
Vol:.(1234567890)

Journal of Umm Al-Qura University for Applied Sciences (2024) 10:120–128
https://doi.org/10.1007/s43994-023-00085-y

1 3

ORIGINAL ARTICLE

Analytical soliton solutions of the beta time‑fractional simplified 
modified Camassa‑Holm equation in shallow water wave propagation

Mst. Munny Khatun1 · M. Ali Akbar1 

Received: 18 July 2023 / Accepted: 22 September 2023 / Published online: 16 October 2023 
© The Author(s) 2023

Abstract
In this study, the analytical soliton solutions of the beta time-fractional simplified modified Camassa-Holm equation, a 
mathematical model used to describe the propagation of shallow water waves characterized by weak dispersion and non-
linearities, is determined. The (G�∕G, 1∕G)-expansion method, a powerful and reliable technique, is exploited to formulate 
the soliton solutions for the equation. The process yields a wide range of solutions, including trigonometric, rational, and 
hyperbolic functions with free parameters. Various original soliton solutions are generated for different parameter values, 
including bell-shaped, anti-bell-shaped, periodic, compacton, singular bell-shaped, singular periodic and flat kink solitons. 
To visually comprehend the physical characteristics of the obtained solutions, two- and three-dimensional graphs, as well as 
contour plots, are plotted. Thorough comparisons with previous results are conducted to ensure the originality of the derived 
solutions. The insights gained from understanding soliton behavior in shallow water can be helpful in improving tsunami 
warnings, coastal protection systems, underwater data transmission, submarine cables, and marine sensing networks.

Keywords  Time fractional simplified modified Camassa-Holm equation · Beta fractional derivative · (G′/G, 1/G)-
expansion method · Analytical exact solitons

1  Introduction

The investigation of soliton solutions for nonlinear evolu-
tion equations (NLEEs) has emerged as an emerging area of 
research with far-reaching implications across various sci-
entific disciplines, including plasma physics, fluid dynam-
ics, ocean engineering, optical fiber communication, and 
mechanical engineering, among others. The origins of soliton 
theory can be traced back to the observations made by Scottish 
scientist John Scott Russell [1] in 1834. However, it was the 
work of Zabusky and Kruskal [2] in 1965 that demonstrated 
the significance of soliton wave solutions. In their study, they 
established the celebrated Korteweg-de-Vries (KdV) equa-
tion and revealed that by balancing the highest-order linear 
and nonlinear terms, a soliton solution could be obtained. 
Several researchers disclosed that soliton wave solutions can 
propagate a long distance with unchanged shape and velocity, 
even when colliding with other solitons. In ocean engineering, 

soliton wave theory is crucial for controlling destructive waves 
occurred in ocean. In communication system, it is used to 
transmit data over long distance without any significant dis-
tortion and attenuation. Several researchers investigated soliton 
and wave solutions applicable in ocean engineering, marine 
and coastal engineering, communication systems, and other 
scientific fields. For example, Shakeel et al. [3, 4], Zhang et al. 
[5], Shakeel et al. [6, 7], Shah et al. [8], Ismail et al. [9–11], 
and Shakir et al. [12] conducted several significant studies on 
soliton theory. As all natural incidents are inherently nonlinear, 
the NLEEs are being utilized to model the physical events 
come about in real-life problems. Due to their nonlinear nature, 
NLEEs possess soliton solutions that play a remarkable role 
in disclosing the nature of the problems and ascertaining a 
wide range of ways to make advancement in the relevant fields. 
Several academics have made significant efforts to formulate 
a universal scheme to examine all NLEEs. Consequently, 
numerous approaches have been developed, though none of 
them are ubiquitously applicable. For instance, the modified 
extended direct algebraic method [13, 14], the generalized 
tanh-coth method [15], the Mohand transformation method 
[16], the extended F-expansion method [17], the generalized 
Kudryashov method [18, 19], improved F-expansion method 
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[20, 21], the modified differential transform method [22, 23], 
the optimal perturbation method [24], the extended rational 
sinh-cosh method [25], the modified fractional homotopy 
analysis transform method [26], the fractional sub-equation 
method [27],the mapping method [28], the (G�∕G)-expansion 
method [29, 30], the extended (G�∕G)-expansion method [31], 
the (G�∕G,1∕G)-expansion method [32, 33], etc.

Nowadays, the fractional differential models are being used 
universally due to its ability to explore any phenomena more 
precisely than the integer ordered differential models. In con-
temporary times, fractional differential models have gained 
widespread use due to their further precision in searching 
various phenomena compared to integer-ordered differential 
models. The fractional derivative (FD), a branch of differential 
calculus focuses on the fractional order derivative rather than 
integer order. The origin of FD can be traced back to the cor-
respondence between Leibniz and L’ Hospital in 1695, and it 
has since flourished through the efforts of several researchers 
who have strived to formulate robust definitions of FD. As 
a result, several reliable definitions have emerged, including 
the Grunwald–Letnikov FD [34], the Riemann–Liouville frac-
tional derivative [35], the Caputo FD definition [36], the beta 
FD definition [37], and the conformable FD definition [38], 
etc. The beta fractional derivative, introduced by Atangana 
et al. [39], is the most recent definition and has not exhibited 
any known drawbacks so far. The beta derivative is defined 
as follows:

The beta fractional derivative: For any function w(t) , the 
beta derivative of the function is.

D�
x
w(t) = lim

h→0

w

(

t+h
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k , 0 < 𝛽 ≤ 1 , k is an arbi-
trary constant.

The model equation: In 2006, Wazwaz [40] discussed the 
modified �-equation in his study on fluid dynamics. This equa-
tion is used in fluid dynamics to describe turbulence, and can 
be stated as:

Equation (1.1) alters to the modified Camassa-Holm (CH) 
equation for � = 2 , and holds the form:
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Subsequently, another form is derived from of this equation 
named the simplified modified Camassa-Holm equation which 
takes the form [41]:

The simplified mCH equation is a simplification version of 
the CH equation, which models the dynamics of shallow water 
waves. This equation neglects some of the dispersion and non-
linear effects that are present in the original CH equation, but it 
still captures some important features of wave dynamics. Now, 
if we consider the beta fractional derivative for the differentia-
tion with respect to time t , the simplified mCH equation can 
be written as

where the first term is the time evolution of the wave func-
tion w = w(x, t),w

x
 describes the advection of wave due to 

the mean flow of wave in x-direction, third term defines 
the dispersive effects of the fluid, which cause the wave to 
spread out over time, and the last term labels the nonlinear-
ity of fluid. In the meantime, the parameters a and b repre-
sents the strength of advection and nonlinearity of the wave, 
respectively.

Several approaches have been exploited to search out the 
exact traveling wave solutions to the aforementioned Eqs. (1.3) 
and (1.4). Islam et al., [42] adopted the extended Riccati 
method that delivered singular kink-shaped, singular periodic, 
compacton, singular anti-bell-shaped, kink-shaped, and singu-
lar compacton solitons; Zafar et al., [41] adopted the extended 
Jacobi’s elliptic function expansion, the new Kudryashov 
and the Exp

a
-function approaches and derived bell-shaped, 

anti-bell-shaped, and rogue wave solutions; Shakeel et al., 
[43] employed the novel (G�∕G)-expansion method, which 
yielded kink, periodic, and singular kink solitons; Fang et al., 
[44] utilized the homotopy perturbation method that provided 
with anti-bell-shaped, singular kink, and flat kink solitons; and 
many others considered several schemes to investigate soliton 
solution of the concerned equations.

The (G�∕G, 1∕G)-expansion method is a concise and pur-
ist technique that has not been exploited to establish solitary 
wave solutions to the simplified mCH equation in the former 
research. Therefore, this research aims to obtain the soliton 
solution of the beta fractional simplified mCH equation using 
the (G�∕G, 1∕G)-expansion method for theoretical calcula-
tions. As a result, the article presents several new solutions 
for the aforementioned equation.
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The remaining sections of this article are structured as fol-
lows: Sect. 2 provides a detailed explanation of the technique; 
the method is employed to extract the analytical solutions of 
the time-fractional simplified mCH equation in Sect. 3. Sec-
tion 4 presents a comparison of the results obtained. In Sect. 5 
, we have illustrated the graphical features of solutions. At last, 
Sect. 6 is entitled to the conclusion.

2 � Outlines of method

The key steps which are to be followed to put in use the 
(G�∕G, 1∕G)-expansion approach have been summarized in 
the subsequent context. Suppose a FNLEE, which has to be 
investigated, is given in the following form:

The given FNLEE contains a polynomial w of the wave 
function w = w(t, x1, x2,…) and its various fractional 
derivatives. To implement the mentioned method, the given 
FNLEE has to be converted to a nonlinear differential equa-
tion through wave transformation. As we consider beta 
derivative for fractional differentiation, the wave transfor-
mation is.

t o g e t h e r  w i t h 
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�1

�

(

x1 +
1

Γ�

)�

±
�2

�

(

x2 +
1

Γ�

)�
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  , 
which is the new wave variable, r(Θ) stands for the wave 
amplitude with velocity Ω , while �1 , �2 ,… be the wave num-
bers in the corresponding directions x1 , x2,…, and � defines 
the fractional order of differentiation. The implication of the 
wave transformation to Eq. (2.1) converts the equation to a 
nonlinear differential equation in r(Θ).

Here, the prime is used to denotes the conventional dif-
ferentiation of r(Θ) with respect to Θ.

The following strategies should be executed to resolve 
NLEEs using the (G�∕G,1∕G)-expansion approach.

Step-1: As per the presented method, Eq. (2.3) admits 
an exact traveling wave solution that can be expressed as a 
series of combination of two functions as follows:

with k being a positive integer determined through the 
principle of balance. The constants �

k
 , �

k
 are arbitrary, while 

G = G(Θ) satisfies the second-ordered equation:
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where � , � are free parameters. Afterward, the succeeding 
relations can be assessed

with χ(Θ) = G�∕G,Π(Θ) = 1∕G.
The general solution of Eq. (2.5) can be categorized into 

three cases, which are discussed below.
Case 1: When 𝜆 > 0 , the general solution involves com-

bination of trigonometric functions as follows:

along with Π2 =
�(χ2−2Πμ+�)

�2Λ−μ2
 , Λ = Υ2

1
+ Υ2

2
 , and Υ1 , Υ2 are 

arbitrary parameters.
Case 2: When 𝜆 < 0 , the general solution of Eq. (2.5) 

is constructed with the aid of the hyperbolic functions and 
takes the form:

together with Π2 = −
�(χ2−2Πμ+�)

�2Λ+μ2
 , Λ = Υ2

1
− Υ2

2
 , and Υ1 , 

Υ2 are arbitrary parameters.
Case 3: When � = 0 , the general solution of Eq. (2.5) 

involves rational algebraic functions and holds the form as:

along with Π2 =
1

Υ2

1
−2μΥ2

(
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)

 , Υ1,Υ2 = arbitrary 
parameters.

Step-2: Plugging in the values of r(Θ) and its deriva-
tives into (2.3), an equation can be derived that includes 
χk(Θ) , Πk(Θ) , and their respective derivatives. Replacing 
the derivatives and Π2(Θ) by their values, the derivatives and 
higher order of Π(Θ) are to be eliminated from the obtained 
equation.

Step-3: An algebraic system of equations is accomplished 
by equating the coefficients of χkΠk(k = 0, 1,…N;k = 0, 1) 
on both sides of the obtained equation. Solving these equa-
tions leads to a range of solutions to the differential Eq. (2.3). 
Once these solutions are extracted, we can attain our desired 
exact traveling wave solutions of FNLEE (2.1) utilizing the 
wave transformation Eq. (2.2).

3 � Solutions to the simplified modified 
time‑fractional CH equation

Through the wave transformation, Eq. (1.4) will be altered 
to the subsequent nonlinear equation.

(2.5)G
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2
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with Θ = �x −
Ω(t+

1

Γ�
)
�

�
 , � = wave number, and Ω = veloc-

ity of wave.
Integrating both sides of (4.1) and considering the inte-

gration constant zero, the resultant equation is.

The value of the balance variable k is estimated by bal-
ancing the order between r′′ and r3 , i.e. , 3k = k + 2 . Thus, 
the derived value is k = 1 . As a result, the trial solution of 
Eq. (4.2) can be expressed as follows:

Computing the estimation as per the asserted steps of 
methods, we obtain a number of solution depending on the 
values of parameter � , that are discussed in the successive 
context.

Class 1: When we attributed the condition 𝜆 < 0 , the 
deduced values of the parameters are worked out as:
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Introducing the estimated values of the parameters 
asserted above, the respective closed-form wave solutions 
can be obtained as:

(4.1)2a�r�(Θ) − Ωr�(Θ) + b�r(Θ)2r�(Θ) + �2Ωr(3)(Θ) = 0,

(4.2)6a�r(Θ) − 3Ωr(Θ) + b�r(Θ)3 + 3�2Ωr��(Θ) = 0.

(4.3)r(Θ) = �0 + �1�(Θ) + �1Π(Θ).
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free parameters.Setting Υ2,� = 0 , the solution (4.4) takes 
the form as:
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Correspondingly, the rest of the solutions can be trans-
muted to another form for the apted values of the parameters 
Υ1 , Υ2 , and �.

Class 2: If we choose positive values for the parameter 
� , the implication of concerned approach to the Eq. (4.2) 
provides the following values of the parameters.

Set 1: �0 = 0 , �1 = ±
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Putting into force the derived parametric values into the 
solution (4.3), the resultant solutions in this case can be writ-
ten as:

Here Θ = �x −
Ω(t+

1

Γ�
)
�

�
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1
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2
 , and Υ1 , Υ2 being 

free parameters.
Class 3: Analogously, the obtained parametric values for 

� = 0 are provided below:
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By setting the obtained parametric values into the solu-
tion (4.3), we can represent the resulting solutions in the 
following ways:

w21 = ±

√

6
√

a�
√

b�2λ − 2b
�

�

�
+ sin(Θ

√

�)Υ1 + cos(Θ
√

�)Υ2

�

�

√

�2Λ − �2

√

�

(4.7)−
√

�(cos(Θ
√

�)Υ1 − sin(Θ
√

�)Υ2)
�

.

(4.8)

w22(x, t) = ±
2
√

3
√

a�
√

�(cos(Θ
√

�)Υ1 − sin(Θ
√

�)Υ2)
√

2b�2� − b(sin(Θ
√

�)Υ1 + cos(Θ
√

�)Υ2)
.

(4.9)

w23(x, t) = ±
2
√

3
√

a�
√

�
√

Λ
√

−(b + b�2�)(sin(Θ
√

�)Υ1 + cos(Θ
√

�)Υ2)
.



124	 Journal of Umm Al-Qura University for Applied Sciences (2024) 10:120–128

1 3

where Θ = �x −
Ω(t+

1

Γ�
)
�

�
 , and Υ1 , Υ2 being free 

parameters.
It is possible to obtain other useful closed-form soliton 

solutions of the simplified modified CH equation by choos-
ing different values of the free parameters; however, for con-
ciseness, these particular solutions are not provided in detail 
in this context.

(4.10)
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(4.11)w32(x, t) = ±
2
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3
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,

4 � Comparison

In this section, we establish a comparison between the 
results obtained presently and the former results found in 
the literature using different analytical techniques. This com-
parison has been accomplished to emphasize the originality 
of this study, and the details can be found in the subsequent 
Table 1.

Reviewing the Table, it becomes evident that some of the 
results obtained in this article by appropriately selecting the 
parameter values are similar to some of the previous results. 
However, it should be noted that their original expression is 
different from ours. Despite conducting a thorough search 
across relevant articles that have investigated the equation 
under consideration, we could not find any other identical 
solution to the one we have obtained. Therefore, it is note-
worthy that the remaining results we obtained are new and 
innovative, as they do not appear to have been previously 
documented.

Table 1   Comparison of the results

Present results Former results of Liu et al. [45]

Letting Υ1 = 0 , the solution (4.5) may be written as
w12(x, t) = ±A1tanh(Θ),
where A1 = arbitrary parameter

For the apt values parameters the solution may be written as
u1,2 = ±A2tanh(�),
where A2 = arbitrary parameter

Letting Υ1 = 0 , the solution (4.8) may be written as
w22(x, t) = ±A1tan(Θ),
where A1 = arbitrary parameter

For the apt values parameters the solution may be written as
u3,4 = ±A2tan(�),
where A2 = arbitrary parameter

Letting Υ2 = 0 , the solution (4.11) may be written as
w32(x, t) = ±

A1

Θ

where A1 = arbitrary parameter

For the apt values parameters the solution may be written as
u3,4(x, t) = ±

A1

�

where A2 = arbitrary parameter

Fig. 1   a 3D, b 2D, and c contour plots of absolute value of solution (4.4)
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5 � Graphical representations and analysis

We have presented two- and three- dimensional plots of the 
solutions to enhance understanding of the characteristics of 
obtained solutions. Besides, the contour plots of solutions 
have been included to demonstrate the stability of solitons. 
These figures are plotted within the range of −10 ≤ x ≤ 10 
and 0 ≤ t ≤ 10 . In the subsequent context, we have discussed 
the features and applications of the several useful solutions.

Figure 1 represents the absolute value of solution (4.4) 
which have been plotted for the values a = 0.02 , � = 0.34 , 
� = −10 , b = −8.18 , � = 0.99 , Υ1 = −10.8 , Υ2 = 13.7 , and 
� = 5.15 . It can be observed from the figure that the absolute 
value of solution (4.4) describes a bell-shaped soliton for 
the chosen values of parameters. This type of soliton is also 
acquainted as the bright or non-topological soliton, and very 
useful in optical fiber study to transfer signals or data over a 
long distance. It provides a constant value for t → ∞ . Shal-
low water waves typically involve the interaction of waves 
with a seafloor or coastline, and undergo shoaling, breaking, 
and dispersion due to the varying depth of the water. As 
bell-shaped can propagate a wide range without distortion, 

it has remarkable application to investigate wave natures in 
shallow water. The absolute value of solution (4.5) revels 
the anti-peakon soliton, which have been plotted in Fig. 2 
for the values a = 0.14 , � = −0.08 , � = −8.49 , b = 2.06 , 
� = 0.1 , Υ1 = −7.2 , Υ2 = 15 , whereas the absolute value of 
solution (4.6) presents a singular bell-shaped soliton for the 
chosen values of parameter a = 0.26 , � = 2.06 , � = −0.99 , 
b = −0.36 , � = 0.99 , Υ1 = −5.5 , Υ2 = 12.45 as shown in 
Fig. 3. In an anti-peakon soliton, the first-derivative becomes 
undefined at the lowest tough even though the function is 
continuous. On the other hand, singular bell-shaped soliton 
incorporates singularity and the function is discontinuous 
at the point x = 0 . Anti-peakon is robust and efficient in 
data transmission system to transmit signal in remote area 
without any distortion. It is a special case of the anti-bell-
shaped soliton.

Figure 4 displays the graphical characteristics of the abso-
lute value of solution (4.7), which have been plotted for the 
values a = −1.18 , � = −0.17 , � = 0.1 , b = −0.08 , � = 0.99 , 
Υ1 = 10.45 , Υ2 = −11.35 , and � = 13.8 . If we change the 
value of � (wave number) to � = −1.94 , it will represent a 
periodic soliton as shown in Fig. 5. Both of the solutions are 
useful to study the nonlinear wave property in shallow water 

Fig. 2   a 3D, b 2D, and c contour plots of absolute value of solution (4.5)

Fig. 3   Depiction of absolute value of solution (4.6)
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Fig. 4   Depiction of absolute value of solution (4.7)

Fig. 5   Depiction of absolute value of solution (4.7)

Fig. 6   Depiction of absolute value of solution (4.8)

Fig. 7   Depiction of absolute value of solution (4.10)
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wave. The periodic soliton is characterized by its periodic 
behavior, and the compacton is characterized by its compact 
seize. Thus, the periodic soliton travels a long distance hav-
ing the unchanged velocity and shape, whereas compacton 
travels in a limited area.

The absolute value of solution (4.8) presents a singu-
lar periodic soliton for the values a = 2.28 , � = −0.56 , 
� = 0.1 , b = 2.7 , � = 0.99 , Υ1 = −2 , Υ2 = −10.3 , which 
has been attached in Fig. 6. Figure 7 is illustrated the abso-
lute value of solution (4.10) which is plotted for the values 
a = −10 , � = −10 , � = 0.1 , b = −0.1 , � = 0.99 , Υ1 = 1.45 , 
Υ2 = −12.05 , and � = −13.7 . The absolute value of solution 
(4.10) presents a flat kink soliton.

The study of soliton waves plays a role in coastal studies 
and the development of structures such as harbor entrances. 
By comprehending their behavior, it can effectively control 
wave energy and ensure the safety and stability of coastal 
infrastructure. Moreover, solitary waves are useful for simu-
lating and understanding tsunami waves in shallow water. 
Since this study presents several new solutions to the con-
cerned equation, these solutions might help to study the new 
properties of shallow water waves.

6 � Conclusion

This article focuses on the investigation of the modified 
fractional Camassa-Holm equation using the (G�∕G, 1∕G)
-expansionapproach in order to establish a range of useful 
soliton solutions. The obtained solutions provide valuable 
insights into the characteristics and behavior of shallow 
water waves through various types of solitons, such as peri-
odic, bell-shaped, compacton, anti-peakon, and singular 
bell-shaped solitons. These solutions are obtained by appro-
priately selecting parameter values within the analytical 
framework. The obtained solutions are visualized through 
three-dimensional, two-dimensional, and contour plots to 
aid in better comprehension. These findings have significant 
implications for the study of diverse physical phenomena, 
including fluid dynamics, coastal engineering, and other 
related fields. Moreover, the analytical solutions obtained 
offer potential insights into the behavior of shallow water 
waves, serving as a basis for further research in coastal engi-
neering and tsunami waves.
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