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Moderate active  Fe3+ doping enables 
improved cationic and anionic redox reactions 
for wide-voltage-range sodium storage
Congcong Cai1,2, Xinyuan Li2, Hao Fan2, Zhuo Chen2, Ting Zhu2, Jiantao Li4, Ruohan Yu2, Tianyi Li5, 
Ping Hu1,2,3* and Liang Zhou1,2*   

Abstract 

Layered metal oxides are promising cathode materials for sodium-ion batteries (SIBs) due to their high theoretical 
specific capacity and wide  Na+ diffusion channels. However, the irreversible phase transitions and cationic/anionic 
redoxes cause fast capacity decay. Herein, P2-type  Na0.67Mg0.1Mn0.8Fe0.1O2 (NMMF-1) cathode material with moderate 
active  Fe3+ doping has been designed for sodium storage. Uneven  Mn3+/Mn4+distribution is observed in NMMF-1 
and the introduction of  Fe3+ is beneficial for reducing the  Mn3+ contents both at the surface and in the bulk to allevi-
ate the Jahn–Teller effect. The moderate  Fe3+/Fe4+ redox can realize the best tradeoff between capacity and cycla-
bility. Therefore, the NMMF-1 demonstrates a high capacity (174.7 mAh  g−1 at 20 mA  g−1) and improved cyclability 
(78.5% over 100 cycles) in a wide-voltage range of 1.5–4.5 V (vs.  Na+/Na). In-situ X-ray diffraction reveals a complete 
solid-solution reaction with a small volume change of 1.7% during charge/discharge processes and the charge com-
pensation is disclosed in detail. This study will provide new insights into designing high-capacity and stable layered 
oxide cathode materials for SIBs.
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1 Introduction
Sodium-ion batteries (SIBs) are considered as one of the 
most promising candidates for large-scale energy stor-
age due to the abundant and low-cost sodium resources 
[1–5]. The cathode is a key component which largely 

determines the cell performance [6]. The cathode materi-
als for SIBs can be mainly divided into polyanionic com-
pounds [7–10], Prussian blue and its analogues [11–13], 
and layered transition metal oxides [14–16]. Among 
them, the layered transition metal oxides are wildly 
investigated for their high theoretical capacity, high tap 
density, and easy synthesis [17, 18].

Layered transition metal oxides  (NaxTMO2, TM = tran-
sition metal) can be categorized into two main groups 
(P2- and O3-types) according to the sodium ion accom-
modating sites and the oxygen stacking sequences [19]. 
Compared with the O3-type  NaxTMO2, the low-Na 
P2-type materials have many vacancies in Na layers 
and possess wide prismatic paths for sodium ion diffu-
sion with a low diffusion barrier, which makes P2-type 
 NaxTMO2 a promising cathode material [20–22]. How-
ever, most P2-type  NaxTMO2 are generally stable in 
the potential range of 2–4.1  V (vs.  Na+/Na) with low 
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discharge capacities. With the widening of voltage range, 
the P2-type  NaxTMO2 is susceptible to phase transi-
tion (P2–O2/PO4) or irreversible oxygen redox, leading 
to drastic volume change and poor structural stability 
[23–25]. In addition, the existence of  Mn3+ would pre-
sent Jahn–Teller distortion, which lowers the  Na+ mobil-
ity [26–28]. Although inactive element doping  (Mg2+ 
[29, 30],  Al3+ [31, 32],  Li+ [33],  Zn2+ [34], and  Ti4+ [35, 
36] etc.) have been proved to have a significant improve-
ment in the structural stability of  NaxTMO2. However, 
the inactive elements can’t provide extra charge com-
pensation, which decreases the theoretical capaci-
ties. Therefore, when considering the synthetic effect 
of introducing extra redoxes and stabilizing structure, 
the active elemental doping is an effect approach. For 
example, Wang et  al. reported that the strong-electron-
egativity  Cu2+/Cu3+ redox can stabilize the Na-deficient 
P2-Na2/3Mn0.72Cu0.22Mg0.06O2 phase to achieve reversible 
cationic and anionic redoxes [37]. Myung et al. developed 
the active  Ni2+ doped P2-Na0.75[Li0.15Ni0.15Mn0.7]O2 cath-
ode material, and the active Ni doping not only decreases 
the voltage hysteresis but also improves the cycling sta-
bility [38]. From this point, searching for earth-abundant 
and moderate active element doping is urgently required.

Herein, we designed the P2-Na0.67Mg0.1FexMn0.9-xO2 
(x = 0, 0.1, 0.2) cathode material with different contents of 

active  Fe3+ doping. Uneven distribution of  Mn3+/Mn4+ 
element is observed in  Na0.67Mg0.1Mn0.8Fe0.1O2 (NMMF-
1). It is demonstrated that introducing moderate  Fe3+ can 
reduce the  Mn3+ contents both at the surface and in the 
bulk to alleviate the Jahn–Teller effect. In-situ X-ray dif-
fraction (XRD) characterization reveals that NMMF-1 
exhibits a complete solid solution process in the wide 
voltage range of 1.5 – 4.5 V (vs.  Na+/Na). It is also found 
that the moderate  Fe3+ doping can introduce additional 
active  Fe3+/Fe4+ redox to realize a tradeoff between 
capacity and cyclability. Therefore, the NMMF-1 cath-
ode material demonstrates a high capacity and improved 
cycling stability. This study will provide a new insight into 
constructing high capacity and stable layered metal oxide 
cathode materials for SIBs.

2  Results and discussion
A series of Fe-doped  Na0.67Mg0.1Mn0.9-xFexO2 (x = 0, 0.1, 
0.2, NMMFs) are prepared by an organic acid-assisted 
solid-state reaction. The crystal structures of the as-
prepared NMMFs are characterized by X-ray diffrac-
tion (XRD, Fig. S1). The Rietveld refinement patterns of 
 Na0.67Mg0.1Mn0.9O2 (NMM) and NMMF-1 are displayed 
in Fig. 1a-b. All NMMF samples can be well indexed to 
the P2-type layered structure with a space group of P63/
mmc.. According to the refinement results of NMM and 

Fig. 1 XRD Rietveld refinement patterns of (a) NMM and (b) NMMF-1, (c) TEM, (d, f) HRTEM, (e) SAED pattern, and (g) EDS-mappings of NMMF-1
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NMMF-1 (Table S1-S2), both the Fe and Mg elements are 
contained in the TM layers. After introducing  Fe3+ into 
NMM, the  Fe3+ preferentially replaces the  Mn3+ sites 
because of their same valence state (+ 3) and ionic radius 
(0.645 Å for  Fe3+ and  Mn3+), which is beneficial for alle-
viating the Jahn–Teller effect of  Mn3+.

The morphologies of the NMMFs are characterized 
by scanning electron microscopy (SEM) and transmis-
sion electron microscopy (TEM). SEM images (Fig. S2) 
indicate that all samples are composed of micro-particles 
with a size of 1–4  µm. The TEM image of NMMF-1 is 
displayed in Fig. 1c, where thick flakes can be observed. 
Figure  1d shows the high-resolution TEM (HRTEM) 
image of NMMF-1. Clear lattice fringes can be observed, 
corresponding to the (002) interplanar distance of P2 
structure. Figure  1e shows the selected area electron 
diffraction (SAED) pattern along the  [001]hex zone axis. 
High-angle annular dark-field scanning transmission 
electron microscopy (HAADF-STEM) characterization is 
further employed to depict the atomic arrangement. The 
bright dots in Fig. 1f can be assigned to heavy TM atoms 
(Mn, Fe) and the light atoms can’t be observed, which 

reveals the typical layered structure of NMMF-1. The 
Energy dispersive spectroscopy (EDS) element mapping 
in Fig. 1g suggests that all elements are evenly distributed 
in NMMF-1.

As reported in many layered oxide cathode materials, 
the coexistence of  Mn3+ and  Mn4+ is a common phenom-
enon [27]. According to the chemical formula of NMMF-
1, the average valence state of Mn is + 3.54, suggesting 
the coexistence of  Mn3+ and  Mn4+. To further investi-
gate the distribution of  Mn3+ and  Mn4+ in the NMMF-1, 
HAADF-STEM coupled with electron energy loss spec-
troscopy (EELS) is employed (Fig. 2a). The bright fringes 
represent the heavy TM ions and the electron energy loss 
can be collected in EELS. The NMMF-1 is scanned from 
the surface to bulk with a length of 10 nm in linear scan 
mode, and the EELS spectra at different distances from 
the surface is shown in Fig.  2b, c. The EELS spectra of 
NMMF-1 display Mn-L3 and Mn-L2 peaks at ~ 644 and 
654 eV, respectively, as well as the Fe-L3 peak at ~ 710 eV. 
It can be found that the Mn-L2,3 peaks shift to higher 
energy loss from surface to bulk with decreased inten-
sity ratio of L3/L2, indicating the  Mn3+ content is higher 

Fig. 2 a HRTEM image of NMMF-1, (b-c) EELS counter pattern and spectra of NMMF-1, (d) XPS spectra and (e) Raman spectra of NMM, NMMF-1, 
and NMMF-2
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at the edge [39]. The Fe-L3 peak shows no position and 
intensity change, which indicate the even distribution of 
 Fe3+ at particle surface and bulk. Due to the similar ionic 
properties of  Fe3+ and  Mn3+, the introduced  Fe3+ should 
preferentially replaces  Mn3+ sites. Thus, the introduced 
 Fe3+ decreases the  Mn3+ contents both at the surface and 
in the bulk. It is expected that the replacement of  Mn3+ 
with  Fe3+ would alleviate the Jahn–Teller distortion, thus 
leading to better material stability.

The integral valence states are investigated by XPS. The 
binding energies at 720 and 706  eV (Fig. S5) are corre-
sponding to the Fe  2p1/2 and  2p3/2 peaks of  Fe3+, respec-
tively. The peak intensity of  Fe3+ increases from NMM to 
NMMF-2. The peaks show no shift in position, confirm-
ing the introduced iron keeps trivalent. Besides, the XPS 
spectra (Fig.  2d) display the Mn  2p1/2 and 2p 3/2 peaks 
at ~ 653.8 and ~ 642.0  eV, respectively. The peaks gradu-
ally shift to higher binding energy from NMM to NMMF-
2, indicating the increasing of Mn average valence state 
due to the substitution of  Mn3+ by  Fe3+.

To further detect the change of local structures, 
Raman tests also are performed (Fig. 2e). All the samples 
exhibit four primary peaks, where the peak at 640   cm−1 
is assigned to the  A1g mode of TM-O bond and the 
peaks at ~ 598, ~ 490, and ~ 380   cm−1 are ascribed to  E2g 
modes involving both Na and O vibrations [40, 41]. Typi-
cally, the  E2g peak at ~ 598   cm−1 is related to  the atomic 
displacement along c axis, which is able to reflect the 
change in interlayer distance. Notably, with the increase 

of introduced  Fe3+ contents, the peak of  A1g mode shifts 
to lower position, which suggests the elongated TM-O 
bonds. The increased TM-O bonds are beneficial to 
increasing the structural stability. While the  E2g mode 
at ~ 598   cm−1 also shifts to lower wavenumbers, which 
suggests the increased interlayer distance.

The electrochemical performances of NMMFs are 
investigated in half cell with Na metal as the anode. The 
first two CV curves at 0.1  mV   s−1 of NMMF-1 are dis-
played in Fig. 3a. The NMMF-1 exhibits a pair of redox 
peaks below 2.5  V, which can be assigned to the oxida-
tion/reduction of  Mn3+/Mn4+. In addition, a sharp 
oxidation peak appears above 4.2 V, which generally cor-
responds to the anionic redox reaction and electrolyte 
decomposition. The peak exhibits a slight decrease at the 
second cycle, implying the existing of some irreversible 
processes. A small pair of peaks can also be observed 
within 3.5–4 V for NMMF-1, which may be ascribed to 
the redox of  Fe3+/Fe4+. To further investigate the cycling 
stability, the NMMFs are tested at 20 mA   g−1 in a wide 
voltage range of 1.5–4.5 V, which involves both the cati-
onic and anionic redoxes. The charge/discharge profiles 
of NMMF-1 at different cycles are shown in Fig. 3b. An 
obvious potential plateau at ~ 2 V is assigned to the  Mn3+/
Mn4+redox, agreeing with the CV results. The discharge 
profiles exhibit a good overlap during subsequent cycles, 
indicating the good reversibility. However, the NMM 
and NMMF-2 (Fig. S6) exhibit severe voltage decay 
during cycling. The cycling performances of NMMFs 

Fig. 3 a CV curves and (b) charge/discharge profiles of NMMF-1, (c) cycling performances and (d) rate performances of NMM, NMMF-1, 
and NMMF-2
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are investigated in 1.5–4.5  V (Fig.  3c). When tested at 
20  mA   g−1, the NMMF-1 delivered a high capacity of 
174.7 mAh  g−1, higher than that of NMMF-2 (168.6 mAh 
 g−1) but slightly lower than NMM (179.5 mAh  g−1). The 
slightly higher capacity of NMM may be related to the 
more Mn–O bonds, which are easier to trigger anionic 
redox reactions. After 100 cycles, the NMMF-1 exhibits 
significantly improved capacity retention of 78.5%, obvi-
ously higher than that of NMM (51.7%) and NMMF-2 
(36.5%). The results indicates that the moderate active 
 Fe3+ doping improves the cycling stability. The rate per-
formances of NMMFs are further tested (Fig. 3d, Fig. S8). 
The NMMF-1 also delivers higher capacity than NMM 
and NMMF-2 at different current densities. Even tested 
at the current density of 1000 mA  g−1, the NMMF-1 can 
still deliver a high capacity of 69.8 mAh  g−1.

The Galvanostatic intermittent titration technique 
(GITT) test at the second cycle is employed to com-
pare the  Na+ diffusion coefficient ( DNa

+ ) in NMM and 
NMMF-1 (Fig. S9). At the initial charge state, NMMF-1 
exhibit a slightly higher  Na+ diffusion coefficient ( DNa

+ ) 
than NMM, which explains the slight improvement of 
rate performance.

To explore the structural evolution of NMMF-1 during 
sodiation/de-sodiation processes, in-situ XRD measure-
ments are employed. As displayed in Fig. 4a, during the 
charge process, the (002) and (004) peaks of NMMF-1 
shift to lower position, which is related to the increase 
of lattice parameter c with the extraction of  Na+ ions. In 
contrast, the (100) peak shifts to higher position, indicat-
ing the decrease of lattice parameter a. As for the sub-
sequent discharge process, the peak shifting shows an 
opposite behavior, indicating the reversible structure 
evolution. There are no new peaks appearing during the 

whole charge/discharge processes, indicating a complete 
solid solution process, which demonstrates the stable 
structure of NMMF-1 within a wide voltage range of 1.5–
4.5  V. The specific numerical changes in lattice param-
eters of NMMF-1 are displayed in Fig.  4b. The increase 
of parameter c is caused by the increased repulsive force 
between adjacent oxygen layers with the extraction of 
 Na+ ions. The decrease of parameter a can be ascribed to 
the TM oxidation, which makes TM-O distance shorter. 
Typically, NMMF-1 exhibits a low cell volume variation 
of 1.7%, suggesting a near-zero-strain feature.

To further clarify the charge compensation mechanism 
in NMMF-1, ex-situ X-ray adsorption near edge struc-
ture (XANES) at different charge/discharge states are col-
lected. The normalized Fe K-edge and Mn K-edge spectra 
of the pristine and the charged states are displayed in 
Fig.  5a-b. The Fe K-edge exhibits a shift to high energy 
after fully charging, which manifests the oxidization of 
 Fe3+ to  Fe4+ in charge compensation process. The Mn 
K-edge spectra also slightly shifts to high energy from 
the pristine state to charged state, indicating the oxida-
tion of  Mn3+ to  Mn4+. The ex-situ O 1 s XPS are further 
employed to detect the existence of oxygen redox reac-
tions (Fig.  5c). The pristine O1s spectra can be divided 
into two peaks from the surface oxygen-related species 
and one peak from lattice oxygen. When charged to 4.5 V, 
an extra peak at 531 eV appears and disappears after fully 
discharged to 1.5  V, which is ascribed to the formation 
of peroxo-like  (O2)n− species [42]. Such an appearance 
of the new component indicates the participation of the 
oxygen redox in charge compensation process. Because 
of the similar oxidizing potential of  Fe3+/Fe4+ and oxygen 
redox, the NMMF-2 with high-content  Fe3+ may experi-
ence simultaneously proceeding of cationic and anionic 

Fig. 4 a In-situ XRD patterns of NMMF-1, (b) lattice parameter variation during charging/discharging processes
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redoxes and severely deteriorate the structure. Therefore, 
the entire charge compensation process of NMMF-1 
can be schematically illustrated in Fig. 5d. The NMMF-1 
cathode material exhibits a complete solid-solution reac-
tion during the entire charge/discharge processes due 
to the  Mg2+ and moderate  Fe3+ dual doping,  Mg2+ dop-
ing suppresses the unamiable phase transformation and 
triggers the anionic redox reactions, while  Fe3+ doping 
is beneficial to reducing  Mn3+ contents. In addition, the 
 Fe3+ can be oxidized to  Fe4+ to form strong Fe–O bonds, 
which would improve the anionic redox reversibility 
at high voltage. During the charge process, the capac-
ity is provided by the cationic  (Fe3+/Fe4+,  Mn3+/Mn4+) 
and anionic  (O2−/(O2)n−) redoxes. Due to the abun-
dant redox reactions, NMMF-1 delivers a high capacity. 
The stable P2 structures of NMMF-1 at different charge 
states ensures the reversibility of these cationic/anionic 
redoxes.

3  Conclusion
In summary, we designed the P2-Na0.67Mg0.1Mn0.9-xFexO2 
(x = 0, 0.1, 0.2) cathode material with different contents of 
active  Fe3+ doping. The uneven  Mn3+/Mn4+ distribution 
is observed in  Na0.67Mg0.1Fe0.1Mn0.8O2 (NMMF-1). It is 
demonstrated that introducing moderate  Fe3+ can reduce 
the  Mn3+ contents both at the surface and in the bulk 
to alleviate the Jahn–Teller effect. The structural evolu-
tion and charge compensation mechanism are revealed 
by in-situ XRD and ex-situ XANES/XPS measurements. 
The NMMF-1 exhibits a complete solid-solution reac-
tion during the entire charge/discharge processes. What’s 
more, it is found that the introduction of  Fe3+ can bring 
in additional active  Fe3+/Fe4+ redox, the moderate  Fe3+ 
doping can realize a tradeoff between capacity and cycla-
bility. Therefore, the NMMF-1 cathode material exhibits 
a high capacity and improved cycling stability in a wide-
voltage range of 1.5–4.5 V (V vs.  Na+/Na). This study will 
provide a new insight into constructing high capacity and 
stable cathode for SIBs.

Fig. 5 Ex-situ XANES spectra of (a) Fe K-edge and (b) Mn K-edge spectra, (c) ex-situ O 1s XPS spectra of NMMF-1. d Schematical illustration 
of the sodium storage processes of NMMF-1
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Abbreviations
SIBs  Sodium-ion batteries
LIBs  Lithium-ion batteries
NaxTMO2  Layered transition metal oxides
NMM  Na0.67Mg0.1Mn0.9O2
NMMF-1  Na0.67Mg0.1Mn0.8  Fe0.1O2
NMMF-2  Na0.67Mg0.1Mn0.7  Fe0.2O2
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