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Abstract
In the present work, characterization of water soluble colloidal MnO2 nanoflakes which act as an oxidizing agent was 
carried out using UV–visible spectroscopy. Transmission electron microscopy microstructure of colloidal MnO2 nanoflakes 
confirms the shape and nature of these particles. Selected area electron diffraction ring indicated that colloidal nanoflakes 
were amorphous in nature. Surface morphology of synthesized colloidal MnO2 nanostructure was determined by field 
emission scanning electron microscopy indicating a crumpled net like arrangement.
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1  Introduction

Transition nonmetal oxides have attracted the attention of 
chemists and environmentalists due to their broad appli-
cation in various areas such as antimicrobial activity [1], 
water treatment [2], food packaging [3], medical devices 
[4], textile industries [5, 6] and antibacterial activities [7–9]. 
Manganese dioxide nanostructure materials exhibit novel 
physical and chemical properties and are widely used in 
biomedical field as bactericide [10–13] and applied as a 
coat onto an ultrafiltration membrane to destroy toxins 
present in drinking water [14, 15]. The performance of 
nanostructure materials is greatly affected by their mor-
phologies and crystallographic forms. A variety of meth-
ods like sol–gel, hydrothermal, electro deposition, com-
bustion, and micro emulsion are applied to synthesize 
different morphology nanowires, nanoplates, and nano-
particles [16–20].

Water soluble nanoparticles of MnO2 are good sub-
stitute over the insoluble forms due to increased cata-
lytic and oxidizing activities. The adsorption properties 

of MnO2 makes it an appropriate choice as a catalyst for 
redox reactions. Oxidation of formic and oxalic acid in 
aqueous medium [21, 22], and in micellar medium [23] are 
noteworthy. Our group is currently engaged in oxidation 
reactions using water soluble nanoparticles of colloidal 
MnO2 in both micellar and aqueous media [24–29] not 
only because of its broad usage in catalysis, ion-exchange, 
molecular adsorption, biosensor but also due to its low 
economical price and eco-friendliness. Solution based 
base synthesis and use of metal oxide nanostructures 
is popular due to economically cheap, mild, and viable 
conditions. It occurs under environmentally safe settings 
without additional templates and sophisticated apparatus. 
Synthesis of nanomaterial in the form of colloidal solution 
provides the possibility of separate nucleation avoiding 
inter-particle aggregation and controlled growth.

In this paper, we report the characterization, surface 
morphology and microstructure of water soluble MnO2 
nanoflakes which has not been reported so far in literature.
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2 � Experimental

2.1 � Materials

KMnO4 (E. Merck, India, 98.5%) and Na2S2O3 (s. d. fine, 
India, 99%) were commercial products and were used as 
supplied. Deionized water was used as the solvent after 
double distillation.

2.2 � Preparation of water‑soluble manganese 
dioxide nano flakes

Manganese dioxide nano flakes were prepared in 
aqueous medium using potassium permanganate and 
sodium thiosulfate as precursors. Standardized KMnO4 
(0.1 M) and sodium thiosulfate (0.1 M) were used as stock 
solutions. To a one-liter volumetric flask filled with 3/4 
portions of deionized water, 8 mL KMnO4 stock solution 
was added. 3 mL stock sodium thiosulfate solution was 
added to the volumetric flask containing homogeneous 
KMnO4 solution followed by gentle shaking then its con-
centration becomes 8 × 10–4 mol dm–3 (stock solution of 
Colloidal MnO2). The volumetric flask was made up to 
the mark with deionized water. The resulting solution is 
a dark brown colloidal system.

3 � Results and discussion

3.1 � Characterization of water soluble MnO2 
nanoflakes

The MnO2 nanoflakes in colloidal form were character-
ized by UV–visible spectroscopy scanning from wave-
length 200 to 600 nm [2, 4, 10]. Surface morphology of 
synthesized MnO2 was determined by field emission 
scanning electron microscopy (FESEM) (Zeiss SUPRA 
40 field emission electron microscope). A small amount 
of colloidal solution drops casted on a clean aluminum 
foil and dried at 50 °C to remove the solvent (water). 
Thin film of MnO2 formed on aluminum foil coated with 
gold and used for FESEM analysis. Microstructures of 
nanoflakes were determined by transmission electron 
microscopy (TEM) analysis (Tecnai FEI G2 transmission 
electron microscope operated at 200 kV). Select area 
electron diffraction (SAED) was taken on the nanoflakes 
during the TEM analysis. Samples for TEM measurement 
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was prepared by placing a drop of MnO2 sol on a holey 
carbon-coated standard copper grid (300 mesh).

3.2 � Surface morphology and microstructure

Field emission scanning electron microscopy image of 
colloidal MnO2 was taken in a Ziss Supra 40 FESEM oper-
ated under 5 kV accelerating voltage. The colloidal solution 
of MnO2 was drop casted on a carbon tape and dried at 
60 °C for 6 h. Further, the sample deposited carbon tape 
was mounted on the sample holder of FESEM and coated 
with a thin film of gold. TEM image was captured in a FEI 
Techni G2 TEM operated at 200 kV accelerating voltage. 
The colloidal solution was drop casted on a carbon coated 
Cu TEM grid and allowed to stand at room temperature for 
overnight. Finally, the grid was used for TEM study.

Surface morphology of synthesized colloidal MnO2 
nanostructure was determined by FESEM analysis as 
shown in Fig. 1. Low magnification micrograph showed 
aggregated nano structures with a net like morphology.

Magnified image clearly revealed that netlike aggre-
gates were composed with very thin flakes of MnO2. Thick-
ness of each flake was found to be about 2–4 nm. TEM 
was used to analyze the morphology and particle size of 
colloidal nanoflakes as shown in Fig. 2.

The image shows that nanoflakes are found in aggre-
gates and are stacked one over the other, crumpled and 
assembled to form net like arrangement. Selected area 
electron diffraction (SAED image 2 (Fig. 2) reveals a dif-
fused ring pattern. This diffused SEAD ring indicated 
that colloidal nanoflakes were amorphous in nature. 

Fig. 1   FESEM micrograph of colloidal MnO2
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Elemental analysis was done with the help of energy 
dispersive X-ray (EDX).

Figure 3 shows the constituent element of colloidal 
nanostructures. Presence of manganese and oxygen 
confirms the formation of manganese dioxide which was 
further supported by UV–VIS spectra of colloidal MnO2 
[24–30]. The UV–visible spectra of water soluble colloi-
dal MnO2 nanoflakes showed λmax at 390 nm. For this 
wavelength (λmax) Kabir Ud-Din et al. [24–28] and Kabir 
Ud-Din and Iqubal [29, 30] had worked and suitable for 
kinetic observations.

4 � Conclusion

In summary, the author has successfully reported the 
surface morphology and microstructure of water solu-
ble colloidal MnO2 nanoflakes. TEM microstructure of 
colloidal MnO2 nanoflakes confirm that the particles are 
spherical and amorphous in nature. It is conducted with 
economically cheap and readily available reagents. The 
reaction occurs under mild and under environmentally 
safe conditions. Thus, it is believed that the present work 
is a major breakthrough in the area of nanomaterials.
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