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Abstract
This study focuses on the control of the cross-diffusion effects on the thermosolutal Casson fluid stream with an internal heat 
source. These effects have practical applications in geothermal energy extraction, cooling of electronic devices, petroleum 
engineering, and polymer processing. With the help of similarity transformations, the governing equations are transformed 
to nonlinear ordinary differential equations (ODEs). The highly nonlinear differential equations are solved with the help 
of Bernoulli wavelet numerical scheme, and the outputs are compared with previous literature to validate the findings. The 
study investigates the forces of various physical parameters on the velocity, temperature, and concentration of the fluid and 
presents the outcomes in graphical form. In addition, the study provides information on skin friction, heat and mass transfers 
in tabular format. Overall, the research contributes to a better understanding of the behaviour of non-Newtonian fluids under 
different thermal and concentration gradients and has practical implications in various industrial processes. Our findings 
demonstrate the remarkable effectiveness and accessibility of the Bernoulli wavelet method in solving coupled nonlinear 
ODEs of this nature. The results exhibit outstanding agreement, particularly in engineering applications involving coupled 
nonlinear ODEs.
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1 Introduction

Thermosolutal convection [1, 2] refers to the behavior of liq-
uid stream induced by concentration and temperature gradi-
ents. It is a commonly observed occurrence in various usual 
and practical applications [3–9]. This occurrence arises due 
to buoyancy forces resulting from concurrent variations in 
concentration and temperature [10–12]. The Dufour effect 
[13, 14] describes the temperature caused by concentration 

gradients, while the Soret outcome [15, 16] refers to the 
concentration caused by temperature gradients. In situations 
where large temperature and concentration gradients exist, 
the cross-diffusion effects participate a vital task in natural 
and industrial processes, including combustion, materials 
processing, and biological systems. These effects are funda-
mental aspects studied in the field of transport phenomena 
and fluid dynamics [14–16].

Many researchers have conducted investigations on the 
impact of cross diffusion coefficients on natural thermoha-
line convection in different scenarios. For instance, Nithy-
adevi and Yang [17] examined the influence of these coef-
ficients on the usual convection of water in a partially heated 
area. The study of thermohaline convection with cross diffu-
sion effects involved the utilization of the lattice Boltzmann 
method [18]. Mahanthesh et al. [19] directed their attention 
towards investigating effect of cross diffusion on marangoni 
convection in non-Newtonian liquid flow. Xu et al. [20] con-
ducted lattice Boltzmann simulations to analyze the cross-
diffusion effects on thermohaline convection. Recently by 
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Mohammadi and Nassab [9] explored thermohaline convec-
tion flow with cross diffusion effects in an asymmetrical 
geometry. Additionally, Li et al. [21] developed a mathe-
matical model to replicate the behavior of a solutal gradi-
ent solar pond, incorporating the cross-diffusion effects on 
thermohaline convection.

In practical applications, many liquids show non-
Newtonian behavior, which can drastically influence flow 
appearances, as well as thermohaline properties [22]. The 
Casson liquid model is usually used to define the rheological 
behavior of various materials such as food products, paints, 
and blood [23]. Unlike Newtonian fluids, Casson fluids 
possess a yield stress below which they do not flow and 
exhibit a non-linear relationship between shear stress 
and shear rate. In the Casson fluid model, there are two 
key parameters: the yield stress and the Casson viscosity. 
According to the Casson fluid model, the shear rate at the 
fluid's surface is zero when the shear stress is below the 
capitulate stress, and it increases linearly with the shear 
stress when it surpasses the yield stress [24]. Aktharet al. 
[25] utilized a Casson fluid model to analyze the peristaltic 
flow in an elliptical duct with double diffusion effects 
through a mathematical investigation. In their research, Roy 
and Saha [26] found that the flow of a Cassondusty fluid 
over a permeable stretching pane is subject to significant 
changes based on different physical parameters. They also 
discovered that these parameters can be adjusted and utilized 
to manipulate the flow and heat transfer characteristics. The 
study by Pushpalatha et al. [27] involved using numerical 
methods to analyse the behaviour of chemically reacting 
Casson fluid as it flows unsteadily past a surface that is being 
stretched. Mahdya [28] is studied effect of cross diffusion 
terms on non-Newtonian fluid permeable layer.

Non-Newtonian fluids and double diffusive flows are 
of great interest in the study of the cross-diffusion effects, 
which can have important practical information in fields 
such as materials science and medicine. Janaiah and Reddy 
[29] performed a study on the impacts of cross diffusion 
terms on ferromagnetic Casson fluid flow. The study utilized 
numerical solutions to model thermal diffusion effects and 
presented the findings graphically. In a study conducted by 
Majeed et al. [30], the impacts of cross diffusion terms on 
second grade fluid flow were investigated in the context of 
a stretching cylinder with thermal radiation. Mustafa et al. 
[31] examined double diffusive fourth grade peristaltic fluid 
flow in the presence of cross diffusion terms. Reddy [32] is 
theoretically analysed Casson fluid flow over an inclined 
porous layer.

An internal heat source is a process that generates heat 
within a material or system. This can be due to a variety of 
sources, including chemical reactions, nuclear reactions, or 
electrical resistance [33]. The heat generated by the internal 
source can cause a temperature increase within the system and 

alter its thermal behaviour. Internal heat sources play a cru-
cial role in both natural and industrial processes. For example, 
in nuclear reactors, the heat generated by nuclear reactions is 
used to generate electricity. In combustion engines, the heat 
generated by fuel combustion drives the engine. In materials 
processing, such as welding and casting, heat generated by elec-
trical resistance or chemical reactions is used to melt and join 
materials. The heat generated by the internal source can create 
a temperature gradient, which can cause thermal stresses and 
material deformation. Therefore, understanding the behavior of 
internal heat sources is essential in designing and optimizing 
processes that involve heat generation, such as energy produc-
tion and materials processing, to ensure the safety and effec-
tiveness of the systems. Fluid flow problems with internal heat 
source has been investigated extensively [34–36].

Overall, the learn of double-diffusive non-Newtonian 
fluid flow with the influence of internal heat source and the 
cross diffusion effects is a complex and challenging problem 
in fluid mechanics. It is very difficult to solve highly non-
linear fluid flow problems by using analytically. Hence, the 
analysis of such flows requires the use of advanced math-
ematical and numerical techniques, and it can provide valu-
able insights into the behaviour of non-Newtonian fluids 
under different thermal and concentration gradients. There 
are various types of numerical methods available in the liter-
ature, and we consider one such wavelet numerical method. 
The study of wavelets is a relatively new and developing field 
in mathematics. It has found applications in various techni-
cal fields. However, numerical wavelets have established to 
be highly effective in signal examination, especially in rep-
resenting and segmenting waveforms, performing time–fre-
quency analysis, and implementing quick algorithms in a 
straightforward manner [37]. Wavelets allow a wide range 
of functions and operators to be accurately represented [38, 
39] and also provide a relationship with quick numerical 
methods [40]. Very interesting liquid flow trouble are exam-
ined with the help of various numerical wavelet schemas 
[41–45]. Many problems [46–49] have been studied in cur-
rent years with aid of numerical Bernoulli wavelet method. 
We consider the cross-diffusion effects on non-Newtonian 
Casson fluid with internal heat source and solved by using 
a new numerical technique- Bernoulli wavelet technique. 
The results are validated and found to be highly convergent. 
Graphical analysis is used to study the behaviour of tempera-
ture, velocity, and concentration profiles.

2  Formulation

Consider an incompressible Casson liquid flow with an 
internal heat source that occurs connecting two paral-
lel plates that are kept at a distance h(t) = l(1 − �t)

1

2 . 
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Additionally, if 𝛼 > 0 causes the plates to squeeze together 
until they touch at t = 1

�
 , but 𝛼 < 0 causes plates to bear a 

receding and dilating motion. The density � is influenced 
by two distinct stratifying agents with varying molecu-
lar diffusivities. Additionally, the flux of one species is 
impacted by the solutal concentration gradient of the other, 
indicating the consideration of cross-diffusion. The gov-
erning equations are [50–55]

where p , T  , � , C , � , � , K1(t) =
k1

(1−�t)
 , cp , Q∗ are represents 

pressure, temperature, density, concentration, viscosity, 
kinematic viscosity, time-dependent reaction rate, specific 
heat, coefficient of heat source respectively. D11 is the 
thermal diffusivity and D22 is the solute analogue of D11 , 
while D12 and D21 are the cross diffusion diffusivities, u and 
v are velocities in the x and y directions.

The relevant boundary conditions are

The following similarity transformations are presented 
by us
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Removing the pressure term from Eqs. (2) and (3) by 
using Eq. (7) we have,

Substitute similarity transformations in Eqs. (4–5) and 
after some simplification we get coupled highly nonlinear 
normalized ordinary differential equations in the form

where, S =
�l2

2�
 is the squeeze quantity, � is the Casson fluid 

quantity, Pr = �cp

k
 is the Prandtl quantity, Sc = �

D22

 is the 

Schmidt quantity, � =
l2

�
 is the chemical reaction quantity, 

Hs =
Q∗

0
l2

k
 is the internal heat source, �21 =

D21

D22

TH

CH

 isthe Soret 

quant i ty,  �12 =
CH

TH

D12

D11

 i s  the  Dufour  quant i ty, 

Ec =
1

CpTH

(
�x

2(1−�t)

)2

 is the Eckert number and � =
l

x
 . We 

noticed in the absence of cross diffusion terms, internal heat 
source, and Casson fluid the present problem coincide with 
Mustafa et al. [50].

The matching limits that apply are

Calculating skin friction yields valuable insights, as it aids 
in estimating both the overall frictional drag imposed on a 
fluid and the rate of convectional heat transfer. Furthermore, 
it helps determine the thermal and solutal Nusselt numbers, 
which enumerate the extent of convectional mass and heat 
transfer. We calculate the thermal Nusselt number Nu� , 
skin friction Cf  , and the solute Nusselt number  Nu� can be 
expressed as Nu� = −��(1),Cf = −f ��(1) , and Nu� = −��(1).

3  Numerical Bernoulli wavelet technique

The basic of BWM is discussed [46, 47, 49, 56]

3.1  Solution of momentum equation

Now, assume highest derivative of f  in the form

Integrate Eq. (12) w.r.t x and limit from 0 to x,

(8)S
(
f � f �� + 3 f �� + � f ��� − f f ���

)
−
(
1 + �−1

)
f iv = 0.

(9)
��� + Pr S

(
f �� − ���

)
− Pr Ec

((
f ��
)2

+ 4�2
(
f �
)2)

+ Hs� + �12�
�� = 0

(10)��� + Sc
(
f�� − ���

)
S − Sc�� + �21�

�� = 0

(11)
f (0) = ��(0) = ��(0) = f ��(0) = f �(1) = 0, �(1) = ϕ(1) = f (1) = 1.

(12)f iv(x) − GT�(x) = 0.

(13)f ���(x) − f ���(0) − GT
[
�(x)A + �(x)

]
= 0.
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For second time integrate Eq. (12) w.r.t x and limit from 
0 to x,

For third time integrate Eq. (12) w.r.t x and limit from 
0 to x,

For fourth timeintegrate Eq. (12) w.r.t x and limit from 
0 to x,

Substitute f (0) = 0 and f ��(0) = 0 in Eq. (16) we have,

Substitute f (1) = 1 and f �(1) = 0 in Eqs. (15) and (17). 
Further, we find f ���(0) and f �(0) we have,

Substitute (18) and (19) in (17) we have

3.2  Solution of energy equation

At present, second derivative of temperature is assumed in 
the form.

Integrate Eq. (21) w.r.t x and limit from 0 to x.

Again, integrate Eq. (22) w.r.t x and limit from 0 to x.
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(21)���(x) = BT�(x).

(22)��(x) = ��(0) + BT
[
�(x)A + �(x)

]
.

(23)�( x) = �( 0) + x ��( 0) + BT
[
�(x)A� + ��(x)

]
.

Substituting �(1) = 1 , in above equation we get

Substituting (24) in (23), we get

3.3  Solution of concentration equation

Now, assume that

Integrate Eq. (26) w.r.t x and limit from 0 to x,

Further, integrate Eq. (27) w.r.t x and limit from 0 to x.

By setting �(1) = 1 , we obtain

Substituting (29) for (28), we get

To collocate the equations, one can substitute values 
for f iv, f ′′′, f ′′, �′′,�′′, f ′, �′,�′, �,�, f  , and follow the 
collocation steps using xi =

2 i−1

N
 , where i = 1, 2, 3, ⋅ ⋅ ⋅, N . 

This process leads to a nonlinear system of algebraic 
equations then solved with help of suitable solver to 
obtain the unknown coefficients of the Bernoulli wavelets. 
Substitute these values in Eqs. (20, 25, 30) gives Bernoulli 
wavelet numerical results for Eqs. (8–10).

4  Results and implications

In this article, numerical Bernoulli wavelet technique is 
applied to find the new results of the Soret and Dufour 
effects on thermohaline non-Newtonian liquid flow with 
the influence of internal heat source. Convergence of the 
numerical Bernoulli wavelet technique can be seen in 
Table 1 for changed values of S . Values of Nu� , Cf  , and 
Nu� have been intended for several values of S in Table 1. 
From Table 1, it is clear that the outcomes obtained by 
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the existing technique is excellent conformity with the 
outcomes in literature. Hence, we can fulfil that Bernoulli 
wavelet numerical technique is a technique for solving 
nonlinear differential Eqs.  (8–10) that is more suitable 
than any other method found in the literature. The special 
properties of known physical parameters such as the squeeze 
number, Casson fluid quantity, Prandtl quantity, Schmidt 
quantity, chemical reaction quantity, internal heat source, 
Soret quantity, Dufour quantity and Eckert number are 
investigated.

Figures 1, 2, 3, 4, 5 and 6 depict the property of param-
eter S on temperature and velocity variations. The values of 
S, whether negative or positive, are utilized to describe the 
approach or separation of surfaces. Analysis of Figs. 1 and 
2 reveals a decrease in velocity as the value of S increases. 
This implies that when the surfaces come closer together 
(i.e., squeezing effect), the fluid is forced out of the channel, 
resulting in a slowdown of the velocity field. Figure 3 clearly 
demonstrates that rising positive values of S lead to a reduce 
in velocity. Conversely, Fig. 4 illustrates a rise in the velocity 
profile as S decreases towards negative values. Moreover, 
Fig. 5 shows that the control of S on the temperature field, 
indicating a decrease in temperature with rising values of S. 
Additionally, Fig. 6 represents that the values of parameter 
� increase as the function f (�) decreases.

An increase in Pr, leads to a reduction in the thermal 
diffusion of a viscous fluid, consequently elevating the 
flow temperature. The property of Pr on the temperature 
field is shown in Fig. 7, as Pr increases, the flow's tem-
perature increases. When analysing fluid flow problem, 
changes to the internal heat source can impact the tem-
perature outline of the fluid. The extent of this impact is 
influenced by several factors such as the fluid type, bound-
ary conditions, and the problem's geometry. An increase 
in the internal heat source results in additional heat energy 
being supplied to the liquid. This additional energy can 
reason the fluid's temperature to increases, causing altera-
tions to the temperature contour as indicated in Fig. 8. In 
some cases, an amplify in the heat source can also lead to a 
more uniform temperature profile across the fluid domain. 

This occurs because the heat source supplies energy more 
evenly across the fluid, reducing temperature variation.

Figure 9 shows the temperature for the involvement of 
�12 (Dufour effect) and temperature enrichment is essen-
tial for higher values of �12 . Figure 10 illustrates how the 
variation of parameter Ec affects the temperature field, 
revealing a positive correlation between Ec enhancements 
and temperature increases. The phenomenon known as vis-
cous dissipation refers to the heat generation affected by 
friction between liquid particles in a high-viscosity flow. 
Moreover, Fig. 11 demonstrates an increase in the values 
of parameter β as θ(η) decreases.

The impact of S on concentration as shown in Fig. 12, the 
concentration curve rises as S rises. Figure 13 depicted that 
the values of � increases with decrease in �(�) . Figure 14 
shows how the Sc affects the concentration field. Figure 15 
explained that by rising �21(Soret effect), the �(�) rises. The 
variation of concentration field with chemical reaction is 

Table 1  Testing the accuracy of 
the Bernoulli wavelet method 
(BWM) by comparing it with 
Mustafa et al. [50]

� → ∞,Pr = Ec = Sc = 1, �12 = �21 = Hs = 0

S −f ��(1) −��(1) −��(1)

BWM NUM BWM NUM BWM NUM

− 1 2.170090 2.170090 3.319899 3.319899 0.804558 0.804558
− 0.5 2.614038 2.614038 3.129491 3.129491 0.7814023 0.7814023
0.01 3.007134 3.007134 3.047092 3.047092 0.7612252 0.7612252
0.5 3.336449 3.336449 3.026324 3.026324 0.7442243 0.7442243
2 4.167389 4.167389 3.118551 3.118551 0.7018132 0.7018132
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Fig. 1  Influence of S < 0 on f (�) , with � = 1
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shown in Fig. 16. For large levels of a unhelpful chemi-
cal reaction number, the concentration curves significantly 
drops. For the generative chemical reaction number, a dis-
cernible increase in the concentration field is shown. The 
steeper curves of the concentration function are a result of 
the severe reaction conditions that go along with high values 
of �.

5  Conclusion

This article employed the Bernoulli wavelet technique 
to numerically solve the thermohaline Casson fluid flow 
with cross diffusion terms, incorporating an internal 
heat source. The results obtained using the Bernoulli 
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Fig. 2  Influence of S > 0 on f (�) , with � = 1
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Fig. 3  Influence of S > 0 on f �(�) , with � = 1
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Fig. 4  Influence of S < 0 on f �(�) , with� = 1

Fig. 5  Influence of S on �(�)
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wavelet numerical method demonstrate its effectiveness 
in solving non-linear differential equations, as evidenced 
by the presented figures and tables. The computed results 
obtained through Bernoulli wavelet numerical method 
closely approximates the numerical solution. Furthermore, 
the Bernoulli wavelet numerical method exhibits superior 
capabilities compared to other numerical methods for 
solving this particular model. The study investigated the 

impact of different factors, such as S, β, Pr, Ec, � , �12, �21, 
Hs and Sc, on concentration, velocity and temperature. 
The analysis of the results revealed several significant 
outcomes.

• The velocity in the vicinity of the upper plate 
experiences an increment when the surfaces approach 

Fig. 6  Influence of � on f (�) , with S = 1

Fig. 7  Influence of Pr on �(�)

Fig. 8  Influence of Hs on �(�)

Fig. 9  Influence of �12 on �(�)
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each other (S < 0), while it decreases when they move 
apart (S > 0).

• Enhance in velocity and reduce in temperature as well 
as concentration for different values of �.

• An elevation of both Pr and Ec leads to an amplification 
in temperature and the rate of heat transfer.

• An amplify in the internal heat source results in a 
higher amount of heat energy being introduced to the 
fluid, consequently leading to an elevation in the fluid's 
temperature.

• The concentration profile decreases as the chemical 
reaction parameter increases.

Fig. 10  Influence of Ec on �(�)

Fig. 11  Influence of � on �(�)

Fig. 12  Influence of S on �(�)

Fig. 13  Influence of � on �(�)
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• The dimension of the local Sherwood number increases 
as � increases.

• Opposite effects on double diffusive rates are observed 
when the Dufour and Soret numbers are increased.
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