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Abstract
This study investigates the dynamic flow of a Newtonian fluid through two coaxial cylinders, each rotating at speeds Ω1(t) 
(inner cylinder) and Ω2(t) (outer cylinder). We derive equations of motion for disturbances in balance, yielding a controlled 
system characterized by parameters such as Taylor number, wave number, frequency ratio, and interior cylinder frequency. 
We introduce numerical techniques for solving this system, employing spectral Chebychev collocation for spatial resolution 
and a combined approach of Floquet theory and Runge–Kutta method for temporal resolution. Our refined approach enables 
comprehensive analysis of fluid dynamics within the rotating coaxial cylinders, showcasing the interplay of various control 
parameters.

Keywords  Dynamic flow · Newtonian fluid · Spectral Chebychev collocation methods · Floquet theory · Runge–Kutta 
method

List of symbols
R1	� Inner cylinder rays
R2	� Outer cylinder rays
h	� Cylinder height
d	� Annular space between the two cylinders
V	� Velocity field
P	� Pressure
r, �, z	� Cylindrical coordinates
u, v,w	� Radial, tangential and axial component of 

velocity
û, v̂, ŵ	� Radial, tangential and axial component of speed 

in normal modes
u′, v′,w′	� Radial, tangential and axial component of the 

disturbed velocity
t	� Time
x	� Reduced variable in radial direction

VB	� Basic velocity
vB	� Basic velocity tangential component
PB	� Basic pressure
p′	� Disturbed pressure
Ta	� Taylor's number
Tac	� Critical Taylor number
k	� Wave number
kc	� Critical wave number
X	� Defined by 2x − 1

p, q	� Entiers numbers
Lj	� Lagrange's fundamental polynomials
N	� Collocation points
TN	� Chebyshev polynomial of order N
Q	� Matrix whose eigenvalues are Floquet 

exponents

1  Introduction

The study of instability phenomena remains essential to 
solve the problems posed by the control and control of 
industrial processes, and it is also essential when it comes 
to explaining the mechanisms and properties of these 
processes. In this sense, many works have focused on 

 *	 Amine El Harfouf 
	 amine.elharfouf86@gmail.com

1	 Department of Physics, Polydisciplinary Faculty 
of Khouribga, University of Sultan Moulay Slimane, 
Khouribga, Morocco

2	 Department of Physics, National School of Applied Sciences 
of Khouribga, University of Sultan Moulay Slimane, 
Khouribga, Morocco

http://crossmark.crossref.org/dialog/?doi=10.1007/s43994-023-00078-x&domain=pdf
http://orcid.org/0000-0002-9836-4923


59Journal of Umm Al-Qura University for Applied Sciences (2024) 10:58–71	

1 3

the phenomena of instability, let us quote those of Chan-
drasekhar, Drazin [1, 2].

Hydrodynamic instabilities are in fact the reflection of 
the competition between the various phenomena of opposite 
tendencies occurring in the moving fluid. In In the case of 
the centrifugal instabilities that interest us, here the forces in 
question mainly relate to viscosity and inertia. To understand 
these phenomena of instability and transition to turbulence, 
fluid mechanics is particularly interested in relatively simple 
systems, such as the Taylor–Couette system, which is the 
subject of our study, rotating spheres, rotating cones, rotat-
ing discs, etc.. This field continues to arouse the interest of 
researchers despite the considerable number of theoretical, 
experimental and numerical works that have been submitted 
to it. consecrated.

The Taylor–Couette flow system has received a lot 
attention of several research since the initial work of 
Taylor [3] and is still relevant today. This flow present 
between two coaxial cylinders in motion, can lose its 
hydrodynamic stability to generate toroidal vortices. In 
the case of lower angular velocities, basic flow is axisym-
metric and invariant under vertical translation. It is appear 
that at specific value, the flow become unstable and a 
pattern of counter-rotating toroidal rollers appears which 
extend all around the cylinder; the flow always remains 
axisymmetric, but this time the vertical translational sym-
metry disappears, it is broken. By further increasing the 
angular velocity, this structured flow can in turn become 
unstable and transit towards turbulence.

Donnelly initiated investigating on unsteady Tay-
lor–Couette flows through experiments [4] where the effect 
of a periodic modulation added to the angular velocity of 
the interior cylinder has been processed. The pioneering 
experiments of Donnelly [4] have given rise to numerous 
theoretical studies carried out mainly by Hall [5] as well as 
by Riley and Lawrence [6]. Hall found that the instability 
triggering threshold, in the case of small air gap, decreased 
slightly compared to Riley and Lawrence used a Galerkin 
expansion with time-dependent coefficients to solve the 
linear equations regulating the disturbance motion, and 
they then used Floquet theory to assess the stability of the 
system. Their findings support Hall's research, which indi-
cates that modulation has an instability impact. Carmi and 
Tustaniwskyj [7] asserted that the theoretical treatments 
were not able to achieve a suitable level of agreement with 
the trials in the high amplitude modulation region and low 
frequency. The question that arose: does the low frequency 
modulation produce a stabilizing or destabilizing effect. 
This last statement has been confirmed by the results of 
Kuhlmann et al. [8] who observed the destabilizing effect 
by a numerical simulation using finite differences on the 
complete Navier–Stokes equations. The numerical results 
show that the time-modulated coils exhibit a subharmonic 

response. Barenghi and Jones have shown [9], using the 
amplitude model developed by Hall [5], that the presence 
of experimental imperfections can substantially alter the 
dynamics below a critical frequency.

The special case of periodic base flows in Taylor–Cou-
ette geometry, the angular velocity component was set to 
nill, which considered in the work of Riley [6] and Carmi 
[7] respectively in the case where the external cylinder is 
at rest and the case where the two cylinders have rotational 
speeds modulated either in phase or in phase shift. The 
stability of this flow was then theoretically and experi-
mentally studied by Aouidef et al. [10–12] in the case 
where both the interior and exterior cylinders oscillate 
with angular velocities of Ω0cos

(
�∗

1
t∗
)
 and Ω0cos

(
�∗

2
t∗
)
 , 

respectively, and ″ is the amplitude ratio of the two cyl-
inders. Three possibilities were taken into consideration: 
the exterior cylinder at rest (Ɛ = 0), the two cylinders oscil-
lating in phase (Ɛ = 1), and the two cylinders oscillating 
in phase opposition (Ɛ = − 1). Their findings demonstrate 
that the flow stabilizes at low and high frequencies, while 
destabilization is greatest at middle frequencies. The theo-
retical and numerical results are in good agreement in the 
high frequency limit while a disagreement between these 
two types of results was observed in the low frequency 
limit. This disagreement is due to numerical predictions. 
Ω0cos

(
�∗

1
t∗
)
 and Ω0cos

(
�∗

2
t∗
)

In the present work, we are interested in the instability 
of the Taylor Couette flow within a Newtonian fluid, in 
the case of a quasi-periodic modulation with two incom-
mensurable frequencies �1 and �2 . The two cylinders, 
interior and exterior, oscillate respectively with angular 
velocities Ω0cos

(
�∗

1
t∗
)
 and Ω0cos

(
�∗

2
t∗
)
 . An interest is 

devoted to the effects of the frequency ratio � =
�2

�1

 on the 
marginal stability curves, in particular on the curves of 
the critical parameters, Taylor number and wave number. 
Also this study allows to show that the modulation with 
two frequencies makes it possible to control the instabil-
ity of the pulsating flow by adjusting the frequencies �1 
and �2 . This work is a continuation of works which were 
interested in the modulation, with two incommensurable 
frequencies, in thermal convection and in Faraday insta-
bility [13].

For the vortex stability problem, a spectral collocation 
method appears more attractive since a computational 
algorithm based on that method does not require major 
modifications from case to case and at the same time the 
computations are accurate and efficient. Therefore, a spec-
tral collocation formulation of the linearized equations of 
motion for a steady, 3-dimensional, constant density fluid 
flow has been developed. The formulation is described in 
the subsequent sections. Although the spectral colloca-
tion technique has been applied to the Orr–Sommerfeld 
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equation (Herbert [14], Spalart [15]), there appears to 
be no previous application of the method to the type of 
problems discussed in this paper. A Chebyshev colloca-
tion matrix algorithm has been constructed for both spatial 
and temporal stability calculations. In the present method, 
the derivatives of the eigenfunctions are evaluated in the 
physical space at the collocation points. Through numer-
ous test cases which examined annular flow (including 
the narrow gap limit of plane Poiseuille flow), cylindrical 
Poiseuille flow, rotating pipe flow, and a trailing line vor-
tex, we have shown that the developed algorithm produces 
accurate global eigenvalues for each case without requir-
ing any substantial changes in the computer code.

A future goal of this research will be to perform stabil-
ity analyses of the similarity solutions for porous rotat-
ing pipe flow obtained by Donaldson and Sullivan [16]. 
Their computed profiles which are exact solutions to the 
3-dimensional equations of motion have shown many 
of the flow features which are of interest in the study 
of unconfined trailing line vortices. For example, their 
solutions range from those which can be characterized 
as a single cell vortex to multiple cell vortices. In addi-
tion, experimental measurements have documented the 
existance of many of these flows (see Adams and Gilmore 
[17], Leuchter and Solignac [18], and Graham and New-
man [19]). However, this study has been concerned pri-
marily with validation of the spectral collocation method 
and to that end, the algorithm has been studied for some 
classical velocity profiles for which some stability results 
are available.

In the next, we present the mathematical formulation 
of the approached problem. First, we determine the Tay-
lor–Couette pulsating flow in quasiperiodic regime con-
sidering that the air gap, d , is very small compared to 
the radius, R1 , of the inner cylinder. The stability study 
will concern this basic solution. Then, we proceed to an 
adimensionalization by introducingadimensional variables 
allowing to simplify the treatment of the equations gov-
erning the problem studied. Finally, we adopt the linear 
stability theory for the determination of the disturbance 
equations resulting from the superposition of the basic 
flow and that of the disturbance.

2 � Description of the problem

We are interested in this study of a pulsed and axisymmet-
ric flow of an incompressible Newtonian fluid between 
two coaxial cylinders of respective rays R1 and R2  turning 
around their axis with angular speeds 1 and 2 defined by 

Ω1 = Ω0cos

(
�∗

1
t∗
)
 , Ω2 = Ω0cos

(
�∗

2
t∗
)
 (Fig. 1). Where Ω0 is 

the amplitude, ω∗

1
 and ω∗

2
 are the pulsation frequencies consid-

ered immeasurable.
The conservation equations of mass and quantity of 

motion are written in the form:

where:
� the volumetric density of the fluid, 𝐕∗

=

(
u∗ v∗ w∗

)
 

the velocity field, μ the dynamic viscosity of the fluid and 
P∗ is the pressure.

In the system of cylindrical coordinates, these equations 
are written:

(1)∇.𝐕∗
= 0

(2)�
dV∗

dt∗
= �

(
�V∗

�t∗
+ V∗

.∇.𝐕∗

)
= −∇P∗

+ �Δ𝐕
∗

(3)
1

r

�(ru∗)

�r
+

1

r

�v∗

��∗
+

�w∗

�z∗
= 0

Fig. 1   Diagram of the Taylor–Couette system
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(4)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�
(

�u∗

�t∗
+ u∗ �u∗

�r
+ v∗

r
�u∗

��∗
− v∗2

r
+ w∗ �u∗

�z∗

)

= − �P∗

�r
+ �

(

�
�r

(

1
r

�
�r
(ru∗)

)

+ 1
r2

�2u∗

��∗2
− 2

r2
�v∗

��∗
+ �2u∗

�z∗2

)

�
(

�v∗

�t∗
+ u∗ �v∗

�r
+ v∗

r
�v∗

��∗
+ v∗u∗

r
+ w∗ �v∗

�z∗

)

= − 1
r
�P∗

��∗
+ �

(

�
�r

(

1
r

�
�r
(rv∗)

)

+ 1
r2

�2v∗

��∗2
− 2

r2
�u∗

��∗
+ �2v∗

�z∗2

)

�
(

�w∗

�t∗
+ u∗ �w∗

�r
+ v∗

r
�w∗

��∗
+ w∗ �w∗

�z∗

)

= − �P∗

�z∗
+ �

(

�
�r

(

1
r

�
�r
(rw∗)

)

+ 1
r2

�2v∗

��∗2
+ 1

r2
�2w∗

��∗2
+ �2w∗

�z∗2

)

3 � Basic flow

Given the nature of the boundary conditions imposed on both 
cylinders, the flow is azimuthal and considered axisymmetri-
cal. The velocity field is therefore given by:

The system (4) is reduced to the following system:

Also, for axisymmetric flow, the continuity equation is 
reduced to:

The system (5) is associated with the following boundary 
conditions:

4 � Adimensional analysis

We introduce dimensionless variables:
x =

r−R1

d
 , t = t∗

d2∕ v
 , vB =

v∗
B

R1�0

 , PB =
P∗

B

�R1dΩ
2

0

 , �i =
�∗

i

�∕ d2
 , 

z =
z∗

d
 , avec d = R2 − R1.

We consider the approximation of low air gap, the terms 
of order d

R1

 become negligible. In this case, we arrive at:

V∗

B
=

(
0 v∗

B
(r, t∗) 0

)

(5)

⎧⎪⎨⎪⎩

�
v∗
B

r
= −

�P∗

B

�r

�
�v∗

B

�t∗
= �

�

�r

�
1

r

�

�r

�
rv∗

B

��

0 = −
�P∗

B

�z∗

(6)
1

r

�(ru∗)

�r
+

�w∗

�z∗

(7)
{

v∗
B

(
R1, t

∗
)
= Ω0cos

(
ω
∗

1
t∗
)

v∗
B

(
R2, t

∗
)
= Ω0cos

(
ω
∗

2
t∗
)

(8)vB
2
=

�PB

�x

(9)
�vB

�t
=

�2vB

�x2

with the following boundary conditions:

Solving Eqs. (8)–(10) with conditions (11) allows to write 
the basic speed in the following form (calculation details are 
in Annex A):

Expressions of F1(x) , F2(x) , F2(x), G1(x) and G2(x) are 
given by:

where �1 =
√

�1

2
 and �2 =

√
�2

2
.

In case, where �1 = �2 = �  we checked that the basic 
solution corresponds to that of Aouidef et al. [10]:

where:

(10)0 = −

�PB

�z

(11)
{

vB(0, t) = cos

(
ω1t

)
vB(1, t) = cos

(
ω1t

)

(12)
vB(x, t) = F1(x)cos

(

ω1t
)

+ F2(x)sin
(

ω1t
)

+ G1(x)cos
(

ω2t
)

+ G2(x)sin
(

ω2t
)

F1(x) =
cos

(
�1x

)
cosh

(
�1(2 − x)

)
− cosh

(
�1x

)
cos

(
�1(2 − x)

)

cosh

(
2�1

)
− 2cos

(
2�1

)

F2(x) =
sin

(
�1x

)
sinh

(
�1(2 − x)

)
− sinh

(
�1x

)
sin

(
�1(2 − x)

)

cosh

(
2�1

)
− 2cos

(
2�1

)

G1(x) =
cos

(

�2(1 − x)
)

cosh
(

�2(1 + x)
)

− cosh
(

�2(1 − x)
)

cos
(

�2(1 + x)
)

cosh
(

2�2
)

− 2cos
(

2�2
)

G2(x) =
sin

(

�2(1 − x)
)

sinh
(

�2(1 + x)
)

− sinh
(

�2(1 − x)
)

sin
(

�2(1 + x)
)

cosh
(

2�2
)

− 2cos
(

2�2
)

(13)vB(x, t) = V1(x)cos(σt) + V2(x)sin(σt)

V1(x) =
cos(�x)cosh(�(1 − x)) + cosh(�x)cos(�(1 − x))

cosh(�) + cos(�)

V2(x) =
sin(�x)sinh(�(1 − x)) + sinh(�(1 − x))sin(�x)

cosh(�) + cos(�)
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5 � Linear stability analysis

In the analysis of the linear stability, we assume infinitesimal 
perturbations, in which the velocity and pressure state take the 
following dimensionless form:

After inserting the Eqs. (14, 15) in the Eq. (3) and in the 
system (4), we end up with the following dimensionless equa-
tions (calculation details are in Annex B):

where: Δ2 =
�2

�x2
+ �2

�y2

Ta =
R1Ω0d

�

√
d

R1

 this factor is the Taylor number, which 
represents the ratio between centrifugal forces and viscous 
forces. The boundary conditions are:

6 � Analysis in normal modes

We are looking for solutions in normal modes:

where k is the wave number.
By inserting the expressions (21) in the equations of 

motion (16)–(19) we obtain:

(14)V =

(
0 vB(x, t) 0

)
+

(
u�(x, y, t) v�(x, y, t) w�

(x, y, t)
)

(15)P = PB + p�

(16)
�u�

�x
+

�v�

�y
= 0

(17)
(
Δ2 −

�

�t

)
u� + 2Ta

2v�vB = Ta
2 �p

�

�x

(18)
(
Δ2 −

�

�t

)
v� = u�

�vB

�x

(19)
(
Δ2 −

�

�t

)
w�

= Ta
2 �p

�

�z

(20)u� = v� = w�
= 0 at x = 0, 1

(21)

(

u′(x, t) v′(x, t) w′(x, t) p′(x, t)
)

=
(

û(x, t) v̂(x, t) ŵ(x, t) p′(x, t)
)

exp(ikz)

(22)�û

�x
+ ikŵ = 0

(23)
(
M −

�

�t

)
û + 2Ta

2vBv̂ = Ta
2 �p̂

�x

where M =
�2

�x2
− k2

The expression for b from the continuity Eq.  (26) is 
inserted into Eq. (25) to obtain:

Finally, the perturbed equations reduce to:

The boundary conditions are:

We include the variation of variable T = �1t The basic 
velocity becomes:

where � =
�1

�2

 . Then, we use an approximation which con-
sists in making an irrational number � , into a rational num-
ber in the form � =

p

q
 , where p and q are prime integers, on 

Matlab the "rat" function allows to obtain p and q. For exam-
ple, 

√
2 =

1393

985
 , 
√
3 =

1351

780
 and 

√
37 =

882

145
.

We introduce another change of variable T = 2qT� , basic 
speed becomes of period �:

In this case, we arrive at the following final system:

We considered, in this part, the mathematical formula-
tion of the linear stability of the pulsating flow established 
in quasi-periodic mode in geometry by Taylor Couette. This 
formulation was accompanied by an adimensionalization of 
the conservation equations used. The linear problem has been 

(24)
(
M −

�

�t

)
v̂ = û

�vB

�x

(25)
(
M −

�

�t

)
ŵ = Ta

2 �p̂

�z

(26)1

k

(
M −

�

�t

)
�û

�x
=

�p̂

�z

(27)

⎧
⎪⎨⎪⎩

�
M −

�

�t

�
Mû = 2k2Ta

2vBv̂�
M −

�

�t

�
v̂ = û

�vB

�x

(28)û = v̂ =
�û

�x
= 0 at x = 0, 1

(29)
vB(x, T) = F1(x) cos (T) + F2(x) sin (T)

+ G1(x) cos (�T) + G2(x) sin (�T)

(30)
vB
(

x, T′) = F1(x) cos
(

2qT′) + F2(x) sin
(

2qT′)

+ G1(x) cos
(

2pT′) + G2(x) sin
(

2pT′)

(31)

⎧⎪⎨⎪⎩

�
M −

ω1

2q

𝜕

𝜕T
�

�
Mû = 2k2T2

a
vBv̂�

M −
ω1

2q

𝜕

𝜕T
�

�
v̂ = û

𝜕vB

𝜕x



63Journal of Umm Al-Qura University for Applied Sciences (2024) 10:58–71	

1 3

reduced to the system (31) with the conditions (28). To solve 
this system, we will present, in the following chapter, the 
numerical method allowing to finalize the study of stability.

7 � Méthodes spectrales de collocation de 
Chebychev

Chebyshev spectral collocation methods [20] are focused on 
the decomposition of the elements of a vector space on the 
basis of the Lagrange function Lj(x). Thus, we have:

ûj(x, t) and v̂j(x, t) sont les amplitudes dépendant du temps et 
Lj(x) sont les fonctions de base de Lagrange définis comme 
suit:

The amplitudes ûj(x, t) and v̂j(x, t) exactly satisfy the solu-
tions û(x, t) and v̂(x, t) at N collocation points xi such that:

where �ij is the Kronecker symbol.
Thus, the Tchebychev polynomial of order N, denoted TN 

is defined by:

This polynomial admits exactly N extrema. The last are 
named the Chebychev–Gauss–Lobatto collocation points 
defined in the interval [−1, 1] and are given as follows:

The Tchebyshev interpolation polynomial of Lagrange is 
then defined for the case of the Tchabyshev-Gauss–Lobatto 
collocation points as follow:

where c1 = cN = 2 et c2 = ⋯ = cN−1 = 1.
The derivatives of order n of the functions ̂u(x, t) and ̂v(x, t) 

with respect to x, evaluated in N collocation points are 
expressed in terms of derived matrices Dn

ij
 of the same order 

of size n ∗ n, whose indices i and j denote their rows and col-
umns respectively:

(32)
(
û(x, t) v̂(x, t)

)
≈

i=N∑
j=1

(
ûj(x, t) v̂j(x, t)

)
Lj(x)

(33)
Lj(x) =

i=N∏

i ≠ j

i = 1

(
x − xi

xj − xi

)
j = 1… .N

(34)Lj(x) = �ij

(35)TN(x) = cos

(
Ncos−1(x)

)

(36)xi = cos

(
�(i − 1)

N − 1

)
I = 1… .N

(37)Lj(x) =
(−1)

j
(
x2 − 1

)
T �

N
(x)

cj(N − 1)
2
(
x − xi

)

The components of the matrices Dn
ij
 are the derivatives 

of order n of the basis functions (Lagrange polynomials) 
taken at each of the collocation points. The first-order 
derivative matrix D(1)

ij
 calculated at the points at the Che-

byshev–Gauss–Lobatto collocation points is written 
explicitly in this form:

The derivatives of order p > 1 of this matrix are obtained 
by raising the matrix D(1) to the power p , i.e.:

In order for us to apply Chebyshev spectral collocation 
method whose collocation points are defined in the interval 
[−1, 1] , we make the following modification of variable:

where X is now the new spatial variable of the problem 
defined in the interval [− 1, 1]. Taking into account the 
change of spatial variable (42), the n-th derivatives with 
respect to x are expressed as a function of that with respect 
to X in the following form:

8 � Résolution spatiale

By introducing the change of variable (42, 43) on the system 
(31) and the conditions (28), we get:

(38)
�nû

(
xi, t

)
�xn

=

N∑
j=1

ûj(t)L
n
j

(
xi
)
=

N∑
i=1

ûj(t)D
n
ij

(39)
�nv̂

(
xi, t

)
�xn

=

N∑
j=1

v̂j(t)L
n
j

(
xi
)
=

N∑
i=1

v̂j(t)D
n
ij

(40)D
(1)

ij
=

⎧
⎪⎪⎨⎪⎪⎩

c
j(−1)i+j

cj(xi−xj)
i ≠ j

−
xi

2(1−x2)
i = j ≠ 1,N

2(N−1)2+1

6
i = j = 1

−
2(N−1)2+1

6

(41)D(p)
=

(
D(1)

)p

(42)X = 2x − 1

(43)
�n

�xn
= 2n

�n

�Xn

(44)

(
4
�2

�X2
− k2

)
ω1

2q

�û

�T�
=

(
16

�16

�X16
− 8k2

�2

�X2
+ k4

)
û − 2k2Ta

2vBv̂

(45)
ω1

2q

�v̂

�T�
=

(
4
�2

�X2
− k2

)
v̂ − û

�vB

�X
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Spatial discretization leads us to a time-dependent matrix 
system of 2N unknowns. These are defined as follows:

The system (32) with the six conditions discretized is 
expressed as follows:

(46)û = v̂ =
�û

�X
= 0 en x = ±1

(47)

(
û1
(
T
�
)
, û2

(
T
�
)
,… ., ûN

(
T
�
)
, v̂1

(
T
�
)
, v̂2

(
T
�
)
,… ., v̂N

(
T
�
))

(48)

ω1
2q

(

−4D(2)
ij + k2Iij, 0ij

)

( �ûj
�T′
�v̂j
�T′

)

=
(

−16D(4)
ij + 8k2D(2)

ij − k2Iij + 4D(2)
ij

)

(

ûj
v̂j

)

(49)
ω1

2q

(
0ij, Iij

)( �ûj

�T�

�v̂j

�T�

)
=

(50)
(
I1j 01j

)( ûi
v̂j

)
= 0

(51)
(
INj 0Nj

)( ûi
v̂j

)
= 0

(52)
(
01j I1j

)( ûi
v̂j

)
= 0

(53)
(
0Nj INj

)( ûi
v̂j

)
= 0

(54)
(
D

(1)

ij
01j

)(
ûi
v̂j

)
= 0

These Eqs. (48–55) constitute a time-dependent matrix 
system defined in the following formulation:

with A0 , C1 , S1 , C2 and S2 are matrices of order 2N and B is 

a singular matrix. And� =

{
ûi
v̂j

}
.

9 � Résolution temporelle

According to Floquet's theory, the fundamental matrix solu-
tion of (36) has the following form:

where P
(
T
′
)
 is a periodic matrix of period π and the propre 

values of the matrix Q are the Floquet exponentsuj . We set 
as an initial condition:

By integrating Eq.  (57) over a period, we obtain the 
condition:

The propre values �j of �(�) are linked to the Floquet 
exponents by the relation:

The system (56) is integrated using the Runge–Kutta 
method of the fourth order with the initial condition (58). 
Finally, we have a relationship between the frequency �1 , 
the frequency ratio � , the Taylor number, Ta and the wave 
number, k . This relation is written formally in the form:

10 � Results and discussion

10.1 � Convergence analysis

In order to evaluate the convergence of the numerical 
method at given frequencies �1 , we analyze the prediction 
of the critical Taylor number Ta as a function of N . We place 
ourselves in the case where k = 2 , � =

√
37 and �1 = 4 . In 

(55)
(
D

(1)

Nj
0Nj

)(
ûi
v̂j

)
= 0

(56)
B ��
�T′ =

(

A0 + C1cos
(

2qT′) + S1sin
(

2qT′)

+C2cos
(

2qT′) + S2sin
(

2qT′))�

(57)�
(
T
�
)
= P

(
T
�
)Q

T�

(58)�(0) = I

(59)�(�) = e�Q

(60)uj =
1

�
ln(�j)

(61)R
(
Ta;k;γ1;ω

)
= 0

Table 1   Taylor number T
a
 and 

wave k for different numbers 
of collocation points N and for 
�1 = 4

Note that the calculation code 
takes a lot of time, for example 
for the marginal stability curve 
and when � =

1√
2
 and 1 = 32, 

the calculation time is 72 h

�1 N T
a

k

4 8 192.42932 2
9 192.46467 2
10 192.53056 2
11 192.76843 2
12 192.76805 2
13 192.76839 2
14 192.76857 2
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Table 1, we report the values of the critical Taylor number 
Ta obtained for N varying from 8 to 14. We note that from 
N = 11 , the Taylor number Ta no longer presents any per-
ceptible variations.

10.2 � Validation of the method in the periodic case

Figure 2 represents the curves stability in the periodic case 
� = 1 studied in [10] corresponding to the evolution of the 
Taylor number Ta , under different number N of the wave 
number, k , for different values of � =

�

2
 . We can deduce the 

three cases of stable flow ( Ta < Tac ), marginal ( Ta = Tac ) 
and unstable ( Ta > Tac ). The critical parameters correspond-
ing to the minimum of the marginal stability curve defining 
the instability threshold are defined in the following table 
(Table 2).

Fig. 2   Marginal stability curves for � = 1

Table 2   Critical Taylor T
ac

 and 
critical wave k

c
 numbers for 

different values of frequency

� T
ac

k
c

2 123.0451 4.35
4 154.5350 4.4

Fig. 3   Variation of the critical 
Taylor number as a function of 
frequency for � = 1



66	 Journal of Umm Al-Qura University for Applied Sciences (2024) 10:58–71

1 3

Figures 3 and 4 represent respectively the evolution of 
the critical Taylor number and the critical wave number, 
for� = 1 , depending on the frequency parameter � . The 
results obtained are in close accordance with those found 
by Aouidef et al. [10]. We thus note that the basic solution 
is stable for low and high frequencies and for an inter-
mediate frequency the flow is potentially unstable. Also 
the wave number is constant for low frequencies � and 
increases with when this parameter takes values greater 
than � = 4

10.3 � Result and discussion in the quasi‑periodic 
case

The determination of the control parameter, Taylor number, 
therefore passes through the determination of the marginal 
stability curve, Ta as a function of k . In this context, we 
analyze the evolution of the critical parameters, namely, the 
critical Taylor number and the critical wave number, as a 
function of the frequency ratio.

Figures 5, 6 and 7, obtained respectively for  �1 = 2.4 and 
10 , present the marginal stability curves corresponding to 

Fig. 4   The variation of the 
critical wave number at different 
frequency for � = 1

Fig. 5   Marginal stability curve for �1 = 2 Fig. 6   Marginal stability curve for �1 = 4
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the evolution of the Taylor number Ta as a function of the 
wave number k for given frequency ratios ( � =

1√
37

 , � =
1√
2
 , 

� =

√
3 and � =

√
37).

Numerical calculations show that below 1√
37

 and above √
37 the curves obtained coincide with those corresponding 

to these two values. Thus if there is an effect of the fre-
quency ratio, it is in the interval 

�
1√
37
,
√
37

�
 . The critical 

Taylor number and the critical wave number corresponding 
to the minimum of the marginal stability curve for �1 = 2.4 
and 10 defining the instability threshold are presented for 
different values of the frequency ratio in the following tables 
(Tables 3, 4).

We find that the instability threshold decreases consider-
ably when the frequency ratio varies from � =

1√
37

 to 

� =

√
37 . Thus the frequency ratio can have a stabilizing or 

destabilizing effect with respect to the periodic case, � = 1

.
The results on the effect of the frequency ratio are sum-

marized in Figs. 8 and 9. In Fig. 8, we present the evolution 
of the critical Taylor number as a function of �1 for different 
values of � . In the low frequency limit, when 𝛾1 < 1 , the 
critical Taylor number decreases in the three considered 
cases � =

1√
37

 , � =

√
3 and � =

√
37 ) and for intermediate 

frequencies, the flow remains potentially unstable for an 
intermediate frequency�p , this frequency remains constant 
with respect to � , (Table 5) with the exception of that 
obtained by Aouidef et al. [10] the critical Taylor number 
increases with the decrease in � on the other hand, the criti-
cal wave umber decreases. From the values in Table 5, the 
frequency ratio has a stabilizing or destabilizing effect com-
pared to the situation of Aouide et al. [10]. This evolution 
begins to increase for large frequency values. We find that 

Fig. 7   Marginal stability curve for �1 = 10

Table 3   Critical Taylor number for different frequency ratios

� 1√
37

1√
2

1
√
3

√
37

�1 = 2 140.45702 122.45863 123.0451 – 85.74079
�1 = 4 196.55208 166.71138 154.5350 146.56095 133.81642
�1 = 10 522.21526 500.32784 479.92242 – 479.75756

Table 4   Critical wave number 
for different frequency ratios

� 1√
37

1√
2

√
3

√
37

�1 = 2 4.6 4.2 – 3.6
�1 = 4 4.9 4.6 4.4 4.3
�1 = 10 9.3 9 – 8.7

Fig. 8   The variation of the criti-
cal Taylor number as a function 
of the frequency parameter for 
different frequency ratios
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for �1  given, the critical Taylor number decreases as the 
frequency ratio increases.

With regard to the critical wave number, we represent in 
Fig. 9 its evolution under different frequency number �1 for 
different values of the frequency ratio. It remains constant 
for low frequencies and it starts to increase from �1 = 3 . We 
also note that for a fixed value of the frequency �1 , the criti-
cal wave number, kc , increases when � decreases.

In this part, we solved the system obtained in the first chap-
ter numerically. We used the Floquet theory and the 
Runge–Kutta method to study the influence of the frequency 
ratio on the centrifugal instabilities of the base flow in terms 
of the critical Taylor number and the critical wave number. The 
effect of the frequency ratio was well observed in the interval �

1√
37
,
√
37

�
.

Descrip�on of the 
problem

1.Basic flow

1.Adimensional 
analysis

1.linear stability 
analysis

1.Analysis in normal 
modes

Spectral methods of 
Chebyshev coloca�on

Spa�al resolu�on

Temporal resolu�on

1.Results and 
discussion

11 � General conclusion

In this work, we are interested in hydrodynamic instabilities 
within pulsating flow in a Taylor–Couette system. The aim 
of this study is to show the impact of two-frequency modu-
lation through the frequency ratio on the critical instability 
threshold.

First, we determined the basic solution, in quasiperiodic 
regime, which corresponds to a flow dependent on space 
and time. The linear perturbation of this basic solution leads 
to a system whose parameters are: the Taylor number, the 
wave number, the frequency ratio and the frequency of the 
interior cylinder.

The linear system obtained was solved by the spectral 
methods of Chebyshev which we combined with the theory 
of Floquet and the method of Runge–Kutta. The impact of 
the frequency ratio on the critical threshold of instability, in 
terms of Taylor number and wavenumber, was observed. We 
have shown that the modulation with two frequencies has a 
stabilizing or destabilizing effect compared to the periodic 
case, where the two frequencies are equal. As a perspective, 
it would be interesting to validate our results using the fluent 
simulation code to address the centrifugal instabilities of 
pulsating flow in quasiperiodic regime for viscoelastic fluids.

Appendix A

Basic solution

We are checking the solution of the following kind:

Substituting this solution into (9)

We get the following two systems:

The system (64) implies:

(62)
vB(x, t) = F1(x)cos

(

ω1t
)

+ F2(x)sin
(

ω1t
)

+ G1(x)cos
(

ω2t
)

+ G2(x)sin
(

ω2t
)

(63)

− ω1F1(x)sin
(

ω1t
)

+ ω1F2(x)cos
(

ω1t
)

− ω2G1(x)sin
(

ω2t
)

+ ω2G2(x)cos
(

ω2t
)

=
d2F1

dx2
cos

(

ω1t
)

+
d2F2

dx2
sin

(

ω1t
)

+
d2G1

dx2
cos

(

ω2t
)

+
d2G2

dx2
sin

(

ω2t
)

(64)

{
−ω1F1 =

d2F2

dx2

ω1F2 =
d2F1

dx2

(65)

{
−ω2G1 =

d2G2

dx2

ω2G2 =
d2G1

dx2

(66)−

d4F1

dx4
+ ω1

2F1 = 0
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The characteristic polynomial of this equation gives us an 
algebraic equation of order four whose resolution allows us 
to obtain the following four roots:

where �1 =
√

�1

2

The general solution of (66) is written in the following 
form:

Since F2 =
1

�1

d2F1

dx2
 , so:

Similarly for the system (65), we have:

(67)

⎧⎪⎨⎪⎩

r1 = γ1(1 + i)

r2 = γ1(1 − i)

r3 = −γ1(1 + i)

r4 = −γ1(1 − i)

(68)
F1(x) = Aeγ1x(1−i) + Beγ1x(1+i) + Ce−γ1x(1−i) + De−γ1x(1+i)

(69)
F2(x) = −Aieγ1x(1−i) + Bieγ1x(1+i) − Cie−γ1x(1−i) + Die−γ1x(1+i)

(70)
G1(x) = −Xeγ2x(1−i) + Yeγ2x(1+i) + Ve−γ2x(1−i) +We−γ2x(1+i)

(71)
G2(x) = −Xieγ2x(1−i) + Yieγ2x(1+i) − Vie−γ2x(1−i) +Wie−γ2x(1+i)

where �2 =
√

�2

2
.

The conditions (11), give us:

Finally, the solutions are written:

With:

(72)

⎧⎪⎨⎪⎩

F1(0) = 1

F2(0) = 0

F1(1) = 0

F2(1) = 0

(73)

⎧⎪⎨⎪⎩

G1(0) = 0

G2(0) = 0

G1(1) = 0

G2(1) = 0

⎛⎜⎜⎜⎝

1 1 1 1

1 −1 −1 1

e�1(1−i)

e−�1(1−i)
e�1(1+i)

e�1(1+i)
e−�1(1−i) e−�1x(1+i)

− e−�1(1−i) e−�1x(1+i)

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

A

B

C

D

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

0

0

0

0

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

1 1 1 1

1 −1 −1 1

e�2(1−i)

e−�2(1−i)
e�2(1+i)

e�2(1+i)
e−�2(1−i) e−�2x(1+i)

− e−�2(1−i) e−�2x(1+i)

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

X

Y

V

W

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

0

0

0

0

⎞⎟⎟⎟⎠

(74)
vB(x, t) = F1(x)cos

(

ω1t
)

+ F2(x)sin
(

ω1t
)

+ G1(x)cos
(

ω2t
)

+ G2(x)sin
(

ω2t
)

F1(x) =
cos

(
�1x

)
cosh

(
�1(2 − x)

)
− cosh

(
�1x

)
cos

(
�1(2 − x)

)

cosh

(
2�1

)
− 2cos

(
2�1

)

Fig. 9   The variation of the criti-
cal wave number as a function 
of the frequency parameter for 
different frequency ratios

Table 5   Critical wave number for different frequency ratios

� � = 1

Aouidef et al. [10]
� =

√
3 � =

√
37

�p 1.4 2.25 1.4 1.4
Tac 135.87256 122.9677 95.8453 83.87256
kc 3.66 4.28 3.95 4.61
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Annex B

Dimensional analysis for disturbed flow

By injecting the Eqs. (14,15) in the Eq. (3) and the system 
(4), and we neglect the high order terms. We find

First, we introduce the dimensional analysis defined in 
(4).

•	 The first equation gives:

We make the following change of variable:

Hence (77) becomes:

We use the small air gap approximation, we have:

F2(x) =
sin

(
�1x

)
sinh

(
�1(2 − x)

)
− sinh

(
�1x

)
sin

(
�1(2 − x)

)

cosh

(
2�1

)
− 2cos

(
2�1

)

G1(x)

=
cos

(

�2(1 − x)
)

cosh
(

�2(1 + x)
)

− cosh
(

�2(1 − x)
)

cos
(

�2(1 + x)
)

cosh
(

2�2
)

− 2cos
(

2�2
)

G2(x)

=
sin

(

�2(1 − x)
)

sinh
(

�2(1 + x)
)

− sinh
(

�2(1 − x)
)

sin
(

�2(1 + x)
)

cosh
(

2�2
)

− 2cos
(

2�2
)

(75)
1

r

�(ru∗)

�r
+

1

r

�v∗

��∗
+

�w∗

�z∗
= 0

(76)

⎧⎪⎪⎨⎪⎪⎩

�u
�
∗

�t∗
−

2v�
∗
v∗B

r
=

1

�

�P�∗

�r
+ �

�
1

r

�u
�
∗

�r
−

u
�
∗

r2
+

�2u
�
∗

�r2
+

�2u
�
∗

�z∗2

�

�u
�
∗

�t∗
+ u

�
∗ �v∗B

�r
+

u�
∗
v∗B

r
= �

�
1

r

�v
�
∗

�r
−

v
�
∗

r2
+

�2v
�
∗

�r2
+ +

�2v
�
∗

�z∗2

�

�w
�
∗

�t∗
= −

1

�

�P�∗

�z∗
+ �

�
1

r

�w
�
∗

�r
+

�2w
�
∗

�r2
+ +

�2w
�
∗

�z∗2

�

(77)

�u
′

�t
−

1

R1

d
+ x

R1Ω0d

v
2v�vB = −

Ω0d
2

v

�P�

�x
+

�2u
′

�x2
+

�2u
′

�z2

(78)u� =
R1Ω0d

v
u�

(79)

�u′

�t
− d

R1

1
1 + x d

R1

(

R1Ω0d
v

)2

2v′vB

= − d
R1

(

R1Ω0d
v

)2 �P′

�x
+ �2u′

�x2
+ �2u′

�z2

With

•	 The second equation:

We use change (78)

So

•	 The last equation gives:

We make the following change of variable:

Hence Eq. (84) becomes:
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(80)�u
′

�t
− Ta

2
2v�vB = −Ta

2 �P
�

�x
+

�2u
′

�x2
+

�2u
′

�z2

Re =
R1Ω0d

v
� =

d

R1

Ta = Re

√
�

(81)

�v′
�t

+
R1Ω0d

v
2u′

�vB
�x

+ 1
x + R1

d

R1Ω0d
v

u′vB = �2u′

�x2
+ �2u′

�z2

(82)
�v�

�t
+ u�

�vB

�x
+

1

x +
R1

d

u�vB =
�2u

′

�x2
+

�2u
′

�z2

(83)�v�

�t
+ u�

�vB

�x
=

�2u
′

�x2
+

�2u
′

�z2

(84)�w�

�t
= −

Ω0d
2

v

�P�

�z
+

�2w
′

�x2
+

�2w
′

�z2

(85)w�
=

R1Ω0d

v
w�

(86)�w�

�t
= −

d

R1

(
R1Ω0d

v

)2
�P�

�z
+

�2w
′

�x2
+

�2w
′

�z2

(87)�w�

�t
= −Tac

2 �P
�

�z
+

�2w
′

�x2
+

�2w
′

�z2
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