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Abstract
Cyanobacteria, which are photosynthetic prokaryotes, have gained attention in recent years for their potential health benefits. 
One notable property of cyanobacteria is their high antioxidant capacity, which has been attributed to various beneficial 
properties. Antioxidants are crucial in the human body as they help scavenge free radicals that can cause cellular damage 
and lead to diseases. The fermentation of food using cyanobacteria and other microorganisms has been a traditional practice 
for centuries and has been found to enhance the antioxidant capacity of food. This review paper aims to explore the potential 
of cyanobacteria in unlocking the antioxidant potential of fermented foods and food microorganisms. At the same time, the 
mechanisms of action of cyanobacteria-derived antioxidants and the potential health benefits of consuming fermented foods 
containing cyanobacteria are discussed.
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1 Introduction

Cyanobacteria are photosynthetic microorganisms com-
monly found in various freshwater bodies [93]. These 
microorganisms are known to produce a diverse range of 
metabolites, some of which possess unique properties such 
as antibacterial, antifungal, anticarcinogenic, immuno-
suppressive, and antioxidant activities [70]. Among these 

properties, the high antioxidant capacity of cyanobacteria 
stands out. Cyanobacteria have been recognized as a poten-
tial source of bioactive compounds, including antioxidants, 
with promising biotechnological applications in industries 
such as cosmetics [57] and food [80]. The search for natural 
antioxidants has gained significant interest due to concerns 
regarding the toxicity of synthetic antioxidants that contain 
preservatives [4]. While research on bioactive compounds in 
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cyanobacteria has traditionally focused on marine environ-
ments [100], An increasing amount of literature is investi-
gating the antioxidant capabilities of cyanobacteria found 
in both freshwater and terrestrial conditions [5, 11, 15, 22, 
28, 36, 47, 64, 73, 74, 79, 103]. Some of the studies have 
reported equal or greater antioxidant activity in cyanobacte-
ria, emphasizing the abundance of compounds like polyphe-
nols and carotenoids found in them [52, 64, 73, 79, 100] and/
or antioxidant content [11, 36, 103] in cyanobacteria com-
pared to eukaryotic microalgae, macroalgae, or higher plants 
[15, 36, 64, 73]. In this review, we focus on cyanobacteria 
in the context of fermented foods due to their unique and 
diverse contributions to this field. Cyanobacteria, known for 
their ability to fix atmospheric nitrogen and carry out pho-
tosynthesis, play a special role in the fermentation process 
by influencing taste, texture and nutritional content [95]. 
They are also known to produce bioactive compounds such 
as exopolysaccharides and antimicrobial substances, which 
may affect the quality and safety of fermented foods [99]. 
While cyanobacteria are the focus of our investigation, we 
also provide a brief overview of the comparable roles of 
other microorganisms such as lactic acid bacteria, yeasts and 
molds in the fermentation process. Although these microor-
ganisms are different, they often share complementary func-
tions. By briefly discussing their roles, we aim to provide 
a comprehensive understanding of the complex microbial 
interactions that shape the properties of fermented foods 
[13].

2  Overview of antioxidant compounds 
produced by cyanobacteria

Cyanobacteria can be found in various aquatic and terrestrial 
environments. They are known for their ability to produce 
bioactive compounds, including antioxidants, which have 
significant functions in diverse fields. In this discussion, we 
provide an overview of the antioxidant compounds produced 
by cyanobacteria and highlight some of the most significant 
findings in this field.

Marine cyanobacteria possess both enzymatic and nonen-
zymatic antioxidants as part of their antioxidant defense sys-
tem. The low-molecular-weight nonenzymatic antioxidants 
derived from cyanobacteria have various applications in dif-
ferent industries. Due to their abundance and potential health 
benefits, cyanobacteria are considered a preferred alternative 
to synthetic antioxidants utilized in various pharmaceutical 
and food products [56].

One of the most well-known antioxidant compounds pro-
duced by cyanobacteria is phycocyanin. Phycocyanin is a 
blue-colored pigment found in the photosynthetic appara-
tus of cyanobacteria and similar in structure to the human 
bilirubin molecule. Research has indicated that phycocyanin 

exhibits robust antioxidant properties, and protects cells fro-
moxidative stress triggred by reactive oxygen species (ROS) 
[66].

Additionally, phycocyanin has been reported to possess 
anti-inflammatory, anti-cancer, and neuroprotective proper-
ties [43]. Research has validated that c-phycocyanin can be 
extracted from various strains of cyanobacteria using freez-
ing and thawing methods, although the utilization of pulsed 
electric field treatment is limited to N. commune due to its 
unique cellular structure that enables extraction through 
this technology [16]. Carotenoids are another crucial class 
of antioxidant compounds synthesized by cyanobacteria. 
These microorganisms produce a variety of carotenoids, 
such as β-carotene, zeaxanthin, and astaxanthin, which are 
responsible for the red, orange and yellow hues of various 
fruits and vegetables. Scientific studies have established that 
carotenoids exhibit robust antioxidant activity, and protect 
cells from oxidative damage instigated by ROS [6]. Moreo-
ver, carotenoids have been reported to have several health 
benefits, including anti-inflammatory, anti-cancer, and anti-
diabetic properties [48, 102].

Phenolic compounds sourced from the marine environ-
ment are abundant in various natural sources, including 
seawater, macro- and microalgae, cyanobacteria, algae, 
seagrasses, and sponges. In (Table 1), extracts containing 
phenolic compounds from seaweed polyphenols can be 
classified into six structural types based on their different 
polymeric forms [46]. Diversity,, and their common struc-
tural features all contain phenolic hydroxyl groups [54]. 
According to the number and position of phenolic hydroxyl 
groups, they can be divided into four types: brown algae 
polyphenols, flavonoids, phenolic acids, and halogenated 
phenols, and all of them have certain antioxidant activity. 
Food supplements and cosmetics are among the commercial 
products derived mainly from extracts of phloroglucinol and 
phlorotannins [24].

In summary, cyanobacteria provide a diverse spectrum 
of antioxidant compounds with strong free radical scaveng-
ing capabilities. These compounds have been associated 
with various health benefits, including anti-inflammatory, 
anti-cancer, and neuroprotective properties. The broad spec-
trum of antioxidant compounds produced by cyanobacteria 
presents promising opportunities for the development of 
novel drugs, functional foods, and cosmetics. However, fur-
ther research is warranted to fully explore the potential of 
cyanobacteria as a source of antioxidants and to elucidate the 
underlying mechanisms of their biological activities. Proper 
attribution and citation of relevant sources should always be 
followed to avoid plagiarism.
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3  Protective role and regulation 
of antioxidant production 
in cyanobacteria

Cyanobacteria, commonly known as blue-green algae, 
are known to contain bioactive compounds with potential 
health benefits. These microorganisms are known to produce 
a diverse range of secondary metabolites including toxins 
[55]. However, some of these metabolites possess unique 
properties such as antibacterial, antifungal, anticarcinogenic, 
immunosuppressive, and antioxidant activities [67, 70]. 
Cyanobacteria can synthesize several secondary metabolites, 
including phenolic acids, flavonoids, chlorophylls, and carot-
enoids (Fig. 1), which have antioxidant properties and can 
potentially neutralize reactive oxygen species (ROS) [32].

Antioxidants refer to molecules that have the ability to 
counteract the negative effects of ROS and free radicals, 
which can lead to oxidative damage to cellular structures 
including lipids, DNA, and proteins [78]. One of the primary 
mechanisms of antioxidants in cyanobacteria is scavenging 
ROS. Cyanobacteria are exposed to high levels of ROS dur-
ing photosynthesis due to the production of singlet oxygen 
and superoxide radicals [34]. In photosynthetic organisms 
like cyanobacteria, ROS is generated as a result of photo-
synthetic electron transport. The ability of cyanobacteria to 
rapidly sense ROS and defenses in response to changing 
environmental conditions, such as sudden changes in light 
intensity, is crucial for their survival [44]. Tocopherols have 
been found to protect cyanobacteria from oxidative stress 
caused by high light and heat [77].

Another mechanism of antioxidants in cyanobacteria 
is the modulation of gene expression. Antioxidants can 

regulate the expression of genes involved in the synthesis of 
antioxidant enzymes and other stress-response proteins. For 
instance, studies have shown that carotenoids can upregulate 
the expression of genes encoding antioxidant enzymes such 
as superoxide dismutase and catalase in the cyanobacterium 
Synechocystis sp. PCC 6803 [87]. Maintaining a proper bal-
ance between ROS and antioxidant defenses is crucial for 
optimal cellular function and the ability to respond to vari-
ous stimuli [40].

These findings suggest that antioxidants can enhance the 
cellular antioxidant capacity of cyanobacteria by regulating 
gene expression. In addition to their role in protecting cyano-
bacteria from environmental stressors, antioxidants also have 
potential applications in biotechnology and medicine. For 
example, carotenoids such as astaxanthin and zeaxanthin 
have been shown to possess antioxidant, anti-inflammatory, 
and immunomodulatory properties [53, 97]. Due to their 
potent antioxidant properties, astaxanthin is considered as a 
potential defender against various diseases in many organ-
isms, including cardiovascular diseases [65]. Similarly, toco-
pherols have been found to exhibit anti-inflammatory and 
neuroprotective properties, and may have potential applica-
tions for treating Alzheimer's disease [9, 75].

Overall, antioxidants play important roles in protecting 
cyanobacteria from environmental stressors such as high 
light and oxidative stress. These molecules can scavenge 
ROS and modulate gene expression, thereby enhancing the 
cellular antioxidant capacity of cyanobacteria. In addition, 
antioxidants have potential applications in biotechnology 
and medicine. Further research is needed to elucidate the 
mechanisms of antioxidants in cyanobacteria and explore 
their potential applications in various fields.

4  Fermentation and antioxidant capacity

The traditional practice of fermentation is a worldwide tech-
nique used to process and preserve food while improving, 
while also enhancing the nutraceutical properties of the 
food. In response to the increasing demand for healthy and 
sustainable diets, it is crucial to develop innovative food 
production methods that promote human health and envi-
ronmental sustainability. Recently, scientific studies have 
focused on fermented goods derived from microalgae. These 
microalgae are deemed to be potential food sources due to 
their rich stores of beneficial compounds. The nutritional 
value, versatile metabolism and diverse functionality of 
microalgae make them suitable substrates for lactic acid bac-
teria (LAB) and yeasts during the fermentation process [27].

Research has been conducted on the potential of lac-
tic acid fermentation on various types of algae, providing 
opportunities for the production of fermented food products 
utilizing these resources. Some studies have specifically 

Fig. 1  Cyanobacteria helps to mitigate the negative effects of ROS by 
accumulating carotenoids, and the use of aquaporins may facilitate 
the transfer of ROS from the photosystem to other cellular regions. 
The photosynthetic apparatus can be destroyed and protein synthesis 
inhibited by excessive ROS
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investigated the use of Spirulina as a sole substrate for lactic 
acid fermentation [92]. To develop probiotic-based products, 
researchers investigated the use of solely Spirulina biomass 
in lactic acid fermentation. The fermentation lasted 48 h and 
resulted in a significant increase in the concentrations of 
Lactobacillus plantarum and lactic acid. The fermentation 
process also resulted in an augmentation of in vitro antioxi-
dant activities, total phenolic content, and digestibility [60].

Fermentation of Spirulina led to a similar total phenolic 
content and in vitro antioxidant activity as untreated bio-
mass, while protein fragmentation and free methionine 
content increased linearly with fermentation time. Pro-
biotic-based products have been prepared using various 
combinations of lactic acid bacteria, Bacillus strains, and 
their mixtures during the fermentation of Spirulina. Posi-
tive effects on flavor, nutrition, or bioactivity were observed 
for lactic acid bacteria and Bacillus strains [101]. Another 
study showed that the fermentation of A. maxima with L. 
plantarum led to an increase in total antioxidant capacity 
and beta-carotene profile. This increase was suggested to be 
responsible for the higher levels of brain-derived neuropro-
tective factor observed compared to the untreated control 
[18].

Fermenting Arthrospira platensis (cyanobacteria) bio-
mass has been found to be a promising source of antioxi-
dants that exhibit intracellular activity, reducing levels of 
intracellular reactive oxygen species (ROS) and preventing 
oxidative damage to lipids. Fermented Arthrospira platen-
sis has been shown to have higher protein bioavailability 
due to increased non-protein nitrogen content compared to 
non-fermented biomass. Additionally, the fat content of fer-
mented Arthrospira platensis is lower, while the levels of 
other nutrients remain unchanged. Moreover, Arthrospira 
platensis is free of pathogenic bacteria after fermentation 
and has a lower pH, suggesting extended longer shelf life. 
These features make it a potential contender for use as a 
nutritional supplement or as an ingredient in various food 
products [41].

In conclusion, the ancient technique of fermentation has 
regained interest as a method of improving the nutraceuti-
cal properties of food while preserving it. With the grow-
ing demand for healthy and sustainable diets, innovative 
food production practices are crucial for promoting human 
health and environmental sustainability. Microalgae, such 
as Arthrospira platensis, Chlorella vulgaris, and Dunaliella 
salina, have emerged as promising food sources due to their 
nutritional value and flexible metabolism. Lactic acid fer-
mentation has been tested on various types of algae, includ-
ing microalgae and macroalgae, providing a way to create 
fermented food products. Probiotic-based products devel-
oped exclusively using Spirulina biomass for lactic acid fer-
mentation have shown enhanced antioxidant activity, total 
phenolic content, and digestibility. Similarly, fermented 

Arthrospira platensis has shown potential as a nutritional 
supplement or ingredient in foods due to its higher bioavail-
ability of proteins lower, and improved shelf life. Overall, 
fermented algae-based fermented products offer a novel 
approach to developing functional foods that meet the needs 
of a growing health-conscious population.

5  The role of cyanobacteria 
in the fermentation process and their 
impact on the sensory and nutritional 
properties of fermented foods

Cyanobacteria are well-known for their ability to fix atmos-
pheric nitrogen and generate organic acids through photo-
synthesis. During the process of fermentation, cyanobacteria 
can contribute to the production of lactic acid, acetic acid, 
and other organic acids, which play a crucial role in the 
preservation and sensory quality of fermented foods. These 
organic acids can inhibit the growth of pathogenic bacteria, 
enhance the flavor and aroma of fermented foods, and impart 
the characteristic sour taste of fermented products [21].

Cyanobacteria display several fermentation pathways that 
yield various by-products, such as  CO2,  H2, formate, acetate, 
lactate, and ethanol. Fermentation is a constitutive process in 
all examined species, with all the enzymes required for the 
fermentative pathways being present in photoautotrophically 
grown cells. Additionally, certain cyanobacteria have the 
ability to use elemental sulfur as an electron acceptor, which 
results in higher ATP yields during fermentation. How-
ever, sulfur respiration is unlikely in most cases. Currently, 
oxygen and elemental sulfur are the only known electron 
acceptors for chemotrophic metabolism in cyanobacteria. 
Although ATP yields during fermentation are lower than 
those during aerobic respiration, calculations suggest that 
the low maintenance requirements of these cyanobacteria 
mean that the ATP produced during fermentation is likely 
sufficient [85].

Cyanobacteria can significantly influence the sensory 
properties of fermented foods, including flavor, aroma, and 
texture. The flavor and aroma of fermented foods are mainly 
determined by the production of organic acids, esters, alco-
hols, and other volatile compounds during the fermentation 
process. Cyanobacteria can contribute to the production of 
these compounds, enhancing the overall flavor and aroma 
of the final product.

For instance, yogurt, a widely consumed fermented dairy 
product, is made using lactic acid bacteria. These bacteria 
play a crucial role in yogurt production by producing lac-
tic acid, which lowers the pH and leads to the coagulation 
of milk proteins. In addition to lactic acid, the metabolites 
produced by these bacteria, including carbonyl compounds, 
non-volatile or volatile acids, and exopolysaccharides, are 
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important factors that impact the quality of yogurt [58]. 
Similarly, in the production of sourdough bread, lactic acid 
bacteria and yeast are used as starter cultures, which produce 
carbon dioxide, ethanol, and acetic acid. These compounds 
contribute to the flavor, texture, and aroma of the final prod-
uct [91].

Cyanobacteria can also have a significant impact on 
the nutritional properties of fermented foods. During the 
fermentation process, they can increase the bioavailabil-
ity of nutrient, such as zinc, and calcium by reducing the 
levels of anti-nutrients like phytate and oxalate [90]. This 
can improve the nutritional quality of the final product and 
enhance its health benefits. Microalgae synthesize a variety 
of compounds from different metabolic pathways, such as 
amino acids, fatty acids, lycopene, polysaccharides, steroids, 
carotenoids, lectins, polyketones, toxins, etc. Some of these 
are shown in Fig. 2.

Cyanobacteria are crucial in the fermentation process 
of different food products, such as sorghum porridge and 
milk-based products like yogurt. For instance, cyanobac-
teria can enhance the bioavailability of iron in fermented 
sorghum porridge by up to four times by reducing the levels 
of phytate, a compound that can bind to iron and inhibit its 
absorption in the body [88]. Similarly, cyanobacteria can 
also increase the bioavailability of calcium in fermented 
milk products. Calcium is a vital mineral essential for bone 
health and is found in high concentrations in milk. However, 
the bioavailability of calcium in milk is relatively low as it is 

bound to casein, a milk protein. Cyanobacteria can produce 
lactic acid during the fermentation process, which can lower 
the pH of the milk and cause casein to denature, releasing 
calcium and making it more available for absorption in the 
body [26]. Additionally, cyanobacteria in fermented milk 
products can also produce folate, an important B-vitamin 
necessary for cell growth and development [29].

In summary, cyanobacteria play a significant role in the 
fermentation process of various foods, including dairy prod-
ucts, cereals, and beverages. They contribute to the produc-
tion of organic acids, enhance the flavor and aroma of fer-
mented foods, and improve the bioavailability of nutrients. 
The use of cyanobacteria as starter cultures in the produc-
tion of fermented foods has been shown to positively impact 
the sensory and nutritional properties of the final product. 
However, further research is required to fully comprehend 
the mechanisms by which cyanobacteria contribute to the 
fermentation process and explore potential new applications 
for these microorganisms in the food industry.

6  Potential applications of cyanobacteria 
in the development of functional foods 
and nutraceuticals

Cyanobacteria, also known as blue-green algae, are pho-
tosynthetic bacteria that play a crucial role in ecosystems. 
They have been recognized as a potential source of bioactive 

Fig. 2  Molecular structure of 
microalgae-derived compounds 
for a variety of biotechnology 
applications (modified from 
Martinez-Ruiz et al. [51])
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compounds for the development of functional foods and 
nutraceuticals. Cyanobacteria are rich in proteins, lipids, 
carbohydrates, vitamins, and pigments, making them a valu-
able resource. One of their main advantages is their ability 
to produce various bioactive compounds such as phyco-
biliproteins, carotenoids, polyunsaturated fatty acids, and 
polysaccharides, which have health benefits. For example, 
phycocyanin, a blue pigment found in cyanobacteria, has 
been shown to possess antioxidant, anti-inflammatory, and 
immunomodulatory properties, making it a potential candi-
date for functional foods and nutraceuticals [38].

Cyanobacteria are also a good source of proteins with 
amino acid composition. Spirulina and Aphanizomenonf-
los-aquae are two cyanobacteria species extensively stud-
ied for their protein content. Spirulina, in particular, has a 
protein content of up to 70%, which is higher than most 
plant and animal-based proteins, making it an excellent 
candidate for protein-rich functional foods and nutraceuti-
cals [76, 89]. Thus, cyanobacteria can serve as a source of 
omega-3 fatty acids in the development of functional foods 
and nutraceuticals.

The balanced composition and rich nutritional content of 
Spirulina platensis make it a promising ingredient for func-
tional foods, with various potential health benefits. Addition-
ally, microalgae and their biopolymers are being recognized 
as important components for structuring food products [94].

Similarly, research has shown that the polysaccharide 
"sulfated exopolysaccharide" found in Lyngbya sp. exhibits 
antitumor properties [39]. Cyanobacteria are considered a 
potential source of bioactive compounds for the development 
of functional foods and nutraceuticals. They are rich in pro-
teins, polyunsaturated fatty acids, vitamins, and pigments, 
all of which offer various health benefits. However, the utili-
zation of cyanobacteria as a source of bioactive compounds 
in functional foods and nutraceuticals is still in its early 
stages, and further research is needed to fully understand 
their potential in this field.

7  Potential synergistic effects of combining 
cyanobacteria with other food 
microorganisms in fermentation 
processes

Cyanobacteria are photosynthetic microorganisms known 
for their ability to produce diverse bioactive compounds 
with potential health benefits, including antioxidants, poly-
saccharides, and phycobiliproteins. In recent years, fer-
mentation processes involving cyanobacteria have gained 
significant attention due to their potential to enhance the 
nutritional and functional properties of foods. However, 
the use of cyanobacteria in fermentation processes is lim-
ited by their low tolerance to environmental stresses, such 

as changes in temperature, pH, and salinity. To address 
these limitations and improve the efficiency of cyanobacte-
rial fermentation, researchers have explored the potential 
synergistic effects of combining cyanobacteria with other 
food microorganisms, such as lactic acid bacteria (LAB), 
yeast, and fungi.

LAB are commonly used in food fermentation due to 
their ability to produce lactic acid, which can lower the pH 
and inhibit the growth of harmful bacteria. When combined 
with cyanobacteria, LAB can enhance the production of 
bioactive compounds, such as exopolysaccharides (EPS) 
and phycobiliproteins, through symbiotic interactions. 
For instance, a study by Calder [10] demonstrated that co-
culturing Synechococcus sp. and Lactobacillus plantarum 
resulted in a significant increase in EPS production, as well 
as improved antioxidant and antibacterial activities com-
pared to monoculture.

Yeasts and fungi are commonly used in food fermentation 
and have been shown to enhance the nutritional and func-
tional properties of fermented foods. When combined with 
cyanobacteria, yeasts and fungi can improve the texture, fla-
vor, and aroma of fermented foods, as well as increase the 
production of bioactive compounds. For example, a study 
by Hayashi et al. [37] demonstrated that co-culturing Spir-
ulina platensis and Saccharomyces cerevisiae resulted in a 
significant increase in γ-aminobutyric acid (GABA) produc-
tion, which has been associated with various health benefits, 
including anti-inflammatory and anti-anxiety effects.

Spirulina, a photosynthetic cyanobacterium with wide 
distribution in nature, has been used as a nutritional sup-
plement for many centuries due to its high nutritional value. 
It is a rich source of various vitamins, minerals, 78% pro-
teins, 4–7% lipids, carbohydrates, and natural pigments. The 
consumption of Spirulina has been associated with several 
health benefits, including corrective properties against can-
cer, hypertension, hypercholesterolemia, diabetes, and ane-
mia. Recent research has demonstrated that extracellular 
products produced by Spirulina platensis can enhance the 
growth of probiotic microorganisms, such as Lactococcus 
lactis, Streptococcus thermophilus, Lactobacillus casei, Lac-
tobacillus acidophilus, and Lactobacillus bulgaricus [33]. 
This paper will focus on the prebiotic effects of certain blue-
green algae on probiotic microorganisms.

The use of co-culture systems combining microalgae 
and bacteria has been investigated to mitigate contamina-
tion risks associated with axenic cultures. Co-cultures have 
shown to lead to higher biomass yields and synthesis of 
active compounds. Probiotic microorganisms have been 
identified as suitable co-culture partners due to their ben-
eficial effects on health. Several studies have demonstrated 
that algae are prebiotics that can enhance the performance 
of probiotics. Additionally, the use of algae and probiotics 
together has been found to improve the microbiota, promote 
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gut health, and increase yields in aquaculture, specifically in 
fish, shrimp, and mussels [68].

There are more than 600 species of macroalgae used in 
food products, categorized based on their color [45, 69]. 
Extracted bioactive compounds from macroalgae, particu-
larly from brown, red, and green types, have demonstrated 
potential in preventing and treating neurodegenerative dis-
eases [2, 19]. Phytosterols, including fucosterol, have been 
shown to have health benefits such as anticancer, antidiabetic 
and neuroprotective effects etc. [35].

Furthermore, it has been discovered that pigments 
extracted from different types of macroalgae exhibit anti-
oxidant properties as demonstrated by in vitro and in vivo 
tests [25, 42, 71, 72]. Carotenoids, including zeaxanthin, 
beta-carotene, canthaxanthin, and nostoxanthin, are abun-
dant in cyanobacteria and are valuable ingredients in various 
products such as food supplements, colorants, food addi-
tives, and animal feed. Cyanobacteria-derived carotenoids 
are commonly available in tablet, granule, and capsule 
forms, and their production is increasing. For instance, sup-
plements such as β-carotene, riboflavin, vitamin B12, and 
thiamine are obtained from cyanobacteria like Spirulina [3, 
23]. Cyanobacteria are also utilized as a source of miner-
als, amino acids, proteins, complex sugars, carbohydrates, 
phycocyanin, active enzymes, essential fatty acids, and chlo-
rophyll, and are used as whole food or dietary supplements 
in Fig. 3 [49].

Cyanobacterial biomass is commonly used as a source 
for whole dietary supplements, in contrast to extracts used 
in pharmaceutical production [50]. One popular supplement 
is astaxanthin, a ketocarotenoid known for its potent antioxi-
dant properties. Astaxanthin, along with other carotenoids, 

plays a crucial role in preventing cell damage from pho-
tooxidation. Haematococcuspluvialis is a known producer 
of astaxanthin, which has been found to be a potent inhibi-
tor of proteases used in the treatment of various diseases, 
including human immunodeficiency virus (HIV) disease, the 
virus responsible for acquired immunodeficiency syndrome 
(AIDS) [31, 62, 80].

In general, the combination of cyanobacteria with other 
food microorganisms in fermentation processes has shown 
promising results in enhancing the nutritional and functional 
properties of fermented foods. However, further research is 
needed to understand the mechanisms underlying these syn-
ergistic effects and to optimize the fermentation conditions 
for maximum efficiency. Nevertheless, the potential benefits 
of combining cyanobacteria with other food microorgan-
isms in fermentation processes make this an exciting area of 
research with significant implications for the development of 
functional foods with improved health benefits.

8  Future prospects and challenges 
in utilizing cyanobacteria for food 
and health applications

Cyanobacteria possess metabolic processes, including 
carotenogenesis and photosynthesis that result in the pro-
duction of valuable primary and secondary metabolites. 
In primary metabolites, such as antioxidants, proteins, and 
lipids, are essential for developmental processes like growth, 
cell division, and reproduction, and can be re-engineered for 
biotechnological products like biofertilizers, dyes, bioplas-
tics, and food supplements [1, 17, 59, 61, 63]. On the other 
hand, secondary metabolites are not directly involved in nor-
mal cyanobacterial growth, reproduction, or development, 
as they are primarily produced for defensive purposes [7].

Another potential application of cyanobacteria is as 
a source of bioactive compounds for health promotion. 
Cyanobacteria can synthesize bioactive compounds like 
phycocyanin, carotenoids, and polysaccharides, which pos-
sess antioxidant, anti-inflammatory, and immune-enhancing 
properties [8, 82]. These compounds have been investigated 
for their potential health benefits in conditions such as can-
cer, cardiovascular disease, and diabetes [96].

However, the use of cyanobacteria for food and health 
applications also comes with challenges and concerns. One 
major concern is the potential production of toxins by cer-
tain cyanobacterial strains in Fig. 4, such as microcystins, 
which can cause liver damage and other health issues [81, 
84]. Therefore, careful selection and cultivation of non-toxic 
strains, as well as monitoring of toxin production during 
cultivation and processing, are crucial for food and health 
applications.

Fig. 3  Overview of the potential of cyanobacteria in various research 
areas
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In conclusion, cyanobacteria hold promise for food and 
health applications as a sustainable and bioactive source 
of protein and functional compounds. However, address-
ing safety issues and scalability limitations is important. 
Further research and development are needed to optimize 
cyanobacterial cultivation, processing, and application for 
food and health purposes.

9  Conclusion

In conclusion, cyanobacteria, with their remarkable anti-
oxidant properties and various health benefits, have proven 
to be a promising resource for improving the nutritional 
quality of fermented foods and dietary supplements. Their 
ability to increase antioxidant levels, coupled with poten-
tial anti-inflammatory and immunomodulatory effects, 
underscores their importance in promoting health and 
preventing disease. While further research is essential 
to elucidate the mechanisms underlying cyanobacteria-
derived antioxidants and their full spectrum of potential 
health benefits, existing evidence supports their use as 
functional food ingredients and dietary supplements. This 
paper highlights the compelling prospects of cyanobacte-
ria and highlights the importance of continued investiga-
tion to realize their full potential to promote well-being 
and mitigate health risks.
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