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Abstract
Aqueous glycerol is a proposed green extractant for anthocyanins and polyphenols as an alternative to conventional solvents. 
The aim of this study was to investigate the potential use of aqueous glycerol to extract anthocyanins from Syzygium cumini 
fruit pulp with high yields. The ultrasound-assisted extraction process was also examined to enhance the extraction yield. 
The application of ultrasound-assisted extraction along with glycerol as a modifier remarkably enhanced the extraction of 
anthocyanins compared to the conventional extraction. Aqueous glycerol (70%) was screened against conventional solvents 
(ethanol, methanol and water), where glycerol showed promising outcomes. The optimised ultrasonication time and extraction 
temperature (25 °C for 5 min) were selected based on our previous study of NADESs. The results showed that glycerol gave 
the highest amount of anthocyanin content (201.05 mg C3G/100 g fresh weight) compared to conventional solvents for 
retrieving anthocyanins from S. cumini fruit pulp. Besides the anthocyanin content, the extract yield, phenolic content, and 
antioxidant activities using DPPH and FRAP were also determined. Glycerol showed a higher phenolic recovery (0.9 mg 
GAE/g dry sample), resulting in higher antioxidant activity (DPPH activity-73.35% inhibition). Therefore, the application of 
UAE with aqueous glycerol provides accessibility and enhanced anthocyanin extraction efficiency, thus fulfilling the green 
and sustainable approach to anthocyanin extraction.
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Abbreviations
UAE  Ultrasound-assisted extraction
NADESs  Natural deep eutectic solvents
C3G  Cyanidin-3-glucoside
TAC   Total anthocyanin content
TPC  Total phenolic content
DPPH  2, 2-Diphenyl-1-picrylhydrazyl
FRAP  Ferric reducing antioxidant power
TPTZ  2,4,6-Tri-pyridyl-s-triazine
TY  Total yield

1 Introduction

There is an increasing interest in using natural food 
colourants to prepare jams, cakes, juices and other food 
items. Food products with vibrant colours have an edge 

on the sensory scale, which plays a critical role in the 
product’s palatability [25]. However, the food industry has 
been utilising synthetic food colours for a long time due to 
their stability, efficiency and cost-effectiveness [3]. However, 
the safety of synthetic food colours has been questioned in 
recent years. The research for better and safer alternatives 
has led to the recovery of plant bioactive compounds, a 
great source of food colours [18]. These plant bioactive 
pigments include chlorophylls, carotenoids, betacyanins 
and flavonoids. Anthocyanins, a class of flavonoids, are 
considered to have a wide colour range and are currently 
being explored and validated as a promising alternative to 
synthetic colours [12].

Syzygium cumini (S. cumini) is one of the underutilised 
fruits of the Myrtaceae family cultivated in subtropical and 
tropical regions [33]. Previous studies indicate that the pulp 
of S. cumini fruit is a rich source of major anthocyanins 
named malvidin, cyanidin, petunidin, delphinidin, and 
peonidin [48, 52, 56]. The fruit is also a rich source of 
antioxidant compounds where the anthocyanins may act 
similarly [6]. Despite its commercial use in juice processing, 
there is limited research data on anthocyanin extraction from 
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S. cumini [47, 54]. However, it is a trending research topic 
[17], D. [29], N. [30, 46].

Applying a suitable extraction technique is a crucial 
factor to consider for enhancing the recovery of bioactive 
compounds [50]. Conventional extraction techniques have 
lately been associated with many disadvantages, such 
as longer extraction times, lower stability, thus higher 
degradation, and use and consumption of organic solvents 
[44]. The use of solvents such as methanol for the extraction 
processes and the extracts are not preferred in food products 
due to their toxicity, flammability and environmental 
pollution [15]. These solvents and techniques, therefore, 
don’t align with the concept of “green extraction processes” 
[26].

Glycerol has been acknowledged as a promising 
alternative for being a green and high-performing extraction 
solvent [1]. As glycerol is a by-product of the biodiesel 
industry, it is readily available due to the high production 
of biodiesel [35]. It has been identified as one of the green 
solvents attributed to its biodegradability, natural origin, 
and safety [55]. Glycerol is also considered a cheaper 
alternative to conventional solvents. It also lowers the 
cost of the overall extraction process as the number of 
unit operations is reduced, for there is no requirement to 
separate the solvent from the extract [37, 45]. The solvent 
seems highly attractive because it has a high polarity and 
boiling point [40]. Glycerol, being highly polar, has the 
potential for targeted recovery of anthocyanins, where there 
is minimal chance of other components being extracted. 
Water/glycerol systems have been considered effective in 
anthocyanin recovery due to a lowered dielectric constant, 
aiding in increased pigment diffusion with the solvent [34, 
39]. Compared to other organic solvents, such as ethanol and 
methanol, glycerol is a non-toxic solvent with considerable 
extraction efficiency [23].

Ultrasonication has been utilised to improve anthocyanin 
extraction processes in various fruits and waste [14]. 
Ultrasonication effectively accelerates the chemical 
reactions through cavitation that causes a structural change 
internally into the food matrices [13, 57]. Ultrasonic pre-
treatments can accelerate extraction, reduce processing times 
and save energy [21]. On an industrial scale, glycerol can 
prove to be a safer option due to its lower vapour pressure, 
and in combination with ultrasonication, it may help in 
energy-efficient methods [53]. The previous experiments 
also showed that using ultrasonication with green solvents 
caused the internal structural changes of food matrices, thus 
increasing the recovery of anthocyanins and phenols [43]. 
Yet the research is limited to fully assessing the potential for 
efficient recovery of anthocyanins utilising energy efficient, 
time-saving and cost reducing technique and solvent 
combinations, specifically from the fruit pulp of S. cumini.

The present study uses ultrasound-assisted extraction 
to enhance recovery and screen conventional solvents 
(water, ethanol and methanol) against aqueous glycerol. 
A comparative analysis was conducted of the extracts 
for various parameters such as antioxidant activity, total 
anthocyanin and phenolic content and total yield. The main 
objective is to find an alternative green solvent to extract 
anthocyanins from the S. cumini fruit pulp.

2  Materials and methods

2.1  Experimentation material

The fruit of S. cumini was collected from a local vendor in 
the Patiala region of Punjab, India. The extraction solvents 
glycerol, ethanol and methanol were purchased from the 
Loba Chemie Pvt. Ltd. company. Distilled water for the 
extraction was collected from the distillation apparatus 
setup in the lab. The pulp of S. cumini fruit was separated 
from seeds, dried and powdered proportionately before use. 
The anthocyanin content and other assays were determined 
spectrophotometrically using a UV–Vis spectrophotometer 
(Shimadzu Scientific Instruments, Japan).

2.2  Ultrasound‑assisted anthocyanin extraction 
using glycerol and comparative analysis

The whole process has been summarized in the figure. S. 
cumini dried-powdered pulp was weighed (2 g) and placed 
in a conical flask (solid-solvent ratio, 1: 20). An amount 
of solvent (40 ml) was added in accordance. The viscosity 
of the solvent is a critical factor that directly affects the 
extraction process. The high viscosity of solvents can 
hinder the diffusion process, leading to lower recovery of 
anthocyanin or phenolic compounds [16]. Multiple studies 
have reported that glycerol is a viscous solvent, so 70% 
aqueous glycerol was used. Higher concentrations would 
not extract higher yields of anthocyanins [32, 34, 37, 39]. 
The extraction temperature plays a critical role in the 
recovery of anthocyanins. Anthocyanins are temperature-
sensitive compounds; thus, a lower temperature yields 
higher anthocyanins, which may further differ based on 
solvents or extraction techniques [26, 41]. The temperature 
(25 °C) for the anthocyanin extraction from the sample 
was kept constant for all the solvents. The pre-treatment 
of ultrasonication was given for 5 min, and then extraction 
was performed for 2 hours on an incubator shaker at the 
mentioned temperature. A comparative study was designed 
to investigate the influence of green solvent (glycerol) over 
conventional solvents (water, ethanol, methanol) in the 
anthocyanin recovery from the fruit pulp of S. cumini. The 
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extracts were then collected and filtered, where filtrate was 
used to perform further assay procedures.

2.3  Evaluating extract yield

To calculate the extract yield of the sample, the extracts were 
dried in a hot-air oven to free the extract from the solvent. 
The total yield (TY) was calculated using the dried crude 
extract using the formula given in Eq. 1. And expressed 
as a percentage (%). All measurements were conducted in 
triplicates.

2.4  Determining total phenolic content (TPC)

The total phenolic content was determined using the 
Folin–Ciocalteau method Swer et al. (2018) adopted with 
slight modifications. To 0.2 ml diluted sample, 2.5 ml of 
Folin–Ciocalteau reagent was added and incubated for 
5 min at room temperature. Then 2 ml sodium carbonate 
(7.5 g/100 ml) was added, mixed and incubated at room 
temperature for 2 h. After incubation, the mixture was 
shaken, and the absorbance was measured at 754 nm against 
distilled water as blank in UV–Vis spectrophotometer.

The results were calculated based on the calibration curve 
of gallic acid, and the results were expressed as Gallic acid 
equivalents (mg GAE/100 g).

2.5  Total anthocyanin content (TAC)

The total anthocyanin content of the S. cumini anthocyanins 
was determined spectrophotometrically using the method 
given by Giusti & Wrolstad [19] with slight modifications. 
The aqueous aliquots of test samples were separately diluted 
with potassium chloride buffer (pH 4.5) and sodium acetate 
buffer (pH 1.0) and allowed to equilibrate for 1 h at room 
temperature. The absorbance was measured simultaneously 
at 530 and 700 nm against a blank (distilled water). The total 
anthocyanin content expressed as cyanidin-3-glucoside was 
calculated using the following equation:

where, A is the absorbance which is finalised after finding 
the difference in absorbances at 530 and 700 nm in different 
buffers, M.W. is the molecular weight of cyanidin-3-
glucosides (449.2 g/mol), DF is the dilution factor, ε is the 
molar absorptivity of cyanidin-3-glucoside (26,900 L/cm 
mol), and 1 is the cuvette path length (in cm).

TY(%db) =
extract weight × 100

weight of sample

AC(mg C3G/L) =
A ×M.W. × DF × 1000

ε × L

2.6  DPPH antioxidant assay

DPPH radical scavenging assay was performed following 
the method of Brand-Williams et al. [11]. An aliquot of the 
extract solution was diluted 1:4 times before estimation 
to obtain a reading within the spectrophotometer’s linear 
range. Briefly, 0.1 ml of the diluted sample was treated with 
3.9 ml of 0.1 mm methanolic DPPH solution and allowed to 
stand for 30 min in the dark at 37 °C. The absorbance was 
recorded at 517 nm immediately against methanol as blank. 
Per cent inhibition of the DPPH radical by the sample was 
calculated using the following equation:

where,  Asample = absorbance of DPPH on reaction with the 
sample extract,  Ablank = absorbance of DPPH with methanol 
as blank instead of sample.

2.7  FRAP antioxidant assay

The ferric reducing antioxidant power (FRAP) assay was 
performed according to the method given by [9] with 
minor modifications. The sample extract was diluted 1:100 
times with distilled water to obtain a reading within the 
linear range of the spectrophotometer at 593 nm. Briefly, 
0.1 ml of the diluted sample was added to 3 ml of FRAP 
reagent consisting of acetate buffer (300 mM, pH 3.6), 
2,4,6-Tripyridyl-s-Triazine-TPTZ (0.031 mg in 10 ml 40 mM 
HCl) and ferric chloride (20 mM) in the ratio of 10:1:1. 
After 4 min the absorbance was recorded at 593 nm against 
FRAP as blank. The results of absorbance values directly 
indicated the sample’s antioxidant activity.

All the experiments were conducted with three 
replications and the results reported are mean values 
recorded (Fig. 1).

3  Results and discussion

3.1  Total extraction yield

The pulp of S. cumini fruit was subjected to four different 
solvent treatments with varying extraction yields. The yields 
of extracts using the different solvents are indicated in Fig. 2. 
Among the solvents used, the maximum extraction yield 
of 31.9% was obtained for glycerol. The results show that 
the extract yield is influenced by the solvent adopted for 
the extraction. The water/glycerol mixture, under similar 
conditions applied for other solvents, was able to solubilise 
a higher amount of pigment, leading to a higher extraction 

DPPH radical scavenging(%) =
Ablank − Asample × 100

Ablank
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yield. This may be attributed to two main factors: firstly, 
the viscosity of the glycerol solution was lowered with the 
addition of water, facilitating the solvent penetration into the 
solid particles of the sample; secondly, the higher polarity 

of the extraction system assisted in efficient solute–solvent 
complex transfer into the extract [5]. Moreover, the higher 
extraction yield could also be associated with the multiple 
hydrogen bonding networks formed by glycerol and water, 
which facilitate the extraction of anthocyanins. As glycerol 
is a highly polar solvent and anthocyanins are also a group 
of polar flavonoids, their extraction must be prominent with 
the solvent [58]. Another critical factor in increased yield 
may be the higher solvent-to-solid ratio, which increases 
the mass transfer ratio, thus resulting in a higher diffusion 
rate and maximum extraction yield [28]. A similar study by 
Özkan et al. [41] reported a 10–15% higher extraction yield 
with aqueous glycerol compared to ethanol and butanediol 
from gülfatma flowers. Glycerol is considered to be highly 
beneficial in maintaining the stability of anthocyanins, 
which may be due to the multi-hydroxyl group structure of 
the solvent, thus retaining the higher amount of anthocyanins 
[20]. Glycerol, via hydrogen bonds, is known to form a 
cage-like structure in interaction with water, contributing 
to higher anthocyanin recovery [16]. The extraction yield 
also depends on extraction conditions, where ultrasonication 
pre-treatment plays an important role. It is an effective way 

Fig. 1  Extraction of anthocyanins from Syzygium cumini 
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Fig. 2  Total extract yield with different solvents
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to accelerate the diffusional process, thus contributing to 
higher and more efficient recovery of anthocyanins [10]. 
According to a study by Jovanović et al. [24], who extracted 
anthocyanins from bilberry fruits using ultrasound with 
NADES solvent, report a positive influence of sonication 
for a shorter time, yielding higher anthocyanins.

3.2  Total anthocyanin content

Figure 3 presents the results of anthocyanin content in 
the extracts obtained with different solvents from the pulp 
of S. cumini fruit. Anthocyanin content in the pulp of S. 
cumini fruit varied from 87.94 mg C3G/100 g (ethanol) to 
201.05 mg C3G/100 g (glycerol). In the case of solvents, 
the highest anthocyanin concentrations were noted for water 
(188.69 mg C3G/100 g) and glycerol (201.05 mg C3G/100 g) 
at 25 °C. In the presented experiment, glycerol has been 
identified as the best extraction system for anthocyanins. 
According to Kowalska et al. [32], water-glycerol extraction 
systems increased the content of anthocyanins compared 
to pure water in black chokeberry and elderberry extracts. 
In the given studies, the authors demonstrated extraction 
efficiency. The results show that a 70% aqueous glycerol 
mixture provided a very satisfactory extraction yield in 
anthocyanins higher than water, ethanol, and methanol. A 
similar pattern was observed in a study by Soares et al. [51], 
where the anthocyanin content yield (49.8 mg/g) for aqueous 
glycerol solution along with ultrasonication was 28.7% 
higher than water. In agreement with our results, a study of 
anthocyanin extraction from frozen blueberry honeysuckle 
by Kaniewska et al. (2013) indicated that water/glycerol 
extraction systems prove to be better solvents than water. 
The better efficiency of water-alcohol extraction solvent may 
result from the affinity of anthocyanins to polar solvents. 
Glycerol enhances the solubility of more polar flavonoids, 
resulting in higher recovery [1]. It is also suggested that the 

intermediate concentration of the solvent, which is around 
70% (v/v), is the best condition for the higher recovery of 
anthocyanins [36].

3.3  Total phenolic content

Figure 4 shows the results for total phenolic content, which 
was approximately equal for water as a solvent compared to 
glycerol. The TPC was recorded with the maximum value 
of 0.998 mg GAE/g dry sample (water), while glycerol led 
to an equally efficient phenolic extraction of 0.9 mg GAE/g 
dry sample. Similar to water and methanol, the aqueous 
glycerol solvent system’s polarity helped to influence 
the solvent’s affinity towards extracted compounds, thus 
facilitating the anthocyanin extraction at a suitable ratio 
[8]. A similar study by [1] explored the efficacy of aqueous 
glycerol for polyphenolic extraction from rice bran, where 
they concluded that increasing glycerol volume increased 
the yield of total phenols. The difference in the polyphenolic 
extraction efficiency may be due to the varied functionality 
of glycerol with different plant materials. In a study by [2], 
acidified glycerol treatments were given to waste orange 
peels where the yield of total polyphenols achieved was 
approximately 30% higher than the conventional extraction 
techniques in a significantly shorter processing time. The 
glycerol’s viscosity may have slowed the diffusion of 
phenolics in water/glycerol mixtures compared to pure 
solvents [42].

3.4  Antioxidant activities (DPPH and FRAP)

The results of the DPPH assay have shown that the higher 
anthocyanin content is proportionate to the antioxidant 
capacity, but this is not a general principle [49]. To ascertain 
the stated fact, the anthocyanin extracts of each solvent 
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were assayed with two antioxidant tests: antiradical activity 
(DPPH) and reducing power (FRAP).

As can be seen, the experimental values of antiradical 
activity in terms of the DPPH assay of S. cumini pulp 
extract are presented in Fig.  5. The DPPH free radical 
scavenging activity of glycerol (73.35% inhibition) was 
significantly higher than the conventional solvents. The 
radical scavenging activity for the conventional solvents was 
similar (water–70.74, ethanol–70.47 and methanol–70.62% 
inhibition). The water-glycerol extract displayed a 
higher antiradical activity, which is proportionate to the 
higher phenolic and anthocyanin content. These findings 
concurred with our previous study with NADES (in 
the communication), where the antiradical activity was 
proportionate to anthocyanin content. This outcome 
strongly demonstrated that the antioxidant activity of the 
extracts varies with the type of solvent used given the same 
conditions. Anis & Ahmed [4] observed similar results for 
antiradical activities of phenols and flavonoids from Rumex 
hastatus extracted with water-glycerol extraction systems, 
where the highest antiradical activity (90.62%) was obtained 
with the higher phenolic content. Increasing solvent polarity 
promotes higher antioxidant extraction [22]

As stated earlier, despite the consolidated concept that 
higher phenolic content is accompanied by proportionally 
higher antioxidant capacity, several other investigations 
highlighted that a correlation between phenolic content 
and antioxidant activity is not always significant [38]. The 
differences in anti-radical activity and reducing power 
may reflect differences in the total amount of polyphenols 
and interactions amongst them, which may affect the 

antioxidant activity of the extracts. It has been reported 
that anthocyanins account for a major part of antioxidant 
capacity, followed by other phenolic compounds [59]. 
The results (Fig. 6) showed a proportionate decrease in 
the reducing power of the extracts between the solvents 
as opposed to their phenolic content. The water-glycerol 
extract showed a lower reducing power when compared to 
the conventional solvents, where the antiradical activity 
was higher for the same. There is enough significance 
in the interactions between antioxidant constituents of 
the extracts, where the higher reducing and antiradical 
activities may be displayed by the polar fractions.

The differences between the antiradical activity and 
reducing power may be attributed to the synergism/
antagonism mechanism reflecting the differences in 
interactions amongst the polyphenols, thus affecting the 
antioxidant activity of extracts [27, 31, 42]. Similar results 
were observed for antiradical activity and reducing power 
by Philippi et al. [42] while extracting polyphenols from 
eggplant peel using aqueous glycerol aided with ultrasonic 
treatments. The reducing power was quite lower compared 
to antiradical activity, where the difference between the 
results for glycerol and ethanol was insignificant. A 
significant difference between the results of DPPH and 
FRAP was observed for the phenolic extraction of lotus 
seedpod using aqueous glycerol, where antiradical was 
higher for ultrasound with glycerol but reducing power 
was higher for water bath incubation with glycerol [7].

Summarising the results of the presented study, the 
efficient extraction of anthocyanins can be alternatively 
carried out by glycerol as a solvent. It is clear from the 
results that a higher yield of anthocyanins was obtained 
compared to the conventional solvents.
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Fig. 5  DPPH radical scavenging activity with different solvents
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4  Conclusion

Anthocyanins, being vacuolar pigments, may not be 
completely extracted with the conventional techniques of 
solvent extraction, where the sample may not be able to 
completely disperse into the substrate, thus making them 
unavailable for extraction. Using a green extraction process 
as a pre-treatment, such as ultrasonication, may help 
reduce the utilisation of organic solvents. Green solvents 
such as glycerol are natural substances without toxicity, 
making them a suitable candidate for separating bioactive 
compounds from food matrixes. This study has validated 
the efficiency of recovering phenolic compounds, that is, 
anthocyanins, from S. cumini fruit pulp. For a potential 
industrial application, such a procedure would be desirable 
as the production costs would be significantly lowered, and 
the extracts would not require further processing. They could 
be directly incorporated into food products. Pre-treatment 
techniques, such as ultrasound, would lower the time taken, 
thus increasing the efficiency of the whole process. This 
investigation may be regarded as the first step in applying 
an integrative process development approach that provides 
alternatives for recovering anthocyanins from the pulp of 
S. cumini fruit. However, the scalability of the extraction 
methods needs to be explored for commercial success of 
this method.
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