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Abstract
The key step in the biosynthesis of estrogen is the enzyme activity of aromatase. Several malignancies, including breast 
cancer, have been linked to the initiation and progression of estrogen overexpression. Exemestane, Arimidex and Femara 
are the most common aromatase inhibitors used to treat hormone-dependent breast cancers. Drug resistance and side effects 
are commonly associated with these treatments. The purpose of this in silico study was to list the chemical compounds of 
Juniperus procera that have been published in scientific papers. The second goal was to evaluate the inhibitory activity 
of 124 phytochemicals of Juniperus procera compared to known aromatase inhibitors such as Exemestane, Arimidex and 
Femara. The 3D structure of aromatase (PDB id: 3s7s) employed for docking studies using AutoDock Tools as well as normal 
mode analysis studies utilizing the NMSim web server. Juniperolide, Kaurenoic acid and Isocupressic acid were identified 
as competitive aromatase inhibitors compared to FDA approved anti-cancer drugs, specifically Exemestane, Arimidex and 
Femara. The stability of the ligand–protein interface was studied to support the docking findings. To our knowledge, this is the 
first study that investigates the possible inhibition roles of some compounds of Juniperus procera on the aromatase enzyme.
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1 Introduction

The natural diversity in Saudi Arabia, which includes high 
mountains with heavy rainfall to an extremely parched 
desert, has resulted in a very diverse and abundant flora. In 
fact, chemo-diversity between Saudi plants and those culti-
vated in other nations and climates has been observed to dif-
fer significantly in several cases [1]. The Cupressaceae fam-
ily includes the Juniperus procera (J. procera) plant, whose 
phytochemicals have been shown to have good antioxidant, 
antibacterial, and anticancer properties [2]. The plant 
extracts of J. procera and a set of plant-derived compounds 
with anticancer activities have been identified and separated 
by several researchers as listed in Table S1. Terpenoids, dit-
erpenes, and essential oils are only a few of the active com-
pounds in this highly valued plant that are responsible for its 
biological activity [3]. There are many J. procera products 

that have been studied to prove their medicinal benefits. One 
of the first studies in which J. procera products were isolated 
and their medicinal importance tested was by [4]. In this 
study, three antimicrobial diterpenoids were produced from 
the bark of Juniperus procera: (+)-E-communication acid, 
(+)-Z-communication acid, and (+)-Totalol. Totarol, iso-
lated from J. procera, showed antimycobacterial properties 
[5]. In more recent studies, Epicatechin, Podocarpusflavone 
A and Juniperolide were isolated from the stem bark and 
leaf of J. procera and showed activity against common bean 
bacterial pathogens [6]. Among the 12 bioactive compounds 
produced by Gas chromatography–mass spectrometry analy-
sis, the active ingredient 2-imino-6-nitro-2H-1-benzopyran-
3-carbothiamide was shown to be the best docked chemical 
against selected proteins [7].

Plant-based drugs are among the natural products from 
which 50% of known anti-cancer medications are generated. 
Most of these compounds are alkaloids, flavonoids, and ter-
penoids [8]. Terpenes participate in several physiological 
activities, including growth and development, reproduction, 
and defense against biotic and abiotic stress. They also play 
significant roles in the manufacture of secondary metabolites 
in plants, such as essential oils and pigments [9, 10]. Due to 
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their various biological activities, such as their anticancer, 
anti-inflammatory, antibacterial, and antiviral actions, ter-
penes are the target of biochemical and molecular research 
[11]. Terpenes can modulate signaling pathways involved 
in a variety of cellular activities, including apoptosis, pro-
liferation, and cell differentiation. They can interact with 
specific biological targets, such as enzymes, receptors, and 
ion channels [12].

Breast cancer is the most common cancer and the driving 
cause of cancer-related mortality in women around the world 
[13]. Its rate is expected to rise strongly within the coming 
years [14]. Breast cancer is the most common type among 
women in Saudi Arabia (29%) [15], which requires inten-
sive research among patients to find effective therapies and 
thus reduce its prevalence. According to the Saudi Cancer 
Registry, 3954 cases were diagnosed with breast cancer in 
Saudi women in 2020 [16]. Obesity, young age at menarche, 
late-age childbirths, short lactation periods, physical inac-
tivity, and environment are a few factors that raise the inci-
dence of breast cancer cases [17]. The current chemotherapy 
treatments for breast cancer are expensive, associated with 
several side effects, and may even create resistant cells. This 
emphasizes the need for natural treatments that can decrease 
the side effects of utilizing the available chemical treatments 
[18].

Molecular modelling is a useful method for structure-
based drug design. A computer technique known as “dock-
ing” makes it possible to predict the shape of the ligand after 
it binds to a protein target as well as the way that drug-target 
complexes interact [19]. The era of biological big data is a 
result of the exponential increase in the amount of biological 
information produced. It has become more and more impor-
tant to create computational resources in order to evaluate 
the molecular characteristics and chemical behaviour of nat-
ural products from an in-silico perspective. The analysis and 
interpretation of these data are currently being done using 
a variety of bioinformatic techniques, including molecular 
docking, virtual screening, Quantitative structure–activ-
ity relationship (QSAR) and a lot of other computational 
 methods. Das and Agarwal [8] review in detail numerous 
computational studies that have used plant products as anti-
cancer agents. The future of medical sciences, particularly in 
the diagnosis and treatment of cancer, appears bright in this 
era of rapidly advancing technology because of the potential 
uses of artificial intelligence in clinical operations. The accu-
racy and precision of artificial intelligence has given sci-
entists and technicians the confidence to extend traditional 
techniques of research [20].

In vitro and in silico studies have been performed to 
evaluate the potential impact of many plant-based inhibitors 
on aromatase [21–23]. Inhibition of the aromatase enzyme 
has been associated in several studies with the reduction 
of breast cancer growth [24–26]. The usage of aromatase 

inhibitors lowers the body’s production of estrogen, which 
in turn slows the growth of breast cancer cells [27]. Aro-
matase served as a template for ligand-enzyme docking in 
numerous in silico investigations [21, 28, 29]. For inhibit-
ing aromatase, several synthetic substances have been devel-
oped. Additionally, natural compounds are currently used to 
suppress the aromatase enzyme to find a new breast cancer 
therapeutic strategy [30]. The current study's objectives were 
to compile a list of the chemical constituents of Juniperus 
procera that have been reported in academic publications 
and to investigate any potential inhibition of the aromatase 
enzyme by phytochemicals found in J. procera.

2  Research methods

2.1  Preparation of input files for docking

The Protein Data Bank (PDB) was used to retrieve the crys-
tal structure file of human placental aromatase complexed 
with the anti-breast cancer medication exemestane (PDB: 
3S7S). Exemestane (the native ligand), hetero atoms, and 
water molecules were removed using Chimaera software 
tools [31]. 124 phytochemicals from J. procera were cho-
sen for docking studies based on a literature review of the 
substances identified from this plant. These chemicals’ 1D 
structures were found in the PubChem Search database as 
canonical smiles strings. A web server called CORINA 
transformed the smiles strings into pdb files [32]. The Chi-
maera software tools were then used to further prepare each 
ligand. The ligand preparation includes adding hydrogens, 
eliminating solvents, and establishing the charge. Three 
commercially available anti-cancer drugs, Exemestane, 
Arimidex and Femara were used as controls for the docking.

2.2  Ligand–protein docking

AutoDock Tools (ADT) 1.5.6 optimized the protein mol-
ecule (3S7S). As part of the optimization, water molecules 
are removed, polar hydrogen is added, non-polar hydrogen 
is combined, and Gasteiger charges are calculated. The grid 
box had the dimensions 40*40*40 and was centred at x: 
86.08, y: 54.28, and z: 46.18. Docking was carried out using 
the following genetic algorithm parameters: 150 population 
size, a maximum of 27,000 generations, a mutation rate of 
0.02, and a crossover rate of 0.80. Using chimaera software 
tools and the protein–ligand interaction profiler service [33], 
conformations with the highest binding affinities were exam-
ined following docking. iGEMDOCK 2.1 software [34] was 
used for a fast primary screening of the 124 J. procera phy-
tochemicals, data are shown in Table S1. Three phytochemi-
cals (Table 1) with the highest binding affinity were further 
investigated and docked using AutoDock tools as mentioned 
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above. The ligand–protein interactions were analyzed using 
PLIP web server (Protein–Ligand Interaction Profiler) [35].

2.3  Normal mode analysis

Using NMSim web server [36], molecular analysis was car-
ried out to evaluate the conformational changes upon ligands 
binding in aromatase. The default parameters of NMSim 
were used. The parameters were as follows: type of simula-
tion was Small Scale Motions, number of trajectories was 
1, number of NMSim cycles was 10, step size was 0.5 and 
the normal mod (NM) range was 1–50. Root-mean-square-
deviation (RMSD) was used to show information on the pro-
tein’s structural changes during the simulation.

2.4  Evaluation of ADMET

Using the SwissADME web server, predictions of ADMET 
(absorption, distribution, metabolism, excretion, and 

toxicity) based on Lipinski’s rule of five (RO5) were made 
for all the ligands. Additionally, all the ligands’ bioactivity 
as enzyme inhibitors was determined using the Molinspira-
tion server, available at https:// molin spira tion. com/ cgi- bin/ 
prope rties. Cytotoxicity was calculated using ProTox-II 
server [37].

3  Results and discussion

3.1  Validation of docking protocol

To validate the docking protocol of AutoDock software, the 
native ligand (exemestane) was isolated from the binding 
site of the aromatase structure (3S7S). AutoDock software 
was able to redocked the isolated ligand into the binding 
site of aromatase. The redocked ligand was nearly superim-
posed with the relevant co-crystallised exemestane indicat-
ing the accuracy of docking protocol as shown in Fig. 1. 

Table 1  Docking score 
of Juniperus procera 
phytochemicals, the native 
inhibitor, and controls against 
aromatase enzyme

Compound name Classification PubChem CID AutoDock Score Inhibition Constant 
nM (nanomolar)

Exemestane Steroidal drug 60,198 − 12.65 0.53
Arimidex Non-steroidal drug 2187 − 10.44 22.16
Femara Non-steroidal drug 3902 − 9.21 178.52

J. procera phytochemicals that gave best binding energy
Juniperolide Terpenes 101,552,747 − 11.33 4.96
Kaurenoic acid Terpenes 73,062 − 11.20 6.16
Isocupressic acid Terpenes 6,438,138 − 10.27 29.87

Fig. 1  Docked ligand com-
parison. The figure on the 
right presents 3s7s structure 
(Pink) with three ligands, the 
native exemestane (Blue), the 
redocked exemestane (Green), 
Juniperolide (Red). The 
figure on the top left presents 
Juniperolide (orang) bound to 
residues in the active site

https://molinspiration.com/cgi-bin/properties
https://molinspiration.com/cgi-bin/properties
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Further assessment was performed to validate the accuracy 
of the docking by comparing the interactions in the native 
aromatase structure and the docked conformation. The same 
hydrogen bonds found in the native structure, Arg115 and 
Met374 were created by the redocked ligand. In addition, 
most of the hydrophobic interactions found in the native 
structure were also created by the redocked ligand, Ile133, 
Phe221, Leu477.

3.2  Juniperus procera phytochemicals‑Aromatase 
interactions

The lowest binding energy and lowest inhibitory constant 
(KI) criteria were used to choose the best docked ligand 
molecules. The perfect docked conformation is the one that 
is created with the lowest binding energy since it has the 
highest affinity (Spontaneous binding and no additional 
energy input is required for the reaction to occur). The final 
configuration should be low energy because molecules in 
nature are typically found in their lowest energy state. Real-
izing these attributes is essential for the logical development 
of strong inhibitors [38].

Juniperolide, Kaurenoic acid and Isocupressic acid 
showed the highest interactions among the 124 com-
pounds of J. procera with minimum binding energies 
of  11.33,  11.20 and  10.27 respectively, as appeared in 
Table 1. The binding affinity of Juniperolide and Kau-
renoic acid was higher compared to the two anti-cancer 
drugs Arimidex and Femara and is almost similar to that of 
Exemestane. Juniperolide formed one hydrogen bond with 
residue Ala306 and several hydrophobic interactions with 
six residues, Ile133, Phe134, Trp224, Thr310, Val370 and 
Leu477. Kaurenoic acid formed two hydrogen bonds with 
residue Leu372 and Met374, several hydrophobic interac-
tions with six residues, Ile133, Trp224, Ala306, Thr310, 
Val370 and Leu477, and one salt bridge with Arg115. Kau-
renoic acid-Aromatase complex gave a lower binding affinity 
than Juniperolide-Aromatase complex, despite the presence 
of more interactions. This could be as a result of the ligand’s 
energy being released in order to interact with the protein.

To further confirm the validity of the docking, the current 
results were compared with previous studies. Our redocking 
results for active site interactions were identical to those 
published by [39–41] although there were some differences 
in the preparation of input files and the grid box size. As 
far as we know, no in silico or laboratory experiments have 
been performed on the interactions of Juniperolide and Aro-
matase. Additionally, no prior research has been done on 
the interaction between Isocupressic acid and aromatase. In 
terms of Kaurenoic Acid, a review by [42] stated that while 
it was a very weakly docking ligand, it did demonstrate 
selective docking to aromatase. Apart from our finding that 
there is a possible inhibitory role of Juniperolide against 

Aromatase, there have been no laboratory experiments con-
ducted on the activity of Juniperolide as anticancer com-
pound. As for Kaurenoic Acid and Isocupressic acid, there 
are several laboratory studies that have proven the presence 
of anti-cancer effects of these two compounds [43–46].

3.3  Ligand–protein stability analysis

The stability and conformational changes of each aromatase-
ligand complex was assessed through Normal Mode Analy-
sis (NMA) using NMSim web server. NMSim is a geometric 
simulation method based on normal modes for investigat-
ing biologically significant protein structural changes. NMA 
results showed that RMSD per Residue of X-ray structure 
of aromatase was in good agreement with the Juniperolide-
Aromatase complex (Fig. 2). The RMSD of all the atoms 
in each pair of residues in the two proteins was identical. 
According to these findings, the Juniperolide-Aromatase 
complex is stable, and the ligand has no impact on its sta-
bility. Similar results were observed for the Kaurenoic acid-
Aromatase complex.

3.4  ADMET of compounds

The best docked compound and the control molecules’ phys-
icochemical properties are shown in Table 2. According to 
the bioinformatics findings, each of the six compounds had 
a good possibility of acting as an enzyme inhibitor. The best 
enzyme inhibitor scores were 0.86 for Exemestane and 0.73 
for Isocupressic acid, respectively. The cytotoxicity scores 
for the three natural substances in Arar, Juniperolide, Kau-
renoic acid, Isocupressic acid and the controls were inactive. 
The lowest ability to penetrate cell membranes is associated 
with molecules with a polar area greater than 140 Å [2] in 
Topological Polar Surface Area (TPSA). The compounds 
that were tested were all able to pass through cell mem-
branes, and Exemestane and Kaurenoic acid were the most 
permeabilized. All six compounds were shown to have sig-
nificant gastrointestinal absorption of the drug.

Several studies [47–49] have shown that Exemestane, 
Femara, and Arimidex have numerous negative effects as 
aromatase inhibitors. Even though numerous synthetic drugs 
are useful and correctly administered, many medicines have 
been discovered to cause harsh adverse effects [50]. In addi-
tion, the high toxicity usually associated with some can-
cer chemotherapy drugs and their undesirable side-effects 
increase the demand for natural anti-tumor drugs active 
against untreatable tumors, with fewer side-effects and/or 
with greater therapeutic efficiency [51]. Natural product-
based medications seek to reduce several disadvantages 
associated with synthetic chemicals and conventional chem-
otherapy methods [52].
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Our findings demonstrated that the three natural Arar 
compounds mentioned above can be used in place of 
Exemestane and the other two anti-cancer medications, 
Femara and Arimidex. Compared to synthetic medications, 
these natural substances may produce no negative effects 
or less side effects. The effectiveness of natural products 
as anti-cancer without significant side effects has been dis-
cussed in a number of scientific papers [53–55]. The fact 
that natural products are also metabolites gives them an 
advantage over synthetic molecules. As a result, they have 
biological activity and can serve as transporter system sub-
strates [56].

4  Conclusion

As far as we are aware, this is the first investigation into 
potential inhibitory effects of Juniperus procera phyto-
chemicals on the aromatase enzyme. Juniperolide, Kau-
renoic acid, and Isocupressic acid were found to be more 
competitive aromatase inhibitors than FDA approved anti-
cancer drugs, such as Exemestane, Arimidex, and Femara. 

To support our in silico findings, in vitro and in vivo experi-
ments are still required.
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Fig. 2  RMSD plot of bound and 
unbound aromatase

Table 2  Physicochemical 
properties of compounds

Compound Lipinski GI absorption TPSA (Å2) Enzyme 
inhibitor

Cytotoxicity

Exemestane Yes; 0 violation High 34.14 0.86 Inactive
Arimidex Yes; 0 violation High 78.29 0.12 Inactive
Femara Yes; 0 violation High 78.29 0.30 Inactive
Juniperolide Yes; 0 violation High 63.60 0.55 Inactive
Kaurenoic acid Yes; 1 violation High 37.30 0.46 Inactive
Isocupressic acid Yes; 0 violation High 57.53 0.73 Inactive

https://doi.org/10.1007/s43994-023-00114-w
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