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Abstract
IRPSM is the extended form of RPSM that gives an approximate solution to boundary value problems without requiring an 
exact solution. This method creates a truncated series for the determination of the missing initial conditions. The present 
study is conducted to evaluate semi-numerical solutions to differential equations using the Improved Residual Power Series 
Method (IRPSM). Our main objective is to check whether the proposed scheme is efficient for solving such equations or not. 
The solution of differential equations has been approximated using truncated residual power series. The method is used to 
solve differential equations for higher-order linear and non-linear boundary value problems. Absolute errors for the solved 
problems are calculated to ensure accuracy. It is also compared with some known methods, like the Differential Transform 
Method (DTM) and the Homotopy Perturbation Method (HPM). For the calculations, Mathematica 12.0 software is used. 
The computed results are compared to the exact solutions as well as the available results in the literature. The results showed 
that the results obtained by IRPSM are closely related to the exact solution when compared to the DTM and HPM results.

Keywords Differential equations · Linear boundary value problem · Nonlinear boundary value problem · Residual error · 
Absolute error · IRPSM

1 Introduction

Differential equations have a long and notable history, 
reaching back to the seventeenth century, when Isaac 
Newton and Gottfried Leibniz introduced calculus inde-
pendently. They discovered the relationship between 
the derivative and the quantity’s rate of change, which 
prompted the development of differential calculus. One of 
the first fields in which differential equations were used was 
physics, where they were employed to describe how objects 
moved when subjected to forces. Another early and influ-
ential application of differential equations was in celestial 

mechanics, where ODEs were used to simulate the motion 
of planets and comets in the solar system. Leonhard Euler 
made substantial contributions to the theory of differential 
equations during the eighteenth century, including the crea-
tion of techniques for resolving both linear and nonlinear 
ODEs. The study of differential equations as a distinct field 
of study was made possible by Euler's work. The theory of 
differential equations was improved upon in the nineteenth 
century by mathematicians including Joseph Fourier, Jean-
Baptiste Fourier, and Carl Gustav Jacobi. The invention of 
Fourier series, which are used to express periodic functions 
as an infinite sum of sine and cosine functions, was signifi-
cantly aided by these mathematicians. The emergence of 
computers and numerical methods for solving differential 
equations in the twentieth century transformed the evalu-
ation of differential equations. This enabled the study of 
complicated systems that could not be solved analytically, 
leading to the development of computational methods for 
solving differential equations.

The study of differential equations has been critical to 
numerous scientific breakthroughs, including the discovery 
of gravitational waves, the evolution of quantum physics, 
and the knowledge of fluid dynamics. They are employed 
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in the modeling and forecasting of the behavior of com-
plex processes, as well as to create efficient algorithms 
for problems that cannot be solved analytically. In almost 
every physical, technical, or biological activity, differential 
equations are used as a key component of the model. Many 
scientific and engineering topics require the knowledge of 
differential equations as a fundamental component. Models 
from the subject of mathematics that is relevant to science 
and engineering are clearly important for interpreting physi-
cal phenomena. Differential equations, like those employed 
to address problems in daily life, might not always be 
directly solved, i.e., lack closed form solutions. Numerical 
techniques can be used to approximate the solutions instead. 
Because the analytical solution of higher-order boundary 
value problems is a time-consuming process in general, 
researchers have switched their focus to approximate solu-
tions. For example, Hossain and Islam [1] used the Galerkin 
method to find numerical solutions to higher-order differ-
ential equations. Tawfiq et al. [2] presented a semi-analytic 
technique, based on two-point oscillatory interpolation for 
solving higher-order ODEs with two-point boundary condi-
tions. To estimate the solution of the boundary value prob-
lems as a weighted sum of polynomials, Bhowmik [3] used 
the spectral collocation method. Chawla [4] described the 
development of finite difference methods for the solution 
of differential equations that are described by boundary 
conditions at two points and involve non-linear terms in 
the equation. Kasi et al. [5] used the finite element method 
to solve a specific type of boundary value problem. In their 
research, they developed a numerical method based on the 
Petrov–Galerkin method with quintic B-splines as basis 
functions and septic B-splines as weight functions. The 
specific problem they addressed is a generic ninth order 
boundary value problem with a set of boundary conditions. 
Din [6] and Yildirim [7] used the homotopy perturbation 
method and modified variational iteration method to solve 
boundary value problems of ninth- and tenth-order. Nawaz 
et al. [8] used the optimal homotopy asymptotic method 
to present an approximate solution to linear and nonlinear 
tenth-order boundary value problems. By reformulating 
BVPs of a higher-order as an analogous system of integral 
equations, Nadjafi et al. [9] solved them using the homot-
opy perturbation method. Hassan and Erturk [10] solved 
fifth-, sixth-, ninth-, tenth-, and twelfth-order (linear and 
nonlinear) boundary value problems using the differen-
tial transformation method. In order to estimate solutions 
to higher-order boundary value problems with two-point 
boundary conditions, Wazwaz [11] introduced a powerful 
semi-numerical approach and to create such solutions, a 
modified version of the Adomian decomposition method 
was used.

While linear differential equations are easily solvable, 
higher-order and nonlinear equations are more complex to 

solve. Due to this impact, researchers are now concentrat-
ing on approximating solutions to these equations. But all 
the above-mentioned methods and many other methods have 
their own set of limitations, for example, majority of these 
methods involve time-consuming and complicated lineariza-
tion, discretization, and perturbation techniques. To some 
extent, we can overcome these constraints by using the 
Residual Power Series Method (RPSM). It’s not necessary 
to discretize, perturb, or linearize data when using the RPSM 
[12]. RPSM is a numerical method that generates polyno-
mial-based approximate solutions to nonlinear and linear 
higher-order IVPs and BVPs and then uses the residual func-
tion to iteratively improve the accuracy of the solution. This 
method is quite basic and easy to implement, and it can be 
mechanized with computer software. The power series can 
be shortened at any point to reach the appropriate level of 
precision, which enables the method to produce a solution 
with a high degree of accuracy. This method is especially 
beneficial when the solution to the differential equation con-
tains a singularity or other peculiar properties, as it can han-
dle these problems more easily than other numerical meth-
ods. Of course, the residual power series method, like any 
numerical method, has limitations and may not be the best 
option in every scenario. Even though, its versatility, accu-
racy, and simplicity make it a powerful tool in many numeri-
cal analysis applications. Many mathematicians have utilized 
RPSM to tackle a variety of issues. For example, Bayrak 
et al. [13] proposed a numerical approach for solving linear 
and nonlinear space–time fractional problems with Dirichlet 
boundary conditions. The approach involves using a modi-
fied form of the Adomian decomposition method (ADM) in 
conjunction with a new parameter λ to improve the accu-
racy of the solutions. The main principle of the method is 
to first solve the space–time fractional differential equation 
and then solve the resulting set of ordinary differential equa-
tions, which can be either linear or nonlinear. Following that, 
the ADM is used to iteratively solve the equation system 
that results. An approximate solution to a nonlinear time-
fractional, two-component evolutionary system of order 2 
using RPSM was provided by Alquran [14]. Qayyum and 
Fatima [15] implemented the RPSM to various stiff systems 
of ODEs, and they got closed-form solutions, which shows 
that the proposed strategy is effective for the stiff group of 
differential equations. These are initial value and reduced 
order problems. But when the order of the expansion is 
high and the problems are BVPs, the residual power series 
method can suffer from poor convergence and precision. To 
overcome this problem, an updated version of the method 
called the improved residual power series method (IRPSM) 
was developed.

Inspired by Gul et al. [16], who have extended RPSM to 
the approximate solutions to boundary value problems, they 
solved the 5th and 6th-order boundary value problems by 
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using IRPSM. They were the first ones to give proper shape 
to IRPSM. Later on, Khan et al. [17] solved the 12th-order 
linear and nonlinear BVPs by using IRPSM. They compared 
the results of IRPSM with some other methods and the exact 
solutions of the considered problems. Recently, Dawar et al. 
[18] implemented the IRPSM in the field of fluid mechanics 
by solving the thin film flow problem over a planar surface. 
They compared their results with some numerical and analyti-
cal methods and found a good agreement among all the results. 
In this article, the authors have extended the same method 
to solve the 13th and 14th-order boundary value problems. 
The results of the present analysis will be compared with the 
previous studies in which the authors used the Differential 
Transform Method (DTM) and the Homotopy Perturbation 
Method (HPM). Furthermore, the present results will be com-
pared with the exact solution and residual error of the con-
sidered problem. The study is organized as follows: Sect. 2 
presents the basic idea of IRPSM. Section 3 presents solutions 
to boundary value problems by IRPSM. Section 4 presents 
the discussion of the obtained results. Section 5 presents the 
conclusion of the analysis.

2  Basic idea of IRPSM

For determining the solution of IVPs, RPSM contains the 
power series expansion around the initial point u = u0 . We 
extract initial conditions from the exact solution for BVPs. 
Using IRPSM, we assume the boundary conditions as initial 
conditions by inserting dummy variables and find out later 
with the help of boundary conditions. To understand the basic 
idea of IRPSM, consider below nth order BVP:

with boundary conditions:

and initial conditions:

In Eqs. (1) and (3), y is unknown, and g and �m are known 
constants or functions. Assume the kth truncated power series 
as:

where Pj are the unknowns to be calculated. Since the BVP 
is of nth order, we shall determine the value of the constants 
Pj for j = 0, 1, 2, ..., n − 1 . For k = 0 , Eq. (4) reduces as:

(1)y(n)(u) = g
(
u, y(m)(u)

)
, 0 ≤ u ≤ a,m = 0, 1, 2, ..., n − 1,

(2)y(n)(u) = �m,m = 0, 1, 2, ..., n − 1.

(3)y(n)(0) = �m,m = 0, 1, 2, ..., n − 1.

(4)y(u) =

k∑
j=0

Pju
j, k = 0, 1, 2, ..., n − 1,

Putting u = 0 in Eq. (5) and comparing with the initial 
condition, we have:

For k = 1 , taking first derivative of Eq. (4) and then sub-
stitute u = 0 . Comparing with the initial condition yields to:

Repeating the same procedure for k = 2 one can get:

For k = n − 1 , taking the (n − 1) times derivative of 
Eq. (4) and then substitute u = 0 . Comparing with the ini-
tial condition we get:

It should be noted that for boundary value problems, 
we rely on boundary conditions to determine the value of 
unknown initial conditions after assuming their value. Rest 
of the constants Pj for k = n, n + 1, n + 2, ... , can be obtained 
by employing the following method. First consider the kth 
truncated series as:

where yinitial  is  the k th truncated ser ies.  For 
k = 0, 1, 2, ..., n − 1 , yinitial is given as:

Substituting the values Pj of in Eq. (11), we get:

Rewriting Eq. (1) in the form given below:

Using Eq. (4) in Eq. (13) to obtain the following kth order 
residual function:

(5)y(u) =

0∑
j=0

Pju
j.

(6)P0 = �0.

(7)P1 =
�1

1!
.

(8)P2 =
1

2!
�2.

(9)Pn−1 =
1

(n − 1)!
�n−1.

(10)y(u) = yinitial(u) +

k∑
j=n

Pju
j,

(11)
yinitial(u) = y(n−1)(u) = P0 + P1u + P2u

2 +…+ Pn−1u
n−1.

(12)

yinitial(u) = �0 + �1u +
1

2!
�2u

2 +…+
1

(n − 1)!
�n−1u

n−1.

(13)y(n)(u) − g
(
u, y(m)(u)

)
= 0.
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By RPSM, we have:

To obtain the nth approximate solution set k = n ( n is the 
order of the problem) in Eq. (15), we get:

Differentiating Eq. (16) (k − n) times with respect to u and 
setting u = u0 , we get:

From this, we obtained the value of Pn . So, the nth trun-
cated series will become:

To obtain the required accuracy, repeat this procedure.

3  Solution of the boundary value problems 
by IRPSM

3.1  Solution of the 13th order linear boundary 
value problem

Apply IRPSM to solve the below given 13th-order linear 
boundary value problem:

with the boundary conditions:

(14)

Resk(u) =
k
∑

j=n
j(j − 1)(j − 2)… (j − n + 1)Pjuj−n

− g

(

u,
k
∑

j=m
j(j − 1)(j − 2)… (j − m + 1)Pjuj−m

)

.

(15)d
k−n

duk−n
Resk(0) = 0.

(16)

Resn(u) =
n
∑

j=n
j(j − 1)(j − 2)… (j − n + 1)Pjuj−n

− g

(

u,
n
∑

j=m
j(j − 1)(j − 2)… (j − m + 1)Pjuj−m

)

(17)

dk−n

duk−n
Resk

(

u0
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dk−n

duk−n

( k
∑

j=n
j(j − 1)(j − 2)… (j − n + 1)Pjuj−n

)

−

dk−n

duk−n

{

g

(

u,
k
∑

j=m
j(j − 1)(j − 2)… (j − m + 1)Pjuj−m

)}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

m = 0, 1, 2, ..., n − 1.

(18)yn(u) = P0 + P1u + P2u
2 +⋯ + Pnu

n.

(19)y(13)(u) = cos (u) − sin (u),

Analytic solution of the Eq. (19) is given as:

We know that the given Eq. (19) is of thirteen-order, 
so we need thirteen initial conditions. Since, seven initial 
conditions are given and the rest of the boundary condi-
tions will be considered as initial conditions by assign-
ing dummy variables. Later on, we will find these initial 
conditions by mean of boundary conditions. Therefore, 
we assume that:

where a, b, c, d, e and f, are the missing conditions which 
have to be determined. Consider the following truncated 
series:

Using Eq. (23) to find the values of constants yj . Putting 
k = 0 in (23), we have:

For j = 1 , differentiating Eq. (23) one time and substi-
tute u = 0 , we have:

Furthermore, we have obtained the following constants:

Rewriting the given boundary value problem Eq. (19) 
in the form:

The kth residual function can be written as:

(20)

y(0) = y
(1)(0) = y

(4)(0) = y
(5)(0) = 1,

y
(2)(0) = y

(3)(0) = y
(6)(0) = −1,

y(1) = cos (1) + sin (1), y
(1)(1) = cos (1) − sin (1),

y
(2)(1) = − cos (1) − sin (1), y(3)(1) = − cos (1) + sin (1),

y
(4)(1) = cos (1) + sin (1), y

(5)(1) = cos (1) − sin (1).

(21)y(u) = cos (u) + sin (u).

(22)

y(0) = 1, y(1)(0) = 1, y(2)(0) = −1, y(3)(0) = −1,
y(4)(0) = 1, y(5)(0) = 1, y(6)(0) = −1,
y(7)(0) = a, y(8)(0) = b, y(9)(0) = c, y(10)(0) = d,
y(11)(0) = e, y(12)(0) = f ,

(23)y(u) =

k∑
j=0

yju
j
, j = 0, 1, 2, ..., k.

(24)y0 = 1.

(25)y1 = 1.

(26)

⎧⎪⎨⎪⎩

y2 = −
1

2
, y3 = −

1

3!
, y4 =

1

4!
, y5 =

1

5!
, y6 = −

1

6!
, y7 =

a

7!
,

y8 =
b

8!
, y9 =

c

9!
, y10 =

d

10!
, y11 =

e

11!
, y12 =

f

12!
.

⎫⎪⎬⎪⎭

(27)y(13)(u) − cos u + sin u = 0



Journal of Umm Al-Qura University for Applied Sciences 

Thus, the kth residual function of Eq. (27) can be writ-
ten as:

For k = 13 at u = 0 , we have:

Similarly, the following results are obtained:

(28)d
k−13

duk−13
Resk(u) = 0, k = 13, 14, 15,… .

(29)d
k−13

duk−13

{
k∑

j=13

(
j(j − 1)(j − 2)(j − 3)(j − 4)(j − 5)(j − 6)(j − 7)

(j − 8)(j − 9)(j − 10)(j − 11)(j − 12)yju
j−13

)
− cos(u) + sin(u)

}
= 0.

(30)y13 =
1

6,227,020,00
.

and so on.

(31)y14 = −
1

87,178,291,200
, y15 = −

1

1,307,674,368,000
,

Now, by inserting the values yi(i = 0 − 30) in Eq. (23), 
we can obtain the following approximate solution in terms 
of dummy variables:

Using the boundary conditions to find the values of the 
dummy variables in Eq. (32), we have:

(32)y(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + u −
u2

2
−

u3

6
+

u4

24
+

u5

120
−

u6

720
+

au7

5040
+

bu8

40,320
+

cu9

362,880
+

du10

3,628,800
+

eu11

39,916,800

+
fu12

479,001,600
+

u13

6,227,020,800
−

u14

87,178,291,200
−

u15

1,307,674,368,000
+

u16

20,922,789,888,000

+
u17

355,687,428,096,000
−

u18

6,402,373,705,728,000
−

u19

121,645,100,408,832,000
+

u20

2,432,902,008,176,640,000
+

u21

51,090,942,171,709,440,000
−

u22

1,124,000,727,777,607,680,000
−

u23

25,852,016,738,884,976,640,000
+

u24

620,448,401,733,239,439,360,000
+

u25

15,511,210,043,330,985,984,000,000
−

u26

403,291,461,126,605,635,584,000,000
−

u27

10,888,869,450,418,352,160,768,000,000
+

u28

304,888,344,611,713,860,501,504,000,000
+

u29

8,841,761,993,739,701,954,543,616,000,000
−

u30

265,252,859,812,191,058,636,308,480,000,000

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(33)
{

a = 1.0000000001528646, b = 1.0000000054366935, c = 0.9999999119447364,

d = −0.9999991998813114, e = −1.0000040314881915, f = 1.0000089254343427.

}
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Substituting these values in Eq. (33), we get:

Equation (34) is the required approximate solution of 
the problem under consideration.

3.2  Solution of the 13th order nonlinear boundary 
value problem

Apply IRPSM to solve the below given 13th order nonlin-
ear boundary value problem:

with the boundary conditions:

Exact solution of the given problem is:

We know that Eq. (35) is of thirteen-order, so we need 
thirteen initial conditions. Following the basic idea of 
IRPSM, the following initial conditions are determined:

where a, b, c, d, f and g, are the missing conditions which 
have to be determined. Consider the following truncated 
series:

(34)y(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + u −
u2

2
−

u3

6
+

u4

24
+

u5

120
−

u6

720
− 0.0001984126984430287u7 + 0.00002480158743642593u8

+0.000002755731679741888u9 − 2.755729717485976 × 10−7u10 − 2.5052209382720 × 10−8u11

+2.087694332199188 × 10−9u12 +
u13

6,227,020,800
−

u14

87,178,291,200
−

u15

1,307,674,368,000

+
u16

20,922,789,888,000
+

u17

355,687,428,096,000
−

u18

6,402,373,705,728,000
−

u19

121,645,100,408,832,000

+
u20

2,432,902,008,176,640,000
+

u21

51,090,942,171,709,440,000
−

u22

1,124,000,727,777,607,680,000
−

u23

25,852,016,738,884,976,640,000
+

u24

620,448,401,733,239,439,360,000
+

u25

155,112,100,433,309,859,840
−

u26

403,291,461,126,605,635,584,000,000
−

u27

10,888,869,450,418,352,160,768,000,000

+
u28

304,888,344,611,713,860,501,504,000,000
+

u29

8,841,761,993,739,701,954,543,616,000,000

−
u30

265,252,859,812,191,058,636,308,480,000,000
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(35)y(13)(u) = e−uy2(u),

(36)

y(0) = y(1)(0) = y(2)(0) = y(3)(0) = y(4)(0) = y(5)(0) = y(6)(0) = 1,

y(1) = y(1)(1) = y(2)(1) = y(3)(1) = y(4)(1) = y(5)(1) = e.

(37)u(x) = ex.

(38)
{

y(0) = 1, y(1)(0) = 1, y(2)(0) = 1, y(3)(0) = 1, y(4)(0) = 1, y(5)(0) = 1, y(6)(0) = 1,

y(7)(0) = a, y(8)(0) = b, y(9)(0) = c, y(10)(0) = d, y(11)(0) = f , y(12)(0) = g.

}

Using Eq. (39) to find the values of constants yj . Putting 
k = 0 in (39), we have:

For j = 1 , differentiating Eq. (39) one time and substi-
tute u = 0 , we have:

Furthermore, we have obtained the following constants:

Rewriting the given boundary value problem in the 
below form:

(39)y(u) =
∑k

j=0
yju

j, j = 0, 1, 2, ..., k.

(40)y0 = 1.

(41)y1 = 1.

(42)

⎧⎪⎨⎪⎩

y2 =
1

2!
, y3 =

1

3!
, y4 =

1

4!
, y5 =

1

5!
, y6 =

1

6!
, y7 =

a

7!
,

y8 =
b

8!
, y9 =

c

9!
, y10 =

d

10!
, y11 =

f

11!
, y12 =

g

12!
.

⎫⎪⎬⎪⎭

(43)y(13)(u) − e−uy2(u) = 0.

The kth residual function can be written as:

(44)d
k−13

duk−13
Resk(u) = 0, k = 13, 14, 15,… .
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Thus, the kth residual function of Eq. (27) can be writ-
ten as:

For k = 13 at u = 0 , we have:

(45)d
k−13

duk−13

⎧
⎪⎨⎪⎩

k�
j=13

�
j(j − 1)(j − 2)(j − 3)(j − 4)(j − 5)(j − 6)(j − 7)

(j − 8)(j − 9)(j − 10)(j − 11)(j − 12)yju
j−13

�
− e−u

�
13�
j=0

yju
j

�2⎫⎪⎬⎪⎭
= 0.

(46)y13 =
1

6,227,020,800
.

Similarly, the following results are obtained:

and so on.
Now, by inserting the values yi(i = 0 − 25) in Eq. (39), 

we obtained the following approximate solution in terms of 
dummy variables:

Using the boundary conditions to find the values of the 
dummy variables in Eq. (48), we have:

(47)y14 =
1

87,178,291,200
, y15 =

1

1,307,674,368,000
.

(48)y(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + u +
u2

2
+

u3

6
+

u4

24
+

u5

120
+

u6

720
+

au7

5040
+

bu8

40,320
+

cu9

362,880
+

du10

3,628,800
+

fu11

39,916,800

+
gu12

479,001,600
+

u13

6,227,020,800
+

u14

87,178,291,200
+

u15

1,307,674,368,000
+

u16

20,922,789,888,000

+
u17

355,687,428,096,000
+

u18

6,402,373,705,728,000
+

u19

121,645,100,408,832,000
−

u20

2,432,902,008,176,640,000
+

au20

1,216,451,004,088,320,000
−

u21

51,090,942,171,709,440,000
+

bu21

25,545,471,085,854,720,000
−

u22

1,124,000,727,777,607,680,000
+

cu22

562,000,363,888,803,840,000

−
u23

25,852,016,738,884,976,640,000
+

du23

12,926,008,369,442,488,320,000
−

u24

620,448,401,733,239,439,360,000
+

fu24

310,224,200,866,619,719,680,000
−

u25

15,511,210,043,330,985,984,000,000
+

gu25

7,755,605,021,665,492,992,000,000

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(49)
{

a = 0.9999999993169848, b = 1.0000000239098972, c = 0.9999996172466545,

d = 1.0000034468309997, f = 0.999982755640125, g = 1.0000379587046038.

}
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Substituting these values in Eq. (48), we get:

Equation (50) is the required approximate solution of the 
problem under consideration.

3.3  Solution of the 14th order nonlinear boundary 
value problem

Apply IRPSM to solve the below given 14th order nonlinear 
boundary value problem:

with the boundary conditions:

(50)y(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + u +
u2

2
+

u3

6
+

u4

24
+

u5

120
+

u6

720
+ 0.0001984126982771795u7+

0.000024801587894590704u8 + 0.000002755730867632976u9

+2.755741420940806 × 10−7u10 + 2.505167637786909 × 10−8u11

+2.087754944251968 × 10−9u12 +
u13

6227020800
+

u14

87178291200

+
u15

1307674368000
+

u16

20922789888000
+

u17

355687428096000
+

u18

6402373705728000
+

u19

121645100408832000
+

4.110317617697346 × 10−19u20 + 1.957294199936448 × 10−20u21

+8.896784581897299 × 10−22u22 + 3.868196836479508 × 10−23u23

+1.61168198434302 × 10−24u24 + 6.447439720087697 × 10−26u25

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(51)
y(14)(u) = e−uy2(u),

where a, b, c, d, f, g and h, are the missing conditions which 

Table 1  Comparison of the 
IRPSM and DTM results

u Exact Present results Iftikhar et al. [19]

IRPSM Absolute error Residual DTM Absolute error

0.0 1.0 1.0 0.0 0.0 1.0000 0.0
0.1 1.094838 1.094838 0.0 0.0 1.09484 2.22045 ×  10–6

0.2 1.178736 1.178736 0.0 0.0 1.17874 0.0
0.3 1.250857 1.250857 0.0 1.11 ×  10–16 1.25086 2.22045 ×  10–15

0.4 1.310479 1.310479 4.44 ×  10–16 1.11 ×  10–16 1.31048 6.66134 ×  10–15

0.5 1.357008 1.357008 0.0 – 5.6 ×  10–17 1.35701 1.11022 ×  10–14

0.6 1.389978 1.389978 2.22 ×  10–16 5.55 ×  10–17 1.38998 1.04361 ×  10–14

0.7 1.40906 1.40906 0.0 1.39 ×  10–17 1.40906 5.32907 ×  10–15

0.8 1.414063 1.414063 0.0 – 2.4 ×  10–17 1.41406 8.88178 ×  10–16

0.9 1.404937 1.404937 0.0 8.33 ×  10–17 1.40494 0.0
1.0 1.381773 1.381773 2.22 ×  10–16 1.11 ×  10–16 1.38177 0.0

Exact solution of the given problem is:

We know that Eq. (51) is of fourteen-order, so we need 
fourteen initial conditions. Following the basic idea of 
IRPSM, the following initial conditions are determined:

(52)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

y(0) = y(2)(0) = y(4)(0) = y(6)(0) = y(8)

(0) = y(10)(0) = y(12)(0) = 1,
y(1) = y(2)(1) = y(4)(1) = y(6)(1) = y(8)

(1) = y(10)(1) = y(12)(1) = e.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(53)y(u) = eu.

(54)
{

y(0) = 1, y(1)(0) = a, y(2)(0) = 1, y(3)(0) = b, y(4)(0) = 1, y(5)(0) = c, y(6)(0) = 1,

y(7)(0) = d, y(8)(0) = 1, y(9)(0) = f , y(10)(0) = 1, y(11)(0) = g, y(12)(0) = 1, y(13)(0) = h.

}
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Table 2  Comparison of the 
IRPSM and VIM results

u Exact Present results Iftikhar et al. [19]

IRPSM Absolute error Residual DTM Absolute error

0.0 1.0 1.0 0.0 0.0 1.0 0.0
0.1 1.105171 1.105171 7.76 ×  10–17 2.22 ×  10–16 1.10517 4.44089 ×  10–16

0.2 1.221403 1.221403 7.65 ×  10–18 0.0 1.2214 4.44089 ×  10–16

0.3 1.349859 1.349859 1.08 ×  10–19 2.22 ×  10–16 1.34986 2.44249 ×  10–15

0.4 1.491825 1.491825 1.74 ×  10–17 8.88 ×  10–16 1.49182 7.32747 ×  10–15

0.5 1.648721 1.648721 1.15 ×  10–16 2.02 ×  10–14 1.64872 1.22125 ×  10–14

0.6 1.822119 1.822119 9.39 ×  10–17 2.19 ×  10–13 1.82212 1.11022 ×  10–14

0.7 2.013753 2.013753 1.92 ×  10–16 1.64 ×  10–12 2.01375 5.77316 ×  10–15

0.8 2.225541 2.225541 3.1 ×  10–16 9.36 ×  10–12 2.22554 1.77636 ×  10–15

0.9 2.459603 2.459603 1.95 ×  10–16 4.36 ×  10–11 2.4596 8.88178 ×  10–16

1.0 2.718282 2.718282 6.45 ×  10–17 1.73 ×  10–10 2.71828 0.0

Fig. 1  Comparison of absolute and residual errors

Fig. 2  Comparison of absolute and residual errors

Fig. 3  Comparison of the approximate and exact solutions

Fig. 4  Comparison of the approximate and exact solutions

Table 3  Comparison of the IRPSM and HPM results

u Exact Present results Zari et al. 
[20]

IRPSM Absolute 
error

Residual |Exact-HPM|

0.0 1.0 1.0 0.0 0.0 –
0.1 1.105171 1.105171 1.61 ×  10–16 0.0 –
0.2 1.221403 1.221403 1.59 ×  10–16 0.0 2.2204 ×  10–16

0.3 1.349859 1.349859 2.18 ×  10–16 1.55 ×  10–15 –
0.4 1.491825 1.491825 3.29 ×  10–16 3.62 ×  10–14 1.9984 ×  10–16

0.5 1.648721 1.648721 5.03 ×  10–16 5.3 ×  10–13 –
0.6 1.822119 1.822119 4.44 ×  10–16 4.76 ×  10–12 5.8397 ×  10–14

0.7 2.013753 2.013753 4.98 ×  10–16 3.05 ×  10–11 –
0.8 2.225541 2.225541 8.46 ×  10–16 1.53 ×  10–10 8.1801 ×  10–13

0.9 2.459603 2.459603 9.6 ×  10–16 6.33 ×  10–10 -
1.0 2.718282 2.718282 8.24 ×  10–16 2.26 ×  10–9 -
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have to be determined. Consider the following truncated 
series:

Using Eq. (55) to find the values of constants yj . Putting 
k = 0 in (3.3.5), we have:

(55)y(u) =

k∑
j=0

yju
j
, j = 0, 1, 2, ..., k.

Fig. 5  Comparison of the approximate and exact solutions

Fig. 6  Comparison of absolute and residual errors

For j = 1 , differentiating Eq. (55) one time and substitute 
u = 0 , we have:

Furthermore, we have obtained the following constants:

(56)y0 = 1.

(57)y1 = a.

(58)

⎧

⎪

⎨

⎪

⎩

y2 =
1
2
, y3 =

b
3!
, y4 =

1
4!
, y5 =

c
5!
, y6 =

1
6!
, y7 =

d
7!
,

y8 =
1
8!
, y9 =

f
9!
, y10 =

1
10!

, y11 =
g
11!

, y12 =
1
12!

, y13 =
h
13!

.

⎫

⎪

⎬

⎪

⎭

Rewriting the given boundary value problem in the below 
form:

The kth residual function can be written as:

Thus, the kth residual function of Eq. (59) can be writ-
ten as:

For k = 14 at u = 0 , we have:

Similarly, the following results are obtained:

and so on.
Now, by inserting the values yi(i = 0 − 25) in Eq. (63), 

we obtained the following approximate solution in terms of 
dummy variables:

(59)y(14)(u) − e−uy2(u) = 0.

(60)dk−14

duk−14
Res

k(u) = 0, k = 14, 15, 16,… .

(61)dk−14

duk−14

⎧⎪⎨⎪⎩

k�
j=14

�
j(j − 1)(j − 2)(j − 3)(j − 4)(j − 5)(j − 6)(j − 7)

(j − 8)(j − 9)(j − 10)(j − 11)(j − 12)(j − 3)yju
j−14

�
− e−u

�
14�
j=0

yju
j

�2⎫⎪⎬⎪⎭
= 0.

(62)y14 =
1

87178291200
.

(63)y15 =
−1 + 2a

1307674368000
, y16 =

3 − 4a + 2a2

20922789888000
,

(64)y(u) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 + au +
u2

2
+

bu3

6
+

x4

24
+

cu5

120
+

u6

720
+

du7

5040
+

u8

40320
+

fu9

362880
+

u10

3628800
+

gu11

39916800

+
u12

479001600
+

hu13

6227020800
+

u14

87178291200
−

u15

1307674368000
+

au15

653837184000

+
u16

6974263296000
−

au16

5230697472000
+

a2u16

10461394944000
−

u17

50812489728000
+

au17

29640619008000
−

a2u17

59281238016000
+ ... +

gu25

7755605021665492992000000

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.
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Using the boundary conditions to find the values of the 
dummy variables in Eq. (64), we have:

Substituting these values in Eq. (64), we get:

Equation (66) is the required approximate solution of the 
problem under consideration.

4  Discussion

This section presents the discussion about obtained results 
by using IRPSM. Here, we have compared our results with 
the previous results obtained by Iftikhar et al. [19] and Zari 
et al. [20]. Iftikhar et al. [19] solved the 13th-order linear 
and nonlinear problems by using DTM and Zari et al. [20] 
solved the 14th-order nonlinear problem by using HPM. The 
results obtained by using IRPMS are compared with those 
published results of Iftikhar et al. [19] are shown in Tables 1 
and 2. From these tables, we can see that the error analysis 
of the present applied method (IRPSM) are very close to 
the exact solution when compared to the results obtained by 
Iftikhar et al. [19]. Thus, one can say that the IRPSM is of 
better interest than the DTM for solving both the 13th-order 
linear and nonlinear problems. Additionally, Figs. 1 and 2 
are displayed for the comparison of absolute and residual 
analysis. Figures 3 and 4 are displayed for the comparison 
of the exact and approximate solutions obtained by IRPSM, 
respectively. In Table 3, the 14th-order nonlinear problem 
is solved by IRPSM and compared the present results with 
HPM. The obtained results are compared with the published 
results of Zari et al. [20]. Zari et al. [20] used the HPM tech-
nique for solving the 14th-order nonlinear problem. Here, 

(65)

⎧
⎪⎪⎨⎪⎪⎩

a = 0.9999999999999992, b = 0.9999999999999996,

c = 1.0000000000000022, d = 0.9999999999999742,

f = 1.000000000000243, g = 0.9999999999978826,

h = 1.0000000000132956.

⎫
⎪⎪⎬⎪⎪⎭

(66)y(u) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 + 0.9999999999999992u +
u2

2
+ 0.16666666666666657u3 +

u4

24

+0.008333333333333352u5 + +
u6

720
+ 0.0001984126984126933u7

+
u8

40320
+ 0.000002755731922399259u9 +

u10

3628800
+ ...+

+1.611737571097584 × 10−24u24 + 6.44695028436102 × 10−26u25

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

we can see that the error analysis of the present applied 
method (IRPSM) are very close to the exact solution when 
compared to the results obtained by Zari et al. [20]. Thus, 
one can say that the IRPSM is of better interest than the 
HPM for solving the 14th-order nonlinear problem. Addi-
tionally, Figs. 5 and 6 are displayed for the comparison of 
exact and approximate solutions, and absolute and residual 
errors, respectively. Overall, the results obtained by IRPSM 
are closely related to the exact solution when compared to 
the DTM and HPM results.

5  Conclusion

Boundary value problems can be resolved using the 
improved residual power series method (IRPSM) without 
an exact solution being known. In this paper, the thirteen 
and fourteen-order linear and nonlinear BVPs are solved 
by using IRPSM. Mathematica 12.0 was used to do simu-
lations related to the three examples covered here. When 
the resulting outcomes are compared to previous studies 
in the literature, the IRPSM is proven to be more trust-
worthy and effective than other methods. The results of 
this method are remarkably close to the exact solution. 
Absolute errors have been computed to ensure accuracy. 
The procedure provided greater precision, demonstrating 
the effectiveness of the given method.
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