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Abstract
Fungal infections (mycoses) represent a major health issue in humans. They have emerged as a global concern for medical 
professionals by causing high morbidity and mortality. Fungal infections approximately impact one billion individuals 
per annum and account for 1.6 million deaths. The diagnosis of Candida infections is a challenging task. Laboratory-
based Candida species identification techniques (molecular, commercial, and conventional) have been reviewed and 
summarized. This review aims to discuss the mycoses history, taxonomy, pathogenicity, and virulence characteristics.
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1  Introduction

Mycoses (fungal infections) are characterized by high mor-
bidity and mortality, which affect a huge global population 
every year [1–5]. Fungal infections have been a constant 
threat to humans [6]. The occurrence of fungal diseases 
is on the rise and hospital-residing immunocompromised 
patients are particularly the primary victims [7]. The main 
fungal pathogens (50–90% mycoses isolates) involved in 
the infections include Trichosporon spp., Aspergillus spp., 
Scedosporium spp., Zygomyces spp., Paracoccidioides spp., 
Cryptococcus spp., Rhodotorula spp., Candida spp., Histo-
plasma capsulatum, Geotrichum spp., Coccidioide simmitis, 
and Fusarium spp. [8–10]. The yeasts belonging to the 
Candida genus have been frequently isolated from fungal 
infections [11]. There are almost 200 known Candida spe-
cies whereas almost twenty species are associated with 
human infections [12]. Candida-related human infections 
are considered a major issue, especially in hospitalized 
patients suffering from severe underlying diseases and 
immunodeficient ICU patients [13, 14].

The parasitic fungus, Candida species, is a eukaryotic 
yeast that accounts for about 8% of global nosocomial 
infections [5, 15]. Taxonomically, Candida species belong 
to the Kingdom Fungi (Mycota), phylum Ascomycota, sub-
phylum Saccharomycotina, class Saccharomycetes, and 
order Saccharomycetales [16]. The emergence of Candida 
albicans as a common pathogenic yeast has been reported 
[5, 17–19]. Candida clinical isolates that could colonize the 
human tissues to exert infections include Candida krusei, 
Candida dubliniensis, Candida lusitaniae, Candida parap-
silosis, Candida utilis, Candida tropicalis, Candida famata, 
Candida glabrata, Candida rugosa, Candida kefyr (pseu-
dotropicalis), Candida guilliermondii, Candida lipolytica, 
and Candida haemulonii [8, 20–23]. The significant role of 
non-Candida albicans Candida species (NCAC) in invasive 
candidiasis has also been established [24]. The occur-
rence of candidiasis is quite higher than the overgrowth 
of Candida. This review discusses mycoses-related top-
ics and describes virulence factors related to candidiasis 
along with their participation in pathogenicity and future 
approaches for better candidiasis diagnosis.
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2 � The virulence and pathogenicity of 
Candida spp.

The survivability of Candida species under harsh con-
ditions makes them highly detrimental pathogens, 
which could threaten the lives of immunocompromised 
patients [25, 26]. Previously, yeast microorganisms were 
supposed to infect only immunocompromised patients, 
but virulence factors have revealed their pathogenicity 
to other patients as well. Multiple aggression mecha-
nisms of these microorganisms participate in the patho-
physiology of the disease [27, 28]. Several virulence 
factors of Candida enhance their pathogenicity, which 
includes invasion and adhesion to inanimate surfaces 
and body tissues, metabolic adaptation, dimorphism, 
phenotypic switching, secretion of hydrolytic enzymes, 
and formation of biofilms [29].

Candida albicans, a polymorphic yeast, exhibits dif-
ferent cellular morphologies such as hyphae, yeast cells 
(white phase), GUT (commensalism-related), pseudohy-
phae, chlamydospores, and opaque (mating cell types). 
Different polymorphic forms affect the pathogenicity of 
C. albicans [30, 31]. The parameters such as nutrients, 
pH, temperature (37–40 °C), Co2 concentrations (5.5%), 
and amino acids facilitate their morphological transition, 
which is crucial for pathogenicity. The yeast forms could 
conveniently spread inside the host tissues whereas fila-
mentous shapes possessing higher adhesion capability 
help in the invasion of the host tissues [32]. ‏

Candida spp initially attach to the host cell through 
adhesion proteins present on the fungal cell surface (pga1, 
als1-7, hwp1, als9, and eap1), and immobilized ligands 
(cadherins, integrins, or other microorganisms). Fungal 
cells invade the tissue after the adhesion. The invasion and 
damage of the epithelium are considered pathogenic [8, 
33–35]. It could occur via two mechanisms (active penetra-
tion or endocytosis) depending upon the type of host cell. 
For example, the invasion of oral cells by C. albicans occurs 
through active penetration and endocytosis, whereas only 
active penetration is possible in intestinal invasion [36, 37].

Candida is highly adaptable to various environmental 
conditions (low oxygen, limited nutrition, pH fluctuations, 
and nitrosative, cationic, temperature, osmotic pressure, 
and oxidative stresses) [8, 31, 38, 39]. This adaptability 
is of key importance for the C. albicans pathogenicity 
[8]. The formation of mycotic biofilm is a complicated 
process, which generates a highly organized structure 
(Fig. 1). Multiple studies have been performed to inves-
tigate the biofilm formation in Candida species [40–43]. 
The National Institute of Health has reported that more 
than 80% of the total microbial infections in the United 
States are caused by fungal biofilms [5]. Biofilm consists of 
adhered, attached, and accumulated microorganisms that 
form extracellular polymeric substances (EPSs) to provide a 
structural matrix [44]. Planktonic C. albicans cell adhesion 
to the surfaces is the initial step that induces an organized 
strong extracellular matrix (ECM) structure [44]. There are 
four consecutive C. albicans biofilm phases including the 
Adhesion phase, Initiation phase (early phase), Maturation 

Fig. 1   The consecutive phases 
of biofilm formation in C. 
albicans (1). Adhesion phase, 
yeast cells adhere promptly 
to the surface. (2). Initiation 
phase (early phase), spherical 
yeast cells replicate and start 
to secrete extracellular matrix 
(ECM) and develop Pseudo-
hyphae. (3). Maturation phase 
(intermediate phase), the 
mature biofilm develops with 
hyphal filaments extending far 
from a basal layer (yeast forms). 
(4). Dispersal (dispersion 
phase), yeast cells disperse 
from the biofilm and diffuse, 
expanding the infection and 
starting the cycle again
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phase (intermediate phase), and Dispersal phase (disper-
sion phase) (Fig. 1).

Extracellular hydrolytic enzymes (phospholipases and 
proteases) are necessary for the pathogenicity-causing 
Candida yeast virulence factors. These enzymes facilitate 
the C. albicans invasion through host protein degradation 
(hemoglobin and keratin) and cell membrane structure 
alteration. These steps help in the targeting and inva-
sion of the host’s immunity cells by avoiding antimicro-
bial agents. Different Candida species follow this process 
including C. albicans, C. tropicalis, C. parapsilosis, and C. 
dubliniensis [8].

3 � Roles of virulence‑associated genes 
in pathogenicity

Yeasts can induce infection and overwhelm the host 
defense systems due to the existence of various proteins 
and genes associated with their pathogenicity, known 
as virulence factors [45]. C. albicans genes encode sev-
eral pathogenic virulence factors. These genes and their 
products contribute to mycological pathogenicity and are 
called virulence factors. Numerous genes associated with 
C. albicans pathogenicity have been described [8, 46, 47]. 
These factors include the ability of C. albicans to transition 
from yeast form to hyphal form, adhesins, biofilm forma-
tion, and hydrolytic enzymes secreted (aspartyl proteases, 
and phospholipases) [8, 48].

Candida albicans can grow in the form of yeast and 
mold. The transition between yeast and hyphal forms is 
termed (dimorphism) [49]. The dimorphism of C. albicans 
is a unique characteristic of yeast pathogenicity. Both mor-
phologies have their role to support their virulence [8]. It 
has been reported that the form of hyphal is more invasive 
than the form of yeast [50].

The dimorphism of C. albicans plays an important role 
in the pathogenicity of both systemic and superficial infec-
tions. It should be noted that both yeast and filamentous 
forms of C. albicans were detected in infected tissues 
[51]. The capability of C. albicans to switch from yeast to 
filamentous form contributes to the various nature of 
its infection phases, such as adherence to epithelial and 
endothelial cells, invasion, iron acquisition from host 
sources, biofilm formation, escape from phagocytes, and 
immune evasion [51].

Adhesins are the yeast surface molecules that interme-
diate the binding of C. albicans to the surface of human 
or microorganism cells, inert polymers, or proteins [52]. 
ALA1, ALS1, Hwp1, INT1, MMT1, PMT1, PMT6, and, Als1p 
are candidate genes considered as encoding adhesins 
[52–55]. Other putative adhesins are mannan, chitin, 
factor 6 oligomannosaccharide, 66-kDa fimbrial protein, 

fibronectin-binding protein, iC3b binding protein, fucose 
binding protein, GIcNAc or glucosamine, and secreted 
aspartyl proteinase (SAP) [52, 53]. The Sapproteins of C. 
albicans were encoded by a family of 10 SAP genes i.e. 
SAP1, SAP2, SAP3, SAP4, SAP5, SAP6, SAP7, SAP8, SAP9, and 
SAP10. The major functions of the C. albicans Saps are 
nutrition for the yeast cells, assisting penetration and inva-
sion, and avoiding host immune responses [56].

Phospholipases hydrolyze glycerophospholipids, which 
are the main components of mammalian cell membranes. 
It destabilizes the membranes by cleaving fatty acids from 
phospholipids [57]. There are seven phospholipase genes 
have been identified i.e. PLA, PLB1, PLB2, PLC1, PLC2, PLC3, 
and, PLD1. However, the role of the enzymes encoded by 
these genes are not yet clear [58]. In a comparative study 
conducted by Ibrahim et al.[59], evidence was obtained 
that phospholipase acts as a virulence factor, and a series 
of C. albicans obtained from candidemia patients were 
compared with the isolates obtained from the oral cavi-
ties of healthy people. In candidemia cases, higher phos-
pholipase activity was found, reflecting the virulence of 
these isolates.

4 � Antimycotic‑resistance of Candida

Candida resistance to various antimycotic agents poses 
a serious public health concern. The Candida inci-
dence in the bloodstream has increased from 2.2 to 3.2 
cases/100,000 population/annum in Europe [60, 61]. Anti-
fungal resistance (azoles and echinocandins) in Candida 
could hinder their treatment. C. parapsilosis and C. glabrata 
are commonly found clinical strains, which cause invasive 
candidiasis by modifying prevalence at various locations 
[62]. Multidrug-resistant (MDR) cases featuring non-albi-
cans Candida (NAC) and C. albicans strains have raised 
serious concerns [63]. Antifungal drug preservation has 
increased because of Candida auris based global nosoco-
mial outbreaks featuring higher morbidity and mortality. 
Centers for disease control and prevention (CDC) added 
these strains to priority antibiotic resistance threats in 
2019 [62]. The world health organization (WHO) convened 
the first meeting in 2020 for establishing a health-related 
pathogens (mycoses) priority list. They also defined the 
research and development (R&D) priorities for encourag-
ing the development of new drugs, diagnosis methods, 
and strategies. Global antimicrobial-resistance surveillance 
system (GLASS) of antimycotic resistance (AMR) has devel-
oped a protocol to counter Candida spp. based blood-
stream infections (BSIs). Antimycotic susceptibility data 
related to blood Candida isolates especially from patients 
in high-risk hospital units (ICUs) is available through GLASS 
reports [64, 65].
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5 � Candidiasis

Candidiasis is a global Candida yeast-based major human 
fungal disease. Candidiasis refers to disseminated, visceral, 
and mucosal-cutaneous infections of the genus Candida 
[66]. These infections could occur at any age and are 
easily identifiable infection risk factors [67]. Candidiasis 
infections are complex and of different types. The types 
are distinguished through different morphology, and rela-
tionships between mucosal and immune systems [68]. The 
epidemiological records have established the associa-
tion of five species with candidiasis including C. albicans 
(65.3%), C. glabrata (11.3%), C. tropicalis (7.2%), C. parap-
silosis (6.0%), and C. krusei (2.4%) (Table 1 and Fig. 2) [69].

The infections such as oral candidiasis, vaginitis, can-
didemia, systemic infections, and cutaneous candidiasis 
are linked to Candida. Different candidiasis types are pre-
sented in Fig. 3 [70–72]. Oropharyngeal candidiasis (OPC), 
also known as “thrush” (different oral mucosal sites and 
tongue infection) is characterized by the overgrowth of 

mycoses and superficial tissues’ invasion [73–75]. Urogeni-
tal or Vulvovaginal candidiasis (VVC) is a common myco-
sis worldwide that infects female genital tracts [76]. This 
infection is quite frequent in diabetic individuals, pregnant 
women, and patients under antibiotic and corticosteroid 
treatments [77, 78].

Invasive candidiasis (IC) can substantially implicate any 
organ and refers to deep-seated infections such as osteo-
myelitis (bone infection), peritonitis (tissue covering the 
inner abdominal wall and organs), and intra-abdominal 
abscess [71, 79–82]. Candidemia (BSI) refers to the Can-
dida species infection in the blood of patients suffering 
from fever [83]. Candida parapsilosis is the most frequent 
agent of bloodstream infection (BSIs) among non-C. albi-
cans Candida species [84]. BSIs-associated Candida ranks 
fourth in nosocomial-associated infections in the USA 

Table 1   Candida species implicated in human infections. Adapted 
from Dabas, [71]

Most frequent spe-
cies

Less frequent species Rare species

C. albicans C. dubliniensis C. blankii

C. glabrata C. famata C. bracarensis

C. tropicalis C. inconspicua C. catenulate

C. parapsilosis C. lipolytica C. chiropterorum

C. krusei C. metapsilosis C. ciferri

C. guilliermondii C. norvegensis C. eremophila

C. lusitaniae C. orthopsilosis C. fabianii

C. kefyr C. pelliculosa C. fermentati

C. rugosa C. freyschussii

C. zeylanoides C. haemulonii

C. intermedia

C. lambica

C. magnolia

C. membranaefaciens

C. nivariensis

C. palmioleophila

C. pararugosa

C.pseudohaemulonii

C. pseudorugosa

C. pintolopesii

C. pulcherrima

C. thermophile

C. utilis

C. valida

C. viswanathii

65.3 %

11.3 %

7.2 %
6.0 % 2.4 %

C. albicans 

C. glabrata 

C. tropicalis 

C. parapsilosis 

C. krusei 

Fig. 2   The most common Candida pathogenic species

Fig. 3   Major types of candidiasis
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whereas it is at the sixth number in Europe [67, 85]. The 
occurrence of mucosal candidiasis is common and they 
are more invasive than fungal candidiasis. Candidiasis-
infected mucosal surfaces could be oral mucosa, pharynx, 
esophagus, urogenital, intestine, and urinary system [86, 
87]. Systemic candidiasis is also referred to as acute organ 
invasive or systemic hematogenous candidiasis. During 
systemic candidiasis, the Candida cells spread to the whole 
body and rapidly form abscesses in vital organs. The infec-
tions of systemic candidiasis lead to visceral lesions (deep 
candidal focus) or Candida septicemia (candidemia) [15, 
88]. Nail and cutaneous candidiasis is a secondary sub-
acute or chronic infection of predisposed patients, which 
could be local or spread to the nails and skin. There are 
various types of cutaneous candidiasis such as otomyco-
sis, intertrigo candidiasis, diaper rash, Candida folliculitis, 
paronychia, and onychia [71].

Candidiasis could also infect the surfaces of differ-
ent medical devices including urinary catheters, central 
venous catheters, and cardiovascular devices. These infec-
tions are commonly associated with morbidity and deaths 
of hospitalized patients [89]. Candida-related infection of 
medical devices is among the major pathogenesis-related 
factors [89–92].

6 � Microbiological and clinical tests 
for the diagnosis of Candida

The diagnosis of candida infections is complicated. This 
section summarizes the clinical laboratory tests (molecu-
lar, conventional, and commercial) for the isolation and 
identification of Candida species.

6.1 � Phenotypic methods

6.1.1 � Conventional methods

Non-albicans and C. albicans identification was initially car-
ried out through phenotypic traits (biotyping, morpho-
typing, chemical resistance, and serotyping). However, 
the reproducibility and differentiation levels of these 
approaches are very low, which limits their reliable diag-
nosis and epidemiological analysis [73, 93].

6.1.2 � Germ‑tube test (GTT)

The germ-tube test (GTT) method refers to the forma-
tion of tube-like structures by Candida’s reaction and it 

primarily identifies and differentiates C. dubliniensis and 
C. albicans from other species. This is a simple, rapid, and 
economical identification technique with 98% sensitiv-
ity. Candida is incubated in serum at 37 °C for 2–4 h and 
then observed for the presence of tube structures. This is 
an effective method that is widely applied for C. albicans 
identification [94, 95].

6.1.3 � Chlamydospore formation

The chlamydospore formation test is based on the appear-
ance of chlamydospores during the last stage. This test 
differentiates C. albicans from C. dubliniensis. During the 
test, C. albicans is subjected to dormant growth under a 
controlled environment using agar media (cornmeal and 
rice extract), which leads to chlamydospore formation [96].

6.1.4 � Carbon assimilation

This is an economical, simple but time-consuming test 
that specifically identifies Candida species. The method 
involves Candida growth on carbon substrates followed 
by incubation and growth examination [97].

6.1.5 � Carbohydrates fermentation

Fermentation tests rely on the acid and carbon dioxide 
formation in the liquid media. Carbohydrates facilitate the 
fermentation process during the test. However, this Can-
dida identification test is complex, time-consuming, and 
less sensitive as compared to the carbohydrate assimila-
tion test. Traditionally, carbohydrate fermentation test was 
performed for Candida species differentiation, but now 
this method is not often used [98].

6.2 � Rapid identification systems

The commercial and rapid identification methods are 
based on conventional methods (sugar assimilation, germ 
tube, and chlamydospore formation tests). However, these 
methods are comparatively easy, rapid, and cheaper [99].

6.2.1 � API 20C Aux system

API 20C Aux (bioMerieux Vitek, Hazelwood, MO, USA) 
system was developed from API 20 system, which is a 
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carbohydrates assimilation-based process. It involves the 
assimilation tests of 19 carbohydrates in cupules that are 
incubated (24–72 h) at 30 °C followed by turbidity analysis 
using computer programs [99]. This method accurately dif-
ferentiates between C albicans, C. dubliniensis, and other 
Candida species [100]. However, certain limitations of this 
method have also been reported during C. krusei identi-
fication [101].

6.2.2 � API Candida system

API Candida system containing ten tubes could detect 
five carbohydrates through various acidification and 
enzymatic tests (seven). The testing procedures are 
based on sugars acidification and enzyme activity [102, 
103]. This is a highly accurate and simple method that 
completes without the involvement of computers. It 
produces observable color changes, and morphological 
characteristics to identify Candida species [103].

6.3 � Chromogenic media‑based commercial systems

6.3.1 � CHROMagar technique

CHROMagar is a rapid, precise, and straightforward Can-
dida identification technique. It involves the media with 
multiple chromogenic substrates, which react with Can-
dida species enzymes leading to the growth of colonies 
in different colors [104, 105].

6.3.2 � Candida ID system

Candida ID system (bioMerieux, Marcy l’Etoile, France) is 
a rapid and more developed CHRMagar system. A chro-
mogenic indolyl glucosaminide substrate in the growth 
medium reacts with Candida species to produce differ-
ent insoluble colors. Turquoise/ blue color is produced 
by C. albicans, C. guilliermondii, and C. lusitaniae whereas 
C. tropicalis produces pink color [106].

6.3.3 � Fluorogenic membrane filtration method

This is another developed and accurate CHROMagar 
method. The enzymatic reaction is detected by passing 
fluorogenic substrates through a nylon membrane filter. 

Different Candida species (C. albicans, C. krusei, C. tropi-
calis, and C. glabrata) could be differentiated through 
this method [107].

6.3.4 � Fungichrom I and fungi‑fast I twin systems

The fungichrom I twin system (International Microbio, 
Parcd’activites-allee D’athenes, France) consists of six-
teen whereas the fungi-fast twin system consists of ten 
test cupules. The samples are incubated at 30  °C for 
24–48 h and observed for color changes. Candida iden-
tification rate is high in the fungichrom twin system and 
it is a more rapid and simple method as compared to the 
fungi-fast I twin system [108].

6.3.5 � Biggy agar system

Biggy agar (Oxoid Company, Wade Road, Basingstoke, 
Hampshire, UK) is a bismuth sulfite-containing chromo-
genic medium. Candida species convert it to bismuth 
sulfide. The reaction generates specific colors depending 
upon the growth of Candida species. The color of C. albi-
cans becomes light brown whereas the color of C. tropicalis 
changes to dark brown. However, this method could not 
differentiate among certain species such as C. krusei and C. 
parapsilosis, which produce similar colors in their colonies 
[109].

6.4 � Automated methods

Recent automated methods are fast, reliable, and broad, 
which could facilitate the development of new patient 
management and therapeutic techniques.

6.4.1 � Vitek YBC system

The Vitek YBC system (bioMerieux Vitek, Inc., Hazelwood, 
MO, USA) is an auto-microbial system that is widely 
applied in research centers and laboratories. This method 
could simultaneously perform twenty-six biochemical 
tests from the same inoculum. Therefore, it could identify 
several Candida species including C. parapsilosis, C. albi-
cans, C. glabrata, and C. tropicalis. Furthermore, it contains 
a computerized assessment system for more reliable infor-
mation on Candida species. The handling of this method 
is easy and does not require an experienced person [110].
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6.4.2 � VITEK® 2 ID‑YST system

VITEK® 2 Yeast identification (YST) is a developmental sys-
tem. This is a high-speed, rapid, and simple system that 
could simultaneously conduct multiple reactions. This 
system can perform 47 carbohydrate assimilation-based 
fluorescent biochemical reactions including deamination 
and oxidation reactions with various arylamidases and oxi-
dases of Candida species. This system is more suitable for 
differentiating C. dubliniensis and C. glabrata in addition to 
the identification of yeast microorganisms [111].

7 � Serological methods

The serological commercial tests are used for the identifi-
cation of Candida identification. There are several highly 
sensitive reagents for fungal identification. (1-3)-Beta-
D-Glucan is a novel reagent to identify fungal infection. 
Similarly, a new fungal surrogate marker is highly sensitive 
and specific for the Candida infection diagnosis. This test 
also helps in the diagnosis of Candidemia [112]. A poly-
saccharide (Galactomannan) of the fungal cell wall could 
diagnose fungal infection and invasive fungi processes 
including Candidemia. This laboratory test can track the 
fungi infection and the patient’s state to assess the treat-
ment efficacy [113].

8 � Molecular methods

Non-DNA and DNA-based molecular identification meth-
ods are gaining popularity. These are highly specific, accu-
rate, and sensitive techniques for the identification and 
differentiation of C. albicans from other Candida species. 
These features encourage their widespread applications 
[93, 114].

8.1 � Non‑DNA‑based techniques

8.1.1 � Multi‑locus enzyme electrophoresis (MLEE)

MLEE could estimate enzymatic protein and its polymor-
phism through gel-based analysis of enzyme migration. 
The charge and size of the protein molecule determine the 
length of enzymatic migration. MLEE is used in epidemiol-
ogy and genetic studies as it could accurately differentiate 

between unknown and novel strains. However, indirect 
genome evaluation by this technique is the main disad-
vantage, which results in slow rates of evaluating varia-
tions accumulated in the species and incorrect outcomes. 
MLEE is also does not detect whole nucleotide variations 
(Table 2) [115, 116].

8.2 � DNA‑based methods

DNA-based tests could detect and differentiate among 
microorganisms’ DNA. This category consists of DNA-
based conventional methods and Exact DNA-based meth-
ods [104].

8.2.1 � Conventional DNA‑based methods

These are DNA components-based oldest microorganism 
identification methods. DNA of eukaryotic organisms is 
extracted through the cell membrane hydrolysis by hydro-
lyzer enzymes [104].

8.2.2 � Pulsed‑field gel electrophoresis (PFGE)

Several studies have discussed the application of DNA 
genome components for microorganism identification, 
which is derived after the hydrolysis of the cell membrane 
[117, 118]. Therefore, different electrophoresis methods 
were developed including pulsed-field gel electrophore-
sis (PFGE), orthogonal-field alternative gel electrophore-
sis (OFAGE), contour-clamped homogeneous electric field 
(CHEF), transverse alternate gel electrophoresis (TAFE), and 
field inversion gel electrophoresis (FIGE). This is an ideal 
technique for separating of chromosome-sized DNA mole-
cules due to the size of C. albicans chromosomes are about 
(1- 4 Mb) (Table 2) [117, 118].

8.2.3 � Restriction enzyme analysis (REA)

REA technique was initially applied to conduct an epi-
demiological investigation of C. albicans infections. 
This is a complex method that may require a computer-
assisted software. REA involves the purification of the 
total genomic DNA followed by cleavage through multi-
ple endonuclease enzymes (e.g., EcoRI, MspI, BglII, HinF1, 
or HindIII) that produces small fragments resulting in a 
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sequence-dependent restriction fragment length poly-
morphism (RFLP). The produced fragments were separated 
using the agarose gel electrophoresis technique. Then 
visualized on the gel after dyeing with ethidium bromide. 

In this technique, the interpretation and differentiation 
of strains are very difficult due to the production of com-
plex patterns with enormous bands of unequal intensities 
(Table 2) [120].

Table 2   Resume of advantages and limitations of the different rapid approaches for detection of Candida spp

Diagnostic approaches Advantages Limitation References

Pulsed-field gel electrophoresis (PFGE) Separation of chromosome-sized DNA 
molecules about (1–4 Mb)

Time-consuming [117–119]

Restriction enzyme analysis (REA) Rapid identification
Straightforward
Cost-effective

Difficult to interpret and differentiate 
strains

[120]

Random amplified polymorphic DNA 
(RAPD)

Quick
Simple and cost-effective
High specificity
Widely used for the identification and 

differentiation of Candida spp

Poor reproducibility of fingerprints [121, 122]

Amplified fragment length polymor-
phism (AFLP)

More reproducible than (RAPD)
Reproducible (as a genotyping method)

High cost
Rarely used for C. albicans typing
Complex (multiple-step)
Requires high expertise

[122, 123]

Nested PCR Sequence primers available for several 
gene targets

Prone to contamination
Requires an additional set of primers and 

reagents more than other PCR-based 
approaches

[126]

Real-time PCR (RT-PCR) Accurate
Rapid
RT-PCR detection and quantification
No additional step of detection

Expensive equipment [125, 126]

Nucleic acid sequence-based amplifica-
tion (NASBA)

Very sensitive
No need for thermal cycling devices

High cost [128]

Peptide nucleic acid-fluorescent in situ 
hybridization (PNA-FISH)

Simple approach
Rapid identification of Candida spp in 

blood cultures

Results visualization adds a high cost to 
equipment

[126, 129]

Microsatellite length polymorphism 
(MLP) typing

Rapid identification
High throughput
Amenable to automation
Recommended for epidemiological stud-

ies associated C. albicans

MLP lacks a public database and requires 
additional standardization before 
achieving this

[130, 131]

Multi-locus sequence typing (MLST) Useful for epidemiological studies
High discriminatory power
Evolution of virulence-associated mecha-

nisms

High cost [126]

DNA-microarrays Sensitive
Rapid
Highly specific

Identifies only sequences that the array 
was supposed to detect

Non-coding RNA’s that are not yet pre-
dicted as expressed are typically not 
represented on an array

[133, 134]

Matrix-assisted laser desorption ioniza-
tion-time of flight mass spectrometry 
(MALDI-TOF MS)

Rapid Reliable Widely available Cost-
effective

High cost Lacks of spectra characteriza-
tion for comparison

[126]
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8.2.4 � Random amplified polymorphic DNA (RAPD)

RAPD is a genomic DNA amplification-based technique. 
The amplified products are isolated through agarose gel 
electrophoresis according to the size of the amplified 
fragments. However, short genomic DNA could generate 
a complex pattern and segments that are different from 
the source. RAPD technique is widely performed for the 
identification and differentiation of Candida species, espe-
cially C. albicans (Table 2) [121, 122].

8.2.5 � Amplified fragment length polymorphism (AFLP)

This method involves the hydrolysis enzymes-based diges-
tion of genomic DNA, which is then amplified to obtain dif-
ferent DNA fragments. The fragments are further isolated 
using a high-performance instrument such as fluorescent 
dye-labeled primers. The amplification is carried out under 
highly specific conditions as compared to the RAPD method. 
Therefore, AFLP is more reliable, accurate, and reproducible 
than RAPD. However, the application of AFLP for Candida 
spices, especially C. albicans is limited as it is comparatively 
costly and requires an experienced person to perform its 
multiple complex steps (Table 2) [123, 124].

8.3 � Exact DNA‑based methods

8.3.1 � Polymerase chain reaction (PCR) based‑Candida 
detection methods

PCR is a landmark DNA molecular microbiology technique, 
which facilitates microorganism identification in human 
cells. PCR can detect Candida species during the invasive 
fungal infection phase such as Candidemia. PCR could also 

diagnose various genetic disorders. PCR is a rapid method, 
which can amplify several DNA fragments within minutes 
to detect millions of scarce DNA copies [125]. Fungal iden-
tification through PCR could be conducted in two ways: 
(i) Nested PCR technique amplifies DNA molecules in two 
steps to reduce the amplification errors. Therefore, it is 
considered a highly accurate method (ii) Real-time PCR 
could quantify amplified DNA in real-time at each PCR 
cycle. Real-time PCR is carried out using two types of fluo-
rescence such as labeling probes and recently developed 
double-stranded dyes. Several studies have recommended 
the application of real-time PCR as it is more accurate and 
rapid than nested PCR [125]. PCR amplification (nested 
PCR or real-time PCR) is followed by the analysis of ampli-
cons and conclusions. Different methods are used for 
the amplicon analysis, but direct sequencing is the most 
accurate technique as compared to single-strand confor-
mational polymorphism (SSCP) and polyacrylamide gel 
electrophoresis (Table 2) [127].

8.3.2 � Nucleic acid sequence‑based amplification (NASBA)

This technique is based on RNA amplification and does 
not need a thermal cycling instrument for the specific 
detection of microorganisms. In contrast to DNA, RNA 
is quickly degradable outside the microorganism cells. 
NASBA method uses three expensive enzymes (RNase H 
polymerase, reverse transcriptase, and T7 RNA polymer-
ase). Therefore, it is widely used for the amplification of 
Candida species. The results are generated within a few 
hours and it can differentiate up to six different Candida 
species (Table 2) [128].

Fig. 4   A schematic drawing of 
the labeling process with the 
peptide nucleic acid fluores-
cence in situ hybridization 
(PNA FISH®) probe
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8.3.3 � Peptide nucleic acid‑fluorescent in situ hybridization 
(PNA‑FISH)

FISH is a classical yeast detection method that does not 
require purification and isolation steps. It only uses fluo-
rescein-labeled oligonucleotide probes. The accuracy of 
this method further increases in combination with peptide 
nucleic acid (PAN) probes. These probes lead to hybridized 
microorganism cells in the samples, which are examined 

through advanced fluorescence microscopy. The studies 
have elaborated that the results of the PAN-FISH technique 
could be compared to PCR, but it generates the results 
faster than the PCR technique. Furthermore, the PAN-FISH 
approach contains highly specific probes for the Can-
dida species. Therefore, it could specifically differentiate 
between Candida species (Table 2 and Fig. 4) [129].

Fig. 5   Overview of the steps involved in DNA-microarray technique



370

Vol:.(1234567890)

Review	 J.Umm Al-Qura Univ. Appll. Sci. (2023) 9:360–377 | https://doi.org/10.1007/s43994-023-00049-2

1 3

8.3.4 � Microsatellite length polymorphism (MLP) typing

This technique has been used in a Candida species-related 
epidemiology study. This is a simple, rapid, and highly 
reproducible method. MLP technique is based on the 
amplification of microsatellite stretch in the cell nucleo-
tides. The sensitivity of this method depends on the type 
of microsatellite marker, which detects primer pair flank-
ing in a specific microsatellite area. High polymorphism 
of amplified microsatellite fragments favors the use of the 
MLP typing technique in genetic analysis to determine the 

type of alleles (heterozygous or homozygous). Finally, 
high-resolution gel electrophoresis measures the allele 
length. The numerical results could easily be compared 
for the identification of various microorganisms (Table 2) 
[130].

8.3.5 � Multi‑locus sequence typing (MLST)

MLST is based on the amplification of internal fragments 
of nucleotide sequence polymorphisms in the independ-
ent loci genes. These are housekeeping genes, which are 

Table 3   Genome differentiation in Candida species

mb megabases, bp base pair, D Diploid, H Haploid
† Relative level of pathogen strength: +  + : strong pathogen, + : moderate pathogen, −: rare pathogen

*C. albicans SC5314 assembly 21 and gene set (dated 28 January 2008) downloaded from the Candida genome database, D. hansenii assem-
bly from GenBank Dujon et al. [137]. The remaining assemblies are reported as part of this work and are available in GenBank and at the 
Broad Institute Candida database website

Candida species* Genomic size 
(mb)

GC content (%) No. of genes Average of gene 
size (bp)

Intergenic aver-
age (bp)

Ploidy Pathogen†

C. albicans WO-1 14.4 33.5 6,159 1,444 921 D  +  + 
C. albicans SC5314 14.3 33.5 6,107 1,468 858 D  +  + 
C. tropicalis 14.5 33.1 6,258 1,454 902 D  +  + 
C. parapsilosis 13.1 38.7 5,733 1,533 758 D  +  + 
L. elongisporus 15.4 37.0 5,8.2 1,530 1,174 D –
C. guilliermondii 10.6 43.8 5,920 1,402 426 H  + 
C. lusitaniae 12.1 44.5 5,941 1,382 770 H  + 
D. hansenii 12.2 36.3 6,318 1,382 550 H –

Fig. 6   Diagram showing 
the MALDI Time of Flight 
Mass Spectrometry (MALDI-
TOF MS) process
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selected due to their stability. This technique could amplify 
the DNA fragments up to the size of 400–500 bp. The dif-
ference in alleles corresponding to multi-locus sequence 
type distinct alleles characterize each housekeeping locus. 
The ability to analyze only seven sequences in 300–400 bp 
loci genes is the main limitation of this method. Further-
more, the analysis of diploid microorganisms could gen-
erate two identical products in this method whereas they 
vary in heterozygous bases on the polymorphic databases 
(Table 2) [132].

8.3.6 � DNA‑microarrays

Microarrays are microscopic high-density oligonucleo-
tide probes, which hybridize the nucleic acid samples 
followed by immobilization on a solid surface. Microar-
ray-based systems depend upon strain typing. These are 
highly sensitive, specific, and automatic standards that 
do not require a prior database. Microarrays hybridiza-
tion-based bound sequence is detected using a highly 
efficient fluorescent scanning instrument and advanced 
computer software (Table 2 and Fig. 5) [133].

9 � Modern methods

9.1 � Matrix‑assisted laser desorption ionization‑time 
of flight mass spectrometry (MALDI‑TOF MS)

MALDI-TOF MS is a modern approach that is now widely 
available in clinical microbiology laboratories. MALDI-
TOF MS is a rapid, cost-effective, reliable, and powerful 
identification method. MALDI-TOF MS generates protein 
fingerprints of each microorganism in the sample, which 
could be easily compared at the reference library. Briefly, 
the fungi degradation is carried out at the temperature 
of the curie pyrolysis point followed by the production of 
volatile fragments from the cleavage of tiny molecules. 
Finally, the mass spectrums of volatile fragments are ana-
lyzed using a mass spectrometer, which represents the fin-
gerprint image of each microorganism. The lack of spectra 
characterization for comparison is a major limitation of the 
current analysis (Table 3 and Fig. 6) [126, 135, 136].

9.2 � Candida species genomes: genome sequence 
and comparative identification

A significant variation in composition and size has been 
reported between the sequenced genomes of Candida 
(Table 3) [137, 138]. Table 3 presents a high continuity 

range between scaffolds (9–27). Scaffold size and number 
closely relate to each candida microorganism. The field gel 
electrophoresis could assess the genomes in each Can-
dida microorganism where telomeric arrays finally link 
to the scaffolds. 10.6–15.5 Mb difference could occur in 
the genome size of approximately 50% of Candida spe-
cies whereas the difference in GC content (guanine and 
cytosine) could range between 33 and 45% (Table 3). The 
transportation and repetitive capability of these elements 
could differ between assemblies in numbers and type 
[139]. Candida species are primarily different in genomic 
size and phenotype, however, they are quite similar in 
protein-coding gene numbers (5.733–6.318) as presented 
in Table 3. The genome of the smallest Candida species 
(C. guilliermondii) contains more genes than the genome 
of the largest Candida species (L. elongisporus). Therefore, 
genome size and gene numbers are not correlated [138].

10 � Conclusion and promising future 
directions

The Nanopore sequencing technology is based on the 
DNA translocation across a lipid-bilayer membrane 
through a pore, which is formed by Staphylococcus aureus 
alpha-hemolysin after applying the electrical fields [140]. 
This novel method has been used for mycosis detection in 
various studies. Ashikawa et al. [141] applied a nanopore 
sequencing system for the identification of five Candida 
species in positive blood-culture vials and their perfor-
mance was compared with Sanger sequencing. This sys-
tem provides rapid optimization of reagents and instru-
ments. This system could further help to develop accurate 
and rapid point-of-care devices for clinical and field usage 
[142].

CRISPR-Cas9 (clustered regulatory interspersed short 
palindromic sequences-CRISPR associated protein 9) 
versatility has led to the development of an identifica-
tion tool known as Specific Highly Sensitive Enzymatic 
Reporter UnLOCKING (SHERLOCK). SHERLOCK could 
successfully identify target nucleic acids in attomolar 
concentrations to distinguish closely-related viruses 
and genotypes up to the difference of a single base pair 
[143]. Furthermore, Next-generation (SHERLOCK version 
2) is a quantitative multiplex analysis that could visualize 
the final results using lateral flow devices (LFDs) system 
[144]. SHERLOCK v2 could achieve high specificity and 
sensitivity in combination with the HUDSON method 
and rapid DNA extraction techniques. This combina-
tion could be successfully used for the diagnosis and 
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identification of Dengue and Zika viruses. In short, the 
SHERLOCK v2 system coupled with an efficient DNA 
extraction tool provides a reliable portable platform to 
identify mycotic pathogens [145].

This review updated the current overview of Candida 
infections. Other studies have reported an alarming rise 
in Candida disease. This suggests that the current diag-
nostic methods of pathogen-related infections should be 
reviewed, and new strategies should be developed for the 
diagnosis of mixed Candida spp. infections.
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