2426 6.5870 6.6775
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Table 7  Absolute error 
differences for Example 2

t = 0.005

x 0 0.4 0.8 1.4 2.4 3.6
MOL5(Euler) 0 0.0112 1.5846×10−04 5.9404×10−04 5.8349×10−10 4.3695e×10−17

MOL5(RK4) 0 0.0110 9.8886×10−05 3.6637×10−04 3.0746×10−10 1.5100×10−16

MOL7(Euler) 0 0.0108 9.9777×10−05 5.5675×10−04 7.1471×10−10 1.2636×10−15

MOL7(RK4) 0 0.0108 9.9777×10−05 5.5675×10−04 7.1471×10−10 1.2633×10−15

t = 0.01

x 0 0.4 0.8 1.4 2.4 3.6
MOL5(Euler) 0 0.0222 2.1659×10−04 0.0013 1.1720×10−09 8.7512e×10−17

MOL5(RK4) 0 0.0218 9.7766×10−05 8.3242×10−04 6.1890×10−10 3.0258×10−16

MOL7(Euler) 0 0.0214 9.9554×10−05 0.0012 1.4346×10−09 2.5263×10−15

MOL7(RK4) 0 0.0214 9.9554×10−05 0.0012 1.4346×10−09 2.5258×10−15

Table 8  Invariant of Example 2 
when h = 0.01

Method t I1 I2 I3 L2 L∞

MOL5 Euler 0.0050 0.2281 0.1035 0.0501 0.0211 0.0061
0.0100 0.2281 0.1037 0.0503 0.0423 0.0123

RK4 0.0050 0.2281 0.1035 0.0501 0.0176 0.0046
0.0100 0.2281 0.1035 0.0501 0.0353 0.0093

MOL7 Euler 0.0050 0.2281 0.1035 0.0501 0.0428 0.0110
0.0100 0.2281 0.1035 0.0501 0.0855 0.0220

RK4 0.0050 0.2281 0.1035 0.0501 0.0428 0.0110
0.0100 0.2281 0.1035 0.0501 0.0855 0.0220

Fig. 3  Comparison between the proposed MOL5 and exact solutions for Example 2
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will be adopted while simulating the proposed schemes, 
where u = u(x, t). Furthermore, we will equally be using 
these invariant polynomials in assessing the efficiency of 
the devised algorithms.

4.1  Example 1: Single soliton

In reference to the KdV equation expressed in (1), the follow-
ing supportive boundary conditions

are defined at the two endpoints, and coupled with the fol-
lowing initial data

In addition, this problem satisfies the following exact ana-
lytical solution [26]

where B1 =
1

2

√
� C

�
, B2 = �B1C; while B3 and C are real con-

stants. Moreover, for the numerical purpose, we consider 
B3 = −6, C = 0.3, � = 1, � = 4.84 × 10−4, N = 20, h = 0.1, 

I1 = h

N∑

i=1

u,

I2 = h

N∑

i=1

u2,

I3 = h

N∑

i=1

(
u3 −

3�

2 �
u2
x

)
,

u(0, t) = 0, u(2, t) = 0, t > 0,

u(x, 0) = 3C sech2(B1x + B3), 0 ≤ x ≤ 2.

u(x, t) = 3C sech2(B1x − B2t + B3), 0 ≤ x ≤ 2,

k = 0.005 and nt = 20 . Further, to establish a more rigorous 
comparative study, we seek the computational results pre-
sented in [27, 28], using the exponential finite-difference 
method (Exponential) and Heat Balance Integral (HBI) 
method, respectively, in order to assess the proposed MOL5 
and MOL7. Indeed, we will be computing the error norms 
with regard to L2 and L∞ norms; in addition to the determi-
nation of the respective invariants Ik for k = 1, 2, 3, at 
t = 0.005 and t = 0.01 , sequentially.

Eventually, the obtained numerical results of the govern-
ing example, using the proposed MOL5 and MOL7 (via both 
the Euler and RK4), are tabulated in Tables 1 and 2, and 
further compared with the results reported in [27, 28] using 
the Exponential and HBI approaches, in addition to that of 
the exact analytical solution. More so, from these tables, we 
have deeply examined the proposed schemes by successfully 
simulating/portraying the resulting percentage errors, invari-
ant and error norms, and absolute error difference graphi-
cally. Indeed, our proposed methods turn out to be better 
than those of the competing Exponential and HBI methods 
in terms of both accuracy and efficiency. More so, the invari-
ants are noted to be almost constant with an increase in time.

In addition, Figs. 1-2 depict the graphical illustrations 
by comparing the obtained solutions using the proposed 
schemes (MOL, present method) and that of the exact ana-
lytical solution. As expected, both solutions satisfy all the 
physical assumptions of the model. Accordingly, the solu-
tion revealed by the devised methods is noted to match the 
exact solution with indeed an insignificant error (Tables 3, 
4, 5).

Fig. 4  Comparison between the proposed MOL7 and exact solutions for Example 2
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4.2  Example 2: Interaction of two solitary waves

Let us consider the KdV equation as given in (1) that admits 
a two-soliton solution, together with the following endpoint 
boundary conditions

and further coupled with an appropriate initial condition, 
derivable from the exact solution that takes the following 
expression [29]

where

with a1 =
√

0.3

�
,  a2 =

√
0.1

�
, �1 = −48, a1, �2 = −1.07a2 and  

�i = ai x − a3
i
� t + �i, for i = 1, 2. Additionally, we set � = 1 , 

� = 4.84 × 10−4, together with letting N = 20, k = 0.005, 
h = 0.1, and nt = 20 . In the same vein, and without further 
delay, Tables 6, 7 and 8 give the accuracy of devised meth-
ods and further compared with the results in [28], using HBI. 
More so, certain graphical illustrations are illustrated in 
Figs. 3-4, where a very good agreement has been noted 
between the proposed solution and that of the exact solution. 
Equally, the solutions satisfy the physical behaviour of the 
model.

5  Conclusion

In conclusion, the present paper modified two numerical 
methods, the MOL5 and MOL7, and further implemented 
them on the renowned KdV model, a real-valued disper-
sive evolution equation with vast applications in various 
areas of wave and fluid phenomena. Besides, MOL is a 
semi-discretization method that gives a system of first-
order ODEs; this resulting system was concurrently solved 
numerically using the Euler and RK4 methods, respec-
tively. In addition, Fourier’s stability analysis method 
via the use of Van Neumann’s suggestion has helped us 
in achieving stable numerical schemes, with the MOL 
matrix admitting negative real eigenvalues. Moreover, 
having assessed the devised approaches on two initial-
boundary value problems of the KdV model, by establish-
ing the resulting percentage errors, absolute error differ-
ences, the error norms L2 and L∞ and the invariant Ik, for 
k = 1, 2, 3, . Therefore, we can proudly conclude that the 
proposed methods are better than those of the competing 

u(0, t) = 0, u(4, t) = 0, t > 0,

u(x, t) = 12� (log(F))xx, 0 ≤ x ≤ 4,

F = 1 + exp(�1) + exp(�2) +

(
a1 − a2

a1 + a2

)2

exp(�1 + �2),

Exponential and HBI results in terms of both accuracy and 
efficiency. Hence, we recommend that the proposed meth-
ods should be applied to other types of evolution equa-
tions, including the Schrodinger equations. In addition, a 
higher order of KdV will be considered in our future work.
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