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Abstract
A three Schiff bases; Lhy, Lme, and Lph, as well as their CuLhy, CuLme, and CuLph complexes, were synthesized, and 
their physicochemical properties were investigated. Vibrational spectra proposed that the hydrazone ligands reacted as 
neutral tridentate chelator with NNO chelating centers to the Cu(II) ion via azomethine-N, Isatin-carbonyl, and pyridine-
N forming the general formulae [Cu(L)2]Cl2 nH2O, where L = neutral tridentate Isatin-hydrazone ligand (L = Lhy, (CuLhy); 
L = Lme, (CuLme); L = Lph, (CuLph)). TG/DTA analyses have shown that there is at least one water molecule in each of 
the complexes. The spectrophotometric method was used to calculate the stoichiometry and thermodynamic charac-
teristics of the metal complexes. By using density functional theory (DFT) techniques, the 3D structure of the produced 
complexes was verified. Based on an investigation of the electronic structural configurations of the complexes, calcula-
tions verified the predicted structure and clarified the nature of the chemical reactivity. Cu(II) adsorption from aqueous 
solutions onto ligands was investigated in a number of different settings. The influence of the initial metal concentration 
(10–100 ppm), the weight of the hydrazone ligands (0.1–1.0 gm), and the contact period (1–2 h) were all investigated 
as potential moderators of the uptake behavior. In just three hours, equilibrium had been reached thanks to the speedy 
adsorption process. An initial pH of ≈ 6–8 with a metal ion concentration of 80 ppm was found to be optimal. Iodine (I2) 
uptake behavior of hydrazone ligands was also studied using spectroscopy. In the first 8 h, hydrazone ligands exhibited 
high adsorption efficiency (E, %), which gradually declined until equilibrium was achieved after 25 h.
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1  Introduction

Hydrazones/Schiff-bases and their metal complexes are 
important in various fields [1] such as cytotoxicity [2, 3], 
analytical [4, 5], catalytic [6], optoelectronic [7], photore-
sponse [8], biomedical and wastewater remediation [9] 
studies. Moreover, they had been used as antioxidant 
[10], chemotherapeutic [11], antimicrobial [12], antipro-
liferatial [13], and antitumor agents [14]. In addition to its 
use in inorganic chemistry, materials science, Langmuir 
films, electrochemical sensors, and drastically increasing 
bioactivity [15], Hydrazones/ Schiff-bases and their asso-
ciated metal complexes have a wide range of potential 
applications in other fields. Several branches of chemistry 
have been motivated to develop metallic complexes due 
to the benefits they provide. These ligands were tested in 
a wide range of stimulatory, anticancer, and antibacterial 
tests [16, 17] due to their potent biological effect.

Heavy metal toxins found in wastewater from indus-
trial processes are a significant contributor to environ-
mental degradation [18]. Electroplating, pigment manu-
facture, metallurgical operations, mining, and the leather 
trade are just few of the many businesses that contribute 

to the release of metals into the environment, and each 
of these industries releases metals at a different concen-
tration [19]. Copper, cadmium, zinc, manganese, chro-
mium, lead, and iron are some of the metal ions that are 
often found in natural and industrial effluents respec-
tively [20]. These metal cations can be introduced into 
wastewaters by a wide variety of sources, some of which 
are listed below: catalysts, painting, electrical equipment 
and insecticides; antibacterial, coating, photography, 
and fungicides; metal electroplating; pigments; pyro-
technics; fertilizer; smelting; mining; electrical wiring; 
alloy industries; plumbing; heating; and water purifica-
tion; and many others.

Heavy metal ion pollution is a growing concern because 
of the metals’ severe toxicity and inertness. Metal ions 
may be removed from effluents by a variety of common 
treatment processes, including filtration [21], membrane 
technology [22, 23], chemical precipitation [24, 25], ion 
exchange [26], chemical coagulation [27], reverse osmosis 
[28, 29], and solvent extraction [30, 31]. These methods are 
expensive to run and only marginally effective in removing 
hazardous metal ions at trace amounts [32].
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Potential methods include the use of chelating resins. 
When it comes to sorption processes, chelating resins are 
superior than ion exchange resins and activated carbon 
because of their superior selectivity and rapid regenera-
tion after being exposed to metal ions [33]. Several studies 
[34] were described, discussing a broad range of chelat-
ing resins. There are many different interesting and impor-
tant properties of Schiff bases that had been investigated. 
These include their reversible oxygen binding [35, 36], ole-
fins hydrogenation [37], photochromic properties [38], and 
adsorption ability towards some toxic metals [39].

Those with preexisting thyroid conditions, the elderly, 
foetuses, and infants are more vulnerable to the effects 
of iodine poisoning, which may manifest as either sub-
tle or obvious thyroid dysfunction in these populations. 
Effects of ingesting too much iodine may differ from one 
person to the next, depending on their baseline thyroid 
health. Iodine overdose may result in many thyroid disor-
ders, such as thyroiditis, hypothyroidism, hyperthyroidism, 
and papillary thyroid cancer. Clinical signs of iodine toxic-
ity after ingestion vary widely in severity. Stomach pain, 
nausea, vomiting, and diarrhoea are all minor side effects. 
These symptoms, if untreated, may progress to a state of 
delirium, stupor, or even shock. Becoming dangerous is 
incredibly rare.

The current study included the preparation and use of 
three Schiff bases for the adsorption of Cu(II) ion in aque-
ous environments. Contact time, pH, starting [Cu(II)] con-
centrations and adsorbent dose, were studied as they per-
tain to the removal process. The capability of the synthetic 
ligands to remove iodine was also tested.

2 � Methodology

2.1 � Materials and methodology

The materials, methods, and instruments which used in 
the preparation and characterization of the prepared com-
pounds were listed in the supplementary information file.

2.2 � Preparation

2.2.1 � Preparation of the Lhy, Lme and Lph ligands

The two stages required preparing Lhy, Lme and Lme are 
as follows: hydrazone ligands were synthesized by first 
preparing monohydrazone, and then reacting it with 
(Pyridine-2-carboxaldehyde, 2-acetyl pyridine, 2-benzoyl 
pyridine,), as described in Fig. 1.

Hydrazine hydrate solution (0.1 g, 20 mmol) in ethanol 
(25 mL) was combined with a solution of isatin (2.94 g, 
20 mmol) dissolved in ethanol (25 mL). After that, the 

Fig. 1   Thermal decomposition of the CuLhy, CuLme, and CuLph 
complexes
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resultant brew was given four hours of reflux treatment in 
a water bath. The resulting yellow chemical was filtered, 
washed with cold ethanol, dried, and re-crystallized from 
ethanol after cooling.

Hot ethanolic monohydrazone solution (2.0 mmol) was 
added drop wise with 2-pyridyl (2-acetyl pyridine, 2-ben-
zoyl pyridine, Pyridine-2-Carboxaldehyde), and the result-
ant mixture was refluxed for 10 h with steady magnetic 
stirring. After forming, a ligand is cooled, filtered, washed 
in cold ethanol, dried, and then re-crystallized [40].

2.2.2 � Preparation of Cu(II) complexes

Following this general procedure, solid Cu(II) chelates of 
hydrazone ligands were synthesized by adding a the metal 
salt solution [CuCl2 6H2O, 2.0 mmol] in minimal water 
amount drop by drop to an ethanolic ligand solution [Lhy 
or Lme or Lph, 2.0 mmol] and then refluxing the mixture at 
80 °C for 12 h with fixed stirring, Scheme 1. After evaporat-
ing the product overnight, it was filtered and washed. The 
purity of the synthesized compounds was monitored by 
TLC using silica gel-G. All the metal complexes are stable 
in air, non-hygroscopic and melt above 300 °C.

2.3 � Stoichiometry and complexes formation 
constant

These compounds’ stoichiometries were calculated using 
the spectrophotometric molar ratio [41–43] and con-
tinuous variation techniques [44, 45]. The controversial 

variation procedure applied to analyze the formation con-
stant was repeated across a broad range of temperatures 
(20 to 40 °C) to find out the thermodynamic characteristics 
and the formation constant of the prepared chelates.

2.4 � DFT calculations

DFT computations were carried out to verify the hypoth-
esised geometrical structures of the Cu(II) hydrazone com-
plexes. We used the B3LYP and the LANL2DZ basis set to 
optimize the geometry [46, 47]. The computations were 
done using the Gaussian 09 software package. The struc-
tures of the CuLhy, CuLme, and CuLph complexes of three 
hydrazone ligands, Lhy, Lme, and Lph, were calculated 
[48–50].

2.5 � Metal ion uptake study

Shaking 0.6  g of the hydrazone ligands with 10  mL 
(80 ppm) of Cu(II) solution of varied pH values (2–12) for 
1 h at 25 °C was used for the uptake tests in the influence 
of pH research. We used buffers to get the solution pH 
exactly right.

A series of closed conical flasks were filled with 10 mL 
(80 ppm) of Cu(II) at pH 8, and 0.6 g of the produced hydra-
zone ligands was added. Several contact times (0.5 h, 
1 h,…. 3 h) were tested in the batch sorption investiga-
tions. A mechanical shaker was used to agitate the flask’s 
contents at room temperature. After shaking, each sample 

Scheme 1   Schematic diagram 
of the Lhy, Lme, and Lph 
ligands preparation and their 
Cu(II)- complexes
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was filtered separately before atomic absorption analysis 
of metal ion concentration in solution (AA).

Placed of hydrazone ligands (0.6 g) in a series of flasks 
holding 10 mL of Cu(II) at pH 8 and specified concentra-
tions (10–100 mg/L), to test the influence of starting con-
centration of the Cu(II) ion on the absorption of Cu(II) ions 
by the ligands. During 60 min, the flasks were set on the 
shaker at at 25 °C to allow the contents to acclimatise. The 
samples were filtered after adsorption, and the metal ion 
concentration was measured by atomic absorption spec-
troscopy (AA).

Measurements of Cu(II) ion absorption using the batch 
technique were carried out by adding various adsorbent 
weights (0.2 g to 1.0 g, 0.5 g) to 10 mL (80 ppm, pH 8) of 
Cu(II) ions solutions in a series of stopper conical flasks. 
During 60 min at room temperature, the flask contents 
were shaken on a shaker.

The proportion of metal ion removal in all batch sorp-
tion investigations was calculated using the following for-
mula; Removal (%) = ((C0− Ce)/C0) × 100. Metal ion concen-
tration at equilibrium (Ce), the starting concentration (C0).

2.6 � Adsorption of iodine

The adsorption of iodine onto hydrazone ligands was stud-
ied using batch experiments: (a) 100 mg of ligands were 
placed in a sealed vessel with 100 mg/L of iodine/hexane 
solution (20 mL) and left for a set amount of time; (b) the 
absorbance of the supernatant in the anterior vessel was 
measured at 525 nm using UV–vis at different times.

The following formulae were used to determine the 
adsorption effectiveness (E, %) and the iodine adsorbed 
quantity (qe, mg/g) [51]: qe = (C0 − Ce)V/m, E(%) = ((C0 − Ce)/
C0) × 100%; Where C0 and Ce are the starting and final 

iodine concentrations in milligrammes per litre, m is the 
hydrazone ligand quality in grammes, and V is the concen-
tration of the solution (L).

3 � Results and discussion

First, isatin interacted with hydrazine by water molecule 
elimination to generate isatin-mono hydrazone, which 
then reacted with 2-subsitituted pyridine through water 
molecule elimination to form the hydrazone ligands (Lhy, 
Lme, and Lph), Scheme 1. Second, Cu(II)-hudrazone com-
plexes (CuLhy, CuLme, and CuLph) were formed when the 
hydrazone ligands (Lhy, Lme, and Lph) coordinated with 
the Cu(II), Scheme 1.

3.1 � Characterization of the hydrazone ligands

The characterization of the prepared hydrazone ligands 
were listed in the supplementary information file.

3.2 � Characterization of the CuLhy, CuLme, 
and CuLph complexes

3.2.1 � Conductivity and elemental analysis

The tridentate hydrazones (Scheme 1) are produced via 
the condensation of isatin monohydrazone with 2-pyri-
dyl. The solid, non-hygroscopic character of these CuLhy, 
CuLme, and CuLph complexes were shown by their pres-
ence in Scheme 1. The molar conductivity was measured 
for 1 mmol of the title complexes in Ethanol solution. 
The values of molar conductivity indicated 1:2 electro-
lytic character for all the three complexes. Analytical data 

Table 1   Analytical physical data of the Lhy, Lme, and Lph ligands and CuLhy, CuLme, and CuLph complexes

Color Yield (%) m.p (°C) 
(%)

Elemental analysis found (calculated) µv (Ω−1 Cm2 mol−1)

C % H % N % M % Ethanol

Lhy
C14H10ON4 (250 g/mol)

Orange 240 °C 85 67.41 (67.21) 4.42 (4.29) 22.21 (22.34) – –

CuLhy
[Cu(Lhy)2]Cl2 0.2H2O 

(C28H24Cl2CuN8O4, 670.5 g/mol)

Green  > 300 72 50.58 (50.12) 3.50 (3.61) 16.79 (16.70) 9.36 (9.47) 85

Lme
C15H12ON4 (264 g/mol)

Orange 254 °C 86 68.11 (68.48) 4.44 (4.28) 21.12 (20.96) – –

CuLme
[Cu(Lme)2]Cl2 0.2H2O 

(C30H28Cl2CuN8O4, 698.5 g/mol)

Green  > 300 75 51.10 (51.54) 3.99 (4.04) 16.15 (16.03) 8.95 (9.09) 81

Lph
C20H14ON4 (326 g/mol)

Orange 266 °C 86 73.66 (73.53) 4.39 (4.29) 17.20 (17.03 – –

CuLph
[Cu(Lph)2]Cl2 0.2H2O 

(C40H32Cl2CuN8O4, 822.5 g/mol)

Green  > 300 77 58.55 (58.36) 3.65 (3.92) 13.60 (13.61) 7.78 (7.72) 88
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(Table 1) and spectrum examinations showed the ligands 
and CuLhy, CuLme, and CuLph complexes to be of high 
purity, as was expected.

3.2.2 � IR spectra and mode of bonding

Without access to more advanced methods like single 
X-ray crystallography, infrared spectra have emerged as 
the most useful tool for deciphering ligand–metal ion 
interaction. The supplementary information table (S1) 
below lists the visible and IR spectral lines of the ligands 
and related Cu(II) complexes. These bands may be broken 
down into two categories: those caused by the ligands, 
and that caused by the bonds between the Cu(II) and 
the coordinating centers. Bands at 3180–3200 cm−1 and 
1722  cm−1 in the IR spectrum of the hydrazones may 
be attributed to the (–NH) and lactonyl carbon v(C = O), 
respectively [52]. Moreover, the IR spectra of the ligands 
attribute the band at 1461 cm−1 to C = N, and the typi-
cal strong band at 1620 cm−1 to HC = N. All of the CuLhy, 
CuLme, and CuLph complexes displayed the band of 
(HC = N) in the area 1591  cm−1, displaying lower wave 
numbers shift of the band suggesting that, the (CH = N) 
nitrogen is binding to the Cu(II) ion [53, 54], in contrast to 
the spectra of the ligands. The carbonyl oxygen is binding 
to the Cu(II) ion, as seen by the lower wave number shift in 
the band of (C = O) in the area 1674–1683 cm−1 in CuLhy, 
CuLme, and CuLph complexes [54, 55]. There is no evi-
dence of coordination activity from the –NH group, since 
its presence does not shift the location of a band in any 
of the metal complexes. We attribute the appearance of 
new bands in the complexes’ spectra at 500–510 cm−1 and 
630–650 cm−1 to the stretching frequencies of (M–N) and 
(M–O) bonds, respectively [56]. That ligands complex with 
Cu(II) ion in tridentate mode is supported by IR spectrum 
data is so conclusive.

3.2.3 � Electronic spectra

Coordination chemists may use electronic spectra to learn 
crucial details about the complexes’ structures. Due to con-
jugation, the UV absorption bands of the ligands, which 
are organic molecules, might expand into the higher 
wavelength range. The addition of metal ions causes a 
shift in the system’s electronic characteristics. Seeing the 
appearance of new features or bands in the visible region 
as a result of d-d absorption and charge transfer spectra 
from metal to ligand (ML) or ligand to metal (LM) allows 
one to deduce structural and geometrical information 
about the complexes. In MeOH (1 × 10–3 mol/dm3), the 
UV–vis. spectra of Lhy, Lme, and Lph ligands and their 
Cu(II)-complexes were obtained from 200 to 800 nm. You 
can find a supplementary information table (S1) with the 

absorption maxima in it. The π−π*, n−π* transitions [53] 
in the UV–Vis spectra of the Lhy, Lme, and Lph ligands 
gave two prominent, bright bands at (237 and 324), (274 
and 325) and (271 and 327), respectively. Complexation 
further modifies these bands. In three copper complexes 
one band at 18,181.82–17,543.86 cm−1 is due to d-d transi-
tions and the spectrum also displayed another band in the 
range 24,390.24–23,809.52 cm−1. This band corresponded 
to the transition 2B1g → 2A1g.

3.2.4 � Complexes stoichiometry and formation constants

With the use of spectrophotometric molar ratio [41, 43, 57] 
and continuous variation [44, 58] techniques, the stoichi-
ometry of the different complexes produced in solution by 
the interaction of Cu(II) with the investigated hydrazone 
ligands was evaluated (supplementary information Figure 
(S1). Continuous variation method curves showed maxi-
mum absorbance at mole fraction of the ligand = 0.65–0.7, 
suggesting complex formation at a Cu(II) to ligand ratio 
of 1:2 ((supplementary information Figure (S1). The ratio 
of metal ions to ligands in the produced complexes (see 
(supplementary information Figure (S1) is also supported 
by the molar ratio approach.

Using the continuous variation approach on spectro-
photometric observations, the formation constants (Kf ) of 
the investigated Cu(II) hydrzone complexes produced in 
solution were calculated, Kf = (A/Am)/[4C2(1−(A/Am)]3 [59]:

Where Am is the absorbance at maximal complex for-
mation, A is the actual absorbance of the complex, and C 
is the starting Cu(II) concentration. Supplementary infor-
mation Table S2 shows that the obtained Kf values, which 
demonstrate the produced complexes’ exceptional sta-
bility, are impressive. For the investigated complexes, Kf 
values rise as (CuLph > CuLme > CuLhy).

The Gibbs–Helmholtz equation, LogKf =
ΔS∗

2.303R
−

ΔH∗

2.303R

1

T
 , 

was used to calculate the free energy ((∆G*)), enthalpy 
(∆H*), and entropy (∆S*) changes that occur as a result of a 
complexation process [60].

One may evaluate (∆H*) and (∆S*) using the slope and 
intercept of a straight line obtained by graphing the values 
of (LogKf) against (1/T), respectively. Calculated values for 
ΔG*, ΔH*, and ΔS* are listed in Supplementary information 
Table S2.

The enthalpy (∆H*) change is negative, thus, the reac-
tion happened is exothermic and creation of complex is 
favourable [61]. Negative amount of enthalpy change also 
shows that the Cu(II)-ligand bonds are quite strong [62]. As 
ΔS* is greater than zero, the reaction is likely to continue 
on its own [63]. The liberation of water molecules bound to 
metal chelates is the cause of the positive entropy changes 
that occur alongside a particular process. The production 
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of metal chelates involves the displacement of water mol-
ecules from the metal ion’s main hydration sphere [62].

Williams noted that the displacement of solvent water 
molecules during the combination of positively charged 
metal ions and ligands was often accompanied by a high 
entropy value [64]. The entropy is low because the water 
molecules that are coupled to the metal ions are extremely 
twisted and orientated.

3.2.5 � Thermo‑gravimetric study of the prepared 
isatin‑hydrazone complexes

Potential biological actions of the hydrazone ligands (Lhy, 
Lme, and Lph) underline the significance of this research 
into their Cu(II) complexes. This is why thermal analysis 
and other physicochemical techniques are often used to 
learn more about them. Determining the total amount of 
water molecules and how well they are hydrated and coor-
dinated allows for a perfect deduction of the complicated 
structure.

Table 2 provides information on the complexes’ tem-
peratures. hydrazone CuLhy, CuLme, and CuLph com-
plexes are thermally stable between 25 and 50 °C, and 
thereafter deteriorate in three stages. Figure 1 suggests 
that the thermal degradation occurs in three steps, the first 
of which occurs between 50–110 °C (CuLhy), 50–115 °C 
(CuLme) and 50–150 °C (CuLph), corresponding to loss 
of two hydrated water molecules. The second stage, at 
110–395 °C (CuLhy), 115–405 °C (CuLme) and 150–460 °C 
(CuLph), may be attributed to the loss of CH2Cl2 molecule. 
The third, at 395–600 °C (CuLhy), 405–600 °C (CuLme) and 
460–600 °C (CuLph), corresponds to loss of the remaining 
organic moiety, leaving CuO as metallic residue.

From Thermal analysis (TG) data, it is suggested that 
the final residue content of the Cu(II) complexes is CuO, 
according to overall mass loss. Based on the thermal analy-
sis, CuO can be prepared by calcinations the Cu(II) com-
plexes as precursors at ≈ 500 °C. Therefore, the choice of 

suitable calcinations temperature is highly dependent on 
the results of thermal analysis. The final residue content is 
CuO is characterized by FT-IR spectroscopy. The samples 
show absorption maxima at 503, 499, and 495 cm−1 for 
CuO prepared from CuLhy, CuLme, and CuLph complexes, 
respectively, which are due to Cu–O stretching mode [65, 
66].

3.2.6 � Effective magnetic moment

The effective magnetic moment values of the [Cu(Lhy)2]Cl2 
2H2O (CuLhy), [Cu(Lme)2]Cl2 2H2O (CuLme), and [Cu(Lph)2]
Cl2 2H2O (CuLph) complexes were found to be 1.78, 1.75, 
and 1.77 B.M., respectiviely. These values are consistent 
with one unpaired electron (d9 (t2g

6 eg
3)) around the Cu(II) 

centre [67, 68], which confirmed the octahedral geometry 
with sp3d2 hybridization [69].

3.3 � Theoretical modeling of Cu(II) hydrazone 
complexes

The dihedral angle between the carbonyl oxygen, 
azomethine nitrogen, and pyridine nitrogen, as deter-
mined by the optimized structure of the ligands, is 160.0 
degrees, indicating that these atoms all have a similar 
orientation. Because of its unique orientation, the ligand 
is able to create an aromatic-like structure with the 
metal ion. The optimum structures of CuLhy, CuLme, 
and CuLph complexes with Lhy, Lme, and Lph ligands 
are shown in Fig. 2. Copper(II) was found to coordinate 
with the ligands in an octahedral fashion, as determined 
by the optimization process. In particular, the carbonyl 
group, azomethine group, and pyridine group linked the 
metal atoms together. In order to achieve octahedral 
coordination, it was determined that the average bond 
length for the (Cu-ligand link is 1.83. Two aromatic five- 
and six-ring structures are created between the Cu and 
the ligand molecule, and this is the primary reason for 

Table 2   Thermal decomposition of the Cu(II) complexes

Step T.G (°C) DTG (°C) Mass loss: Obs. (Calc.) (%) Assignment Residue

CuLhy I 50–110 88 5.83 (5.37) 2H2O (hydrated) CuO
[Cu(Lhy)2]Cl2 2H2O II 110–395 310 12.18 (12.67) CH2Cl2
(C28H24Cl2CuN8O4, 670.5 g/mol) III 395–600 505 72.83 (72.48) C27H18N8O2

CuLme I 50–115 95 5.78 (5.15) 2H2O (hydrated) CuO
[Cu(Lme)2]Cl2 2H2O II 115–405 320 12.68 (12.17) CH2Cl2
(C30H28Cl2CuN8O4, 698.5 g/mol) III 405–600 520 71.93 (71.29) C29H22N8O2

CuLph I 50–150 105.55 4.85 (4.38) 2H2O (hydrated) CuO
[Cu(Lph)2]Cl2 2H2O II 150–460 350.43 10.02 (10.33) CH2Cl2
(C40H32Cl2CuN8O4, 822.5 g/mol) III 460–600 500.55 76.04(75.62) C29H22N8O2
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the produced complexes’ exceptional stability. The coor-
dination (N–Cu–N) angle computed for the previous five-
membered ring was 88.5 degrees. The computed coordi-
nation (O–Cu–N) angle for the other six-membered ring 
was 100.0 degrees as well.

Materials scientists, physicists, and chemists may learn 
a great deal by studying LUMOs and HOMOs and the fea-
tures of these molecular states [70]. Figure 3 depicts the 
HOMO and LUMO surfaces. The stability of compounds 
is determined by the negative values of their HOMO and 
LUMO energies. Global chemical reactivity descriptors 
(HOMO, LUMO, energy gap, chemical hardness, electronic 
chemical potential, and electrophilicity) were computed 
to quantify the relative stability and chemical reactivity of 
the predicted complexes [71–73]. Here is a definition of 
what these terms represent in a physical sense: The chemi-
cal hardness (η) of a molecule is defined as its ability to 
withstand a change in the distribution of its electrons or a 

change in its net charge. The degree to which a molecule is 
negatively charged is quantified by its electronic chemical 
potential (μ). This species’ willingness or ability to receive 
electrons is quantified by an electrophilicity index (ω). The 
estimated chemical descriptors for all models are summa-
rized in Table 3.

The stability and reactivity of a chemical system are 
related to its hardness (η). Chemical hardness is defined 
as the difference in energy between the HOMO and LUMO 
orbitals at the molecular border. Higher energy gaps indi-
cate that molecules are more robust and less prone to 
chemical reactions. The estimated complexes with the big-
gest and smallest values for are CuLph and CuLhy, respec-
tively. The stability constant determined experimentally 
is consistent with these findings. Similar hues and a small 
range in λmax for complexes account for the little variation 
in results.

Fig. 2   Optimized structures of 
the Lhy, Lme and Lph ligand 
models and their correspond-
ing CuLhy, CuLme, and CuLph 
complexes calculated using 
DFT method
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Fig. 3   HOMO–LUMO struc-
tures of the Lhy, Lme and Lph 
ligands CuLhy, CuLme, and 
CuLph complexes calculated 
using DFT method
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3.4 � Metal uptake

In Fig. 4a we saw how the metal ion absorption onto 
the hydrazone ligands changed as a function of contact 
time. The figures of % removal were shown to grow sig-
nificantly at the start of adsorption, but after 3 h, the 
rate of change slowed down. As a result, the metal ion 
was rapidly adsorbed. The metal ion adsorption amount 
hardly changed after around 3 h. This pattern of action 
suggests a sluggish journey towards balance.

Alternatively, the effect of hydrazone ligands’ weight 
on Cu(II) ions sorption was studied. Solid hydrazone 
ligands of known weights were added to a known con-
centration of Cu(II) ion (100 ppm) to achieve a range 
of weight values (0.1–1.0 gm). Obtaining these find-
ings was shown in Fig. 4b. Maximum metal ion removal 
% was observed at a hydrazone ligands weight of 0.6 
gm. Also visible is the correlation between the weight 
of the hydrazone ligand and the quantity of metal ion 
adsorbed.

Adsorption behaviour of produced hydrazone ligands 
towards Cu(II) ion was studied, and the findings are 
shown in Fig. 4c. At low concentrations, Cu(II) is taken 
up by specific active centers; at higher concentrations, 
the binding centers become more rapidly saturated as 
the ligands amount increased, making the metal uptake 
mechanism particularly dependent on the initial Cu(II) 
concentration. The Cu(II) ions uptake rises linearly with 
increasing starting concentration up to a plateau. The 
solutions pH was changed to various values using 
appropriate buffers to investigate the impact of pH on 
Cu(II) ion removal efficiency, with the range being from 
2.0 to 12.0 for Cu(II). Figure 4d shows that the ideal pH 
for efficient metal removal is related to the absorption 
of free ionic Cu (II). Copper (II) concentrations in the 
various solutions were accurately measured both before 
and after 60 min of vigorous shaking. The removal effi-
ciency was computed and the findings obtained were 
depicted in Fig. 4d. According to the results, the pro-
portion of Cu (II) that was removed varied with the 
test solution pH between 2 and 12, with the highest 
adsorption affinities occurring between pH 6 and 8. This 
behavior makes sense given that hydrogen ions may 

compete with Cu(II) ions for active centers on the sur-
face of Lhy, Lme, and Lph ligands when the medium is 
acidic. Electrostatic repulsion between the Cu(II) and 
the protonated groups may hinder the adsorption of the 
Cu(II) onto the resin at low pH, when most of the active 
functional groups in the hydrazone ligands were ion-
ized and presented in the protonated positively charged 
state. Little amounts of Cu(II) have begun to accumulate 
as hydroxides, rendering metal ion retention practically 
steady between pH 6 and 8. This further helps the cati-
ons on the hydrazone ligands to become chelated. The 
optimal range for this chelation is between pH 6 and 8.

3.5 � Removal of dissolved iodine by hydrazone 
ligands

Using solutions of cyclohexane at varying concentra-
tions, we have examined the usefulness of hydrazone 
ligands. UV–Vis spectroscopy at 525 nm, pH = 7, was used 
to track the iodine elimination process.

While studying iodine absorption by hydrazone 
ligands, we found that during the first 8–10 h, the rate 
of uptake climbed rapidly, before gradually slowing to 
reach equilibrium. The saturation of iodine adsorption 
over hydrazone ligands was attained at 25 h, Fig. 5. This 
is because, initially, a large number of active sites were 
exposed on the surface of the ligands, leading to a sharp 
increase in the adsorption rate in the first 8–10 h. How-
ever, as time progressed, the active sites and the pores 
gradually became occupied and blocked, leading to a 
slowing of the adsorption rate.

As can be shown in Fig. 5, the order of Lph > Lme > Lhy 
describes the removal efficiency degree of the hydra-
zone ligands.

3.6 � Adsorption isotherm

Langmuir and Freundlich models were used to fit the 
absorption isotherms and obtain insight into the absorp-
tion process for Cu(II) or I2 (Fig. 6). In order to create the 
Langmuir isotherm, we plotted the adsorption capacity 
of the hydrazone ligands (mg/g) as (1/qe) against the 

Table 3   HOMO, LUMO, ΔE, η, μ 
and ω of the Lhy, Lme, and Lph 
and their Cu(II) complexes

Model HOMO LUMO ΔE η μ ω

Lhy − 6.15 − 2.32 3.83 1.92 − 4.24 4.68
Lme − 6.07 − 2.25 3.82 1.91 − 4.16 4.53
Lph − 6.07 − 2.34 3.73 1.87 − 4.21 4.74
CuLhy − 12.90 − 11.31 1.59 0.80 − 12.11 92.16
CuLme − 12.82 − 10.42 2.40 1.20 − 11.62 56.26
CuLph − 4.08 − 1.61 2.47 1.24 − 2.85 3.28
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equilibrium concentration of Cu(II) or I2 (mg/L) as (1/Ce) 
to get a linear relationship between the two. Monolayer 
coverage over a uniform surface with the same number 
of adsorption sites and the same adsorption activation 
energy is a key tenet of the Langmuir model. To further 
investigate the iodine adsorption mechanisms, we plotted 
Ln(qe) vs Ln(Ce) to evaluate the Freundlich model (Fig. 6).

The findings reveal that the adsorption isotherms may 
be successfully suited by the Langmuir model, as shown by 
strong correlation coefficients (R2) of linearly fitted Lang-
muir isotherm models. The Freundlich model, in contrast 
to the Langmuir model, posits heterogeneous multilayer 
interaction and reversible adsorption.

Our findings are reported in Fig. 6, which shows that the 
linear fitted Langmuir isotherms have greater correlation 
coefficients than those obtained for fits to the Freundlich 
model. The adsorption isotherms for Cu(II) and iodine 
appear to be well described by both models, with some-
what good correlation coefficients.

3.7 � Kinetic model

The findings of the kinetics analysis were obtained by fit-
ting to the pseudo-first-order, ln

[

qe − qt
]

= ln qe − k1t , 
and pseudo-second-order, t

q(t)
=

t

qe
+

1

k2q
2
e

 , equations [74]. 

Where qt is the time-dependent adsorption capacity, qe 
is the equilibrium adsorption capacity, k1 is the pseudo-
first order rate constant, k2 is the pseudo-second order 
rate constant, and t is the contact duration (Fig. 7).

Adsorption kinetics for Cu(II) and iodine are best 
described by a pseudo-first-order kinetic model for 

Fig. 4   a Effect of the contact time on the removal of Copper (II) ion 
using hydrazone ligands. b Effect of hydrazone ligands weight on 
metal ion removal, c effect of initial metal ion concentrations on 
metal ion removal using hydrazone ligands, d Effect of the pH on 
the removal of Copper (II) ion using hydrazone ligands
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Fig. 5   The removal efficiency (E, %)  of iodine using hydrazone 
ligands, at pH = 7, amount of hydrazone ligands = 100 mg
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hydrazone ligands, as shown by the R2 values derived 
(Fig. 7). These findings point to a chemisorption mecha-
nism for the adsorption of Cu(II) and iodine [75, 76]. This is 
due to the intense bonding between the iodine molecules 
and the hydrazone-ligand surfaces. To increase their abil-
ity to capture Cu(II) and iodine, hydrazone ligands benefit 
from the inclusion of electron-donating moieties, such as 
aromatic rings and electron-rich hetero atoms [77, 78].

4 � Conclusion

In this section, we provide three ligands (Lph, Lme, and 
Lph) were synthesized and characterized. The Cu(II) com-
plex of the three ligands (Lph, Lme, and Lph) is synthe-
sized and characterized. The three-dimensional structure 

of the synthesized molecules was verified using density 
functional theory methods (DFT). Adsorption of Cu(II) from 
aqueous solutions onto ligands was studied under a wide 
variety of circumstances. Absorption behaviour was stud-
ied in relation to initial metal concentration (10–100 ppm), 
hydrazone ligand weight (0.1–1.0 gm), and contact time. 
Quick equilibrium was attained by the adsorption process 
after about an hour. A pH of 8.0 was determined to be ideal 
with a metal ion concentration of 60 ppm. In addition, 
spectroscopic analysis was performed to get insight into 
the iodine-uptake behaviour of the hydrazone ligands. At 
8 h, the elimination efficiency (E, %) of hydrazone ligands 
peaked and subsequently steadily decreased to reach 
equilibrium at 25 h.
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