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Abstract 

The Loess Critical Zone (LCZ) is located in the intersection of bedrock, groundwater, pedosphere, atmosphere 
and biosphere. It is a key issue to understand the structural characteristics and soil carbon (C) cycle of the LCZ. We 
summarized the mechanisms of C exchange between rocks and the atmosphere, and discussed the mechanisms 
of C stabilization and persistence of the LCZ. Due to the deep layer, C stocks of the CLZ could be underestimated. 
In light of the recent theory of microbial C pump, soil microorganisms play an important role in C cycle, however, 
the microbial function is not widely considered in C cycling model of the LCZ. For future studies, it is suggested to sys‑
tematically study the C cycling process from plant canopy to bedrock by the framework system of the LCZ. A variety 
of techniques and methods are integrated to combine short-term and high-frequency observations with long-term 
positioning observations, and pay attention to the response and feedback mechanisms of soil organic C (SOC) cycling 
to global changes and human activities, especially the migration and transformation of SOC in each circle and inter‑
face of the LCZ. We also recommend the necessity for intensive and long-term C monitoring in LCZ over broad 
geographic scale, to improve microbial C model for accurately evaluating terrestrial C budget and its dynamics. 
Altogether, this is the first review of C cycling, spanning from the land surface down to the bedrock in the LCZ, which 
is significant implications for biogeochemical cycling of C in surface and deep layers down to the bedrock.
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1  Introduction
The Earth Critical Zone (ECZ) is a complex integrated 
system encompassing various components of the Earth’s 
surface, such as bedrock, groundwater, pedosphere, 
atmosphere and biosphere [1]. It is also a natural reactor 
which characterized by intricate exchanges of matter and 

energy among these components [2]. Horizontally, the 
ECZ extends across different ecosystems, while vertically, 
it spans from the upper boundary, including the plant 
canopy, to the underlying soil layer, aquifer, and litho-
sphere [1, 3]. This region plays a crucial role in regulat-
ing the vital dynamics of the Earth’s surface, maintaining 
the natural ecological environment, and providing valu-
able societal resources [4]. Given that the advancements 
in technology on a global scale, the study of the ECZ has 
been emerged as an important and cutting-edge research 
direction within the field of Earth sciences in the twenty-
first century [2, 5].

As the most active and dynamic region of the Earth’s 
surface system, the ECZ significantly influences the 
biogeochemical cycling of elements, the movement 
and migration of water and carbon (C) processes [1]. 
Most of researches on the ECZ primarily focused on 
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unraveling the physical, chemical, and biological pro-
cesses that control material cycling within this zone, 
as well as analyzing the interconnections among these 
processes [6, 7]. Within the dynamic core of this region, 
soil organic matter (SOM) serves as a key component, 
enabling the proper functioning of the critical zone. It 
acts as an essential energy and nutrient source for het-
erotrophic microorganisms and functions as a signifi-
cant complexing agent or adsorbent for environmental 
pollutants [8, 9]. The decomposition and transformation 

of SOM play a pivotal role in various physical, chemical, 
and biological processes within this zone.

Loess, which covers approximately 10% of the Earth’s 
land area, is widely distributed worldwide (Fig.  1A). 
Now, research on loess has transitioned from qualita-
tive descriptions to quantitative and interdisciplinary 
investigations. In China, the loess region represents 
around 5% of the global loess area (Fig. 1B). In the typi-
cal of this region (Loess Plateau), the vegetation coverage 
increased from 21 to 71% in recent 40 yrs due to the grain 

Fig. 1  The loess distribution and partition in China and the world (modified from [10–13])
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for green project. The mean annual temperature gradu-
ally increased from 1950s. The mean annual precipitation 
first decreased before 2000, and then increased after 2000 
(Fig. 2). Chinese research on the structure and evolution 
of loess has surpassed that of European and American 
countries, reaching an advanced international level [10–
13]. According to the new global development paradigm 
and China’s major national strategic goals of “high-quality 
development of the Yellow River” and “dual-carbon tar-
gets” the soil C sink within the Loess Critical Zone (LCZ) 
presents significant opportunities alongside formidable 
challenges. Therefore, examining the dynamic changes, 
trends, and controlling processes of soil organic C (SOC) 
within LCZ is crucial for understanding the patterns of 
material transport and energy transfer, thereby contrib-
uting to the sustainable development of human society.

2 � The development of the Loess Critical Zone
Since the establishment of the first three Earth’s Criti-
cal Zone (ECZ) observation stations in the United States 
in 2007, approximately 64 international Critical Zone 
observation stations have been gradually established 
worldwide by 2015, forming an observational network 
that monitors changes in environmental gradients [14]. 
However, studies on the ECZ in China began relatively 

late. In 2008, an article titled “Hydropedology: an emerg-
ing interdiscipline” was published in “Science & Technol-
ogy Review” which introduced the concept of the Earth’s 
critical zone in a simplistic manner [6, 7]. In 2010, the 
“International Academic Conference on Hydropedology 
and Forefront Research and Applications in the Earth’s 
Critical Zone” took place at Beijing Normal University, 
promoting the development of research on the ECZ in 
China. In the same year, Lin [1] reviewed the concept 
of the Earth’s Critical Zone and published an article 
entitled “Earth’s Critical Zone and hydropedology: con-
cepts, characteristics, and advances.” During the “Inter-
national Workshop on Hydropedology and Sustainable 
Use of Natural Resources” in 2013, ECZ was considered 
as a significant topic. Chinese academician Congqiang 
Liu presented on “Processes in the Earth’s Critical Zone 
and biogeochemical cycles” at the forum with the theme 
“Frontiers in Earth Biology,” which garnered substantial 
attention for the public. In 2014, the “Shuangqing Forum”, 
organized by the National Natural Science Foundation of 
China, highlighted the urgent need for research on the 
ECZ in China and discussed its future development pro-
ject. Then, it was announced that five ECZ observation 
stations would be officially established, including the red 
soil region of southern China, suburban areas in Ningbo 

Fig. 2  Observed mean annual temperature (MAT) and precipitation (MAP) variations between 1950 and 2020 in the Loess Critical Zone (a). 
The slight orange dashed line (MAT) is fitted to the data with the slop = 0.05 (p < 0.001). The slight blue dashed line (MAP) is fitted to the data 
with the slop = -0.23 (before 2000) and slop = 0.24 (after 2000). Vegetation coverage from 1982 to 2020 in the Loess Critical Zone (b-e)
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city, the Karst region of Southwest China, and the Loess 
Plateau, among others. Subsequently, the other ECZ 
observation stations were established, such as Qinghai 
Lake, Jianghan Plain, North China Plain, the Circum-
Bohai Sea coast, and the Yanshan mountainous area 
[5]. In 2015, the National Natural Science Foundation 
of China and the UK’s Natural Environment Research 
Council initiated a major international research project 
in the field of the ECZ. This project aimed to under-
stand the sustainability of land and water resources, the 
dynamic processes and timescales of evolution, and the 
ecosystem service functions within the Karst region, 
Loess Plateau, red soil region of Southern China, and 
rapidly changing suburban areas. Based on the Chinese 
ecosystem research network, this project officially com-
menced scientific research on the typical Critical Zone.

In this case, Chinese academician Ming’an Shao pro-
posed the word of “Loess Critical Zone” (LCZ). In fact, 
LCZ has only been in use for the past years. However, 
researches and investigations related to this concept can 
be traced back to studies on biogeochemistry and the 
C-water cycle conducted several decades ago [15–18]. 
In recent years, there have been extremely global climate 
changes and intense human activities, leading to consid-
erable alterations in the SOC transformation and other 
processes of the LCZ [16, 19, 20]. Previous studies on the 
ecosystem C stocks of the LCZ primarily focused on C 
output, lacking the underlying C driven processes [19, 
20]. Consequently, it is of great significance to explore the 
sources, transport pathways, and transformation charac-
teristics of SOC in the LCZ.

3 � Distribution of the Loess Critical Zone
Geographically, loess distributed sporadically in the arid 
and semi-arid mid-latitude regions of both the northern 
and southern hemispheres [11]. The largest area covered 
by loess in the world is found in Asia, followed by Europe, 
North America, and South America (Fig. 1A). In Europe, 
the loess coverage ratio is about 16.6%, while Asia 
accounts for 10.6%, North America for 6%, and South 
America for 2.6%. Loess sediments can be found at alti-
tudes ranging up to 5,300 m above sea level in areas north 
of the Kunlun Mountains in China, as well as in locations 
such as Argentina and New Zealand [21, 22]. With the 
exception of moist frozen loess in northeastern Siberia 
and northern Alaska, loess is generally found above the 
water table [23]. The thickest and most continuous loess 
sediments are located in China, with an average thick-
ness of 300 m and a maximum thickness reaching 505 m, 
and the calculated mean loess thickness is 105.7 m [22]. 
In Siberia and Central Asia, the thickness of loess gen-
erally ranges from 0 to 200 m [11], while in Europe and 
North America, it is usually less than 20 m. However, in 

certain regions such as downstream of the Danube, the 
Palouse area, Nebraska, and Alaska, the thickness can 
reach several dozen meters or even approximately 100 m. 
In South America, loess has an average thickness of 50 m, 
while in New Zealand, Africa, and the Arabian Peninsula, 
it is generally around 20 m, and in Australia, it is approxi-
mately 3 m.

The LCZ exhibits a wide distribution in China and 
encompasses the interaction of five spheres: rock, water, 
soil, atmosphere, and biota [13]. The horizontal bound-
aries primarily correspond to the loess region. Through 
in-depth studies and improved understanding of the 
LCZ, significant progress has been made in its classifica-
tion, making it an important tool for managing natural 
resources within the Earth’s surface system [16, 24–26]. 
Among the major regions of the LCZ, the Loess Plateau 
represents a typical and distinctive critical zone, and 
stands out as an area with the most fully developed loess 
deposits globally, preserving comprehensive records of 
the age and climatic information of the LCZ [22, 27]. A 
recent study has established an index system and meth-
odological framework for the regional classification of 
the LCZ, and the entire Loess Plateau has been classi-
fied into eight Critical Zone (Fig.  1C) [13]. Within the 
national strategies such as the “high-quality development 
of the Yellow River” and “dual-carbon targets”, the soil C 
stock of the CLZ will encounter significant opportunities 
and challenges [24, 25]. Soil organic C plays a vital role in 
maintaining the proper functioning of the LCZ, and all 
interfaces within the zone are active sites for the substan-
tial decomposition and transformation of SOC (Fig.  3). 
Currently, a preliminary network of observation stations 
has been established in the Loess Plateau, leading to 
research advancements in the structure, processes, evo-
lution, and simulation of the LCZ [5, 23–25, 28]. How-
ever, due to vegetation greening project and extremely 
climate change, the structure and soil C cycling processes 
within the LCZ are undergoing significant changes com-
pared to other areas. Therefore, gaining a correct under-
standing of the structure of the LCZ and the SOC cycling 
is crucial for achieving ecological goals and sustainable 
development in the Loess Plateau.

4 � The stock and dynamic of SOC in the Loess 
Critical Zone

Soil organic C (SOC) in the LCZ experiences signifi-
cant decomposition, transformation, and migration 
across various media (atmosphere, vegetation, soil, and 
rocks) [26, 29, 30] (Fig.  3). In the atmosphere, it exists 
in the form of inorganic C, while in terrestrial ecosys-
tems, SOC stock is the most abundant. The estimated 
values for SOC stocks in the atmosphere, terrestrial veg-
etation, and oceans proposed by different researchers 
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are approximately consistent [31–33]. However, there 
are considerable discrepancies in the estimated values 
of SOC [15, 17]. These differences primarily arise from 
variations in data, research methods, sampling tech-
niques, and the considerable spatial variability of soil 
[15, 26]. In the LCZ, the SOC stock is immense and the 
C cycling processes are complex. Furthermore, the com-
bined impacts of climate changes and human activities 
subject the SOC stock to dynamic changes. Addition-
ally, due to the vast area of the Loess Plateau, data col-
lection becomes challenging, and differences in sampling 
technologies and processes further contribute to the 
uncertainty in estimating SOC stocks [29, 30]. These 
uncertainties significantly affect SOC stock estimation in 
evaluating the total C budget in China.

Loess Plateau are the significant C sink in the Earth. To 
provide a complete picture of the C sequestration in the 
Loess Plateau, we documented C pools and the changes 
for all C sectors (aboveground biomass, ecosystem C, 
and SOC) in the Loess Plateau (Table  1), by synthesiz-
ing the studies in the special feature and other recent 
studies [26, 29, 30]. Former estimates for C stocks of the 
Loess Plateau changed substantially because of diver-
sity in data sources and inconsistency in methodologies 
[31–33]. These studies have shown that the SOC density 
in the topsoil ranges from 0.66 to 12.18  kg·m–2 within 
the 0–20  cm depth, with most values falling between 1 
and 4 kg·m–2 [34]. Li et al. [7] pointed out that the total C 

stock of the Loess Plateau is approximately 2.29 Pg, and 
the C stocks of farmland, grassland, shrubland and forest 
are nearly 0.98, 1.09 and 0.21 Pg. In our previous study, 
the total C stock in these four ecosystems (forest, shrub-
land, grassland, and cropland) was 2.84 Pg C, among 
which 29.63% was stored in soil (0–20 cm), 53.23% in 
aboveground biomass, and 17.14% in belowground bio-
mass [26]. The 0–10 and 10–20  cm soil layers on the 
Loess Plateau, covering almost 6.5% territory in China, 
held around 5% total SOC stocks at the mentioned lay-
ers across the country [34–37]. Furthermore, the C stock 
in grassland and farmland soils were higher than below-
ground biomass, which is similar to the estimates for 
the continental China (3.9 g/m2) [38], United States (3.0 
g/m2) [39] and Europe (3.5 g/m2) [40]. However, higher 
SOC stock does not necessarily lead to greater ecosystem 
C stock. Fox example, the C stocks in the soil of forest-
land and shrubland were lower than the biomass due to 
the “Grain-for-Green” project in China, which had built 
numerous forestland and shrubland regions [7, 26].

In addition, the area-weighted mean biomass C 
densities in forestland (72.1  Mg  ha−1), and grassland 
(1.02 Mg ha−1) across the Loess Plateau (Fig. 4) were sub-
stantially lower than the global means [94.2  Mg  ha−1 in 
forestland and 7.2 Mg ha−1 in grassland] [38, 51]. Large-
area young forests, extensive grazing and soil water limi-
tation are the possible contributors of low biomass C 
density of the Loess Plateau [24, 25]. Specifically, almost 

Fig. 3  The structural model of the Loess Critical Zone
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90% forests are aged below 60  years, and correspond-
ing biomass is below 60 Mg  ha−1, obviously lower com-
pared with that (104.7 ± 30.3  Mg  ha−1) in old forests 
(≥ 100 years) and the average value across China’s forests 
[52]. The higher proportion of young and middle-aged 

forests of the Loess Plateau suggests enormous future 
potential of C sinks [25]. Future biomass C density may 
surmount our estimates after forest areal expansion, veg-
etation restoration and protection and soil C increas-
ing needs to be examined [53]. Vegetation restoration 

Table 1  Statistics of soil C density and stock in the Loess Plateau and China derived from various studies

Item Soil depth
(cm)

SOC density
(kg m−2)

SOC stock
(Pg)

Aboveground C 
stock (Pg)

Ecosystem C 
stock (Pg)

References

Loess Plateau 0–20 0.76 0.85 1.51 2.84 Yang et al., 2023 [26]

Loess Plateau 0–20 0.67 1.52 0.44 2.29 Li et al., 2021 [37]

Loess Plateau - - - - 3.96 Liu et al., 2018 [41]

Loess Plateau 0–20 2.64 1.64 - - Fu et al., 2014 [36]

Loess Plateau 20–40 4.57 2.86 - - Fu et al., 2014 [36]

Loess Plateau 0–100 7.70 4.78 - - Fu et al., 2014 [36]

Loess Plateau 0–200 12.45 5.85 - - Fu et al., 2014 [36]

Loess Plateau 0–20 2.69 1.68 - - Liu et al., 2011 [35]

Loess Plateau 0–50 8.99 3.47 - - Liu et al., 2011 [35]

Loess Plateau 0–100 13.45 5.32 - - Liu et al., 2011 [35]

Loess Plateau 0–20 2.49 1.07 - - Xu et al., 2003 [34]

China 0–100 0.96 75.0 14.3 89.3 Tang et al., 2018 [38]

China 0–100 10.6–21.0 84.5 14.6 99.2 Xu et al., 2003 [42]

China 0–100 86.2 82.8 13.7 100.5 Ji et al., 2008 [43]

China 0–100 91.3 84.6 13.3 98 Li et al., 2004 [44]

China 0–10 - 69.4 - - Xie et al., 2004 [45]

China 0–100 125 119.8 35.2 155 Ni, 2013 [46]

China 0–100 4.86 50 - - Pan et al., 2008 [47]

China 0–100 10.83 100.2 - - Wang et al., 2003 [48]

China 0–100 102.9 100.6 52.5 153.1 Peng and Apps, 1997 
[49]

China 0–100 20.3 185.7 6.1 191.7 Fang et al., 1996 [50]

Fig. 4  Distribution of soil C density in the Loess Critical Zone (a revised from [26]; b revised from [37])
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measures, ecological improvement projects, as well as 
natural conservation policies also may enable C gains to 
continually increase in this region [54].

In terms of vertical distribution (Fig.  4), the soil layer 
in the LCZ is thick, and there are notable variations in 
the distribution of SOC stock, with significant differ-
ences in SOC content across different soil layers [36, 
55]. Previous studies on SOC stock and influencing fac-
tors in the LCZ have primarily focused on the shallow 
layer within 0–1 m, while the C stock in deep soil layer 
is enormous [11, 56] (Table 1). Generally, the content of 
SOC decreases with soil depth, with the SOC content 
in the shallow layer (0–10 cm) being 4–10 times higher 
than that in the deep layer (80–100  cm) [57]. The SOC 
stock in 0–20 cm, 0–50 cm, and 0–100 cm are estimated 
to be 1.68 Pg, 3.47 Pg, and 5.32 Pg, respectively. The 
SOC stock in the 0–20 cm and 0–50 cm layers accounts 
for 32.0% and 65.0% of the 0–100 cm layer, respectively. 
This is primarily due to the generation, transformation, 
and decomposition of aboveground vegetation biomass, 
as well as the predominance of roots in the surface layer 
[55]. Consequently, the contribution rate of SOC stock in 
the 0–50 cm soil layer is as high as two-thirds. The SOC 
stock is relatively low in boggy soil, gray desert soil, and 
solonetz, while loessal soil and gray cinnamonic soil, 
which have a relatively large area, are the main regions 
with SOC distribution [26]. Other study suggests that 
the SOC stock in the shallow layer (0–20  cm) of the 
Loess Plateau is 1.64 Pg, which increases to 2.86 Pg in 
the 0–40 cm soil layer. In the deep soil layer (0–100 cm), 
the SOC stock is estimated to be 4.78 Pg, and it reaches 
5.85 Pg in the 0–200 cm soil layer. The SOC stock in the 
0–100  cm and 0–200  cm layers accounts for 8.21% and 
5.32% of the total SOC stock in China, respectively [58].

5 � The microbial turnover of SOC in the Loess 
Critical Zone

Soil microorganisms act as the engine of biogeochemical 
processes in the LCZ, serving as important links between 
the input and output of soil C [59, 60]. They mediated 
crucial metabolic processes of C cycling, driving the 
exchange and transfer of active matter among various 
interfaces in the critical zone, such as the conversion of 
CO2 to organic compounds, the production and oxida-
tion of CH4, and the decomposition of organic matter 
[61]. In alkaline loess soils characterized by high hetero-
geneity and calcium richness, the coupling mechanism 
among C in plant residue, C in microbial residue, and 
microorganisms requires further investigation.

Soil microorganisms determine the transport of SOC to 
the underground, the absorption and transport of nutrients 
by plants, and the micro-channels for nutrient transfer in 
underground ecosystems [9, 62–65]. Here, Fig. 5 illustrated 

the migration and cycling process of SOC in the LCZ 
under natural conditions. Through photosynthesis, atmos-
pheric CO2 was fixed by plants, synthesizing organic C for 
themselves, and a portion of this organic C is transferred 
to the litter pool [66]. Microorganisms decompose a por-
tion of the litter, while the undecomposed residues, animal 
excrement, microbial residues, decomposition products, 
and synthesis products collectively become the main 
source of SOC [67]. In addition, dissolved organic C, par-
ticulate organic C formed through percolation in the soil 
profile, and C input from plant roots contribute to the for-
mation of deep SOC. During the transfer of SOC between 
these pools, degradation processes such as respiration and 
mineralization can occur. Some degradation products are 
released back into the atmosphere as CO2 or CH4, forming 
the component of soil C cycling [21].

The LCZ has a large number of soil microorganisms 
because of the deep layer [68, 69], and these microorgan-
isms play a crucial role in various physical, chemical, and 
biological processes and contribute to the formation of 
SOC. When new C is exposed to rainfall, it undergoes 
eluviation and is subsequently transported by the ‘soil 
microbial C pump’ [70]. The residues of living microor-
ganisms continuously accumulate, forming a residual C 
pool. For example, fungi can extend their hyphae to the 
surface, transferring absorbed C to the deep soil and con-
tributing to the accumulation of SOC [68, 69]. The micro-
bial residues left behind by deceased microorganisms also 
contribute to the stable SOC stock [71–73]. As the loess 
accumulates and C is eluviated, the activity and function of 
most microorganisms in the deep soil significantly decrease 
[74]. Through the cycling of energy and substances by the 
“soil microbial C pump,” generations of microorganisms 
store SOC in their biomass, which is later transferred to 
their residues and contributes to the accumulation of sub-
stantial SOC [26, 59, 75]. For example, Ren et al. [67] uti-
lized metagenomic sequencing technology to study the 
trends of carbon-hydrolyzing enzymes produced by soil 
microorganisms and their response to the decomposition 
of microbial residues from different sources in the Robinia 
pseudoacacia restoration sequence in the Loess Plateau 
over the past 45 years. In the latest study, it was found that 
the recovery of natural grassland in the Loess Plateau is 
attributed to microbial residues (mainly from bacteria) that 
increase SOC storage, influenced by environmental factors 
and plant C inputs [76].

6 � Mechanisms of SOC stabilization in the Loess 
Critical Zone

6.1 � Physical and chemical protection of aggregates
At present, it is generally accepted that the debris of 
plants and microorganisms forms the core of micro-
aggregates, the new organic substances with high C 
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form stable macro-aggregates [77–79], while the old 
organic C are trapped in fine aggregates, the protected 
and unprotected organic C in the aggregates have dif-
ferent regeneration rates [80]. By this way, the agglom-
erate protection volume or capacity is the physical basis 
for the natural potential of soil C sequestration. The soil 
aggregates are formed by binding the organic–inorganic 
composites or free-particle organic C through aggre-
gate structure [77]. When the aggregates are formed, 
the internal pores of the aggregates are reduced, and the 
mineral particles are cemented tightly with the organic C, 
thus forming SOC [60] (Fig. 6). For example, the reduc-
tion of porosity of large aggregates directly impedes the 
entry of air and moisture, thereby reducing the decom-
position of organic C in large aggregates [78]. The pores 
in the micro-aggregates are extremely small, and if the 
micro-aggregates are smaller than the limits that the bac-
teria can pass, the organic C can only be degraded by the 
extracellular enzyme inward diffusion, which is a great 
energy-consuming process for the micro-organisms, 
thus reducing SOC decomposition [80, 81]. The degree 
of SOC decomposition in aggregates is not uniform due 
to the different strengths of different grades of aggregates 
and different cementitious materials [82]. Studies have 
pointed out that water-stable aggregates with a diameter 
greater than 0.250 mm contain more particulate organic 

C (POC), lighter-group organic C (LFOC), and higher 
microbial biomass C (MBC) [83]. This indicates that the 
large aggregates have low organic C stability [84]. Based 
on the study of loess soil, it is also shown that the oxi-
dizable organic C in loess soils mainly concentrate in the 
0.2–2 mm large aggregates particle group, while the sta-
ble aromatic organic C concentrate in the particle groups 
smaller than 0.002 mm [83]. Previous study also showed 
that roots and mycelium can directly promote the forma-
tion of large aggregates, and micro-aggregates can form 
in large aggregates [77]. Then, Henson et al. [83] further 
emphasized that the large aggregate-wrapped particulate 
organic matter creates the conditions for the formation 
of micro-aggregates, while the particulate organic matter 
encapsulated by the micro-aggregates is more physically 
protected, which has important effects on the stability of 
SOC [84, 85]. Therefore, large aggregates are the guaran-
tee for the long-term storage of SOC [86, 87].

In addition, the cohesive particles in soil aggregates 
have a large specific surface area and surface charge, 
with a strong adsorption capacity for SOC [88–90]. In 
fact, SOC aggregates mainly composed of amorphous 
minerals such as allophane, ferrihydrite, and imogolite, 
with inorganic binders amorphous iron oxides and cal-
cium magnesium carbonates and organic C substitution 
or formation of ionic bonds to form organic–inorganic 

Fig. 5  A conceptual graphic of SOC transformation in the Loess Critical Zone
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complexes [91–94]. On the Loess Plateau, the rare earth 
element concentrations of different phases vary in the 
loess-paleosol layers and are most enriched in the easily 
reducible phase (except for the residual phase), which is 
likely explained by the association of are earth element 
with Mn-oxides [88]. Most parts of the Loess Plateau 
belong to the parent material of loess which has a strong 
surface adsorption capacity, it is more likely to adsorb 
hydrophobic organic C with poor degradability, and the 
clay particles occupy most of them [23]. Therefore, it is 
not difficult to understand that the content of clay is usu-
ally positively correlated with the content of SOC [95], 
and the stabilizing effect of loess to SOC has been widely 
validated both indoors and field [20, 96–98]. In fact, 
the specific surface area of the soil and cation exchange 
capacity determine the ability of SOC sequestration [35, 
99–101]. More of studies reported that amorphous cal-
cium oxides are the decisive factor in promoting SOC 
sequestration on the Loess Plateau [20, 35]. Therefore, 
soils rich in amorphous calcium oxides on the Loess Pla-
teau may be the dominant mechanism for the stabiliza-
tion of SOC.

6.2 � Microbiological metabolic protection
Soil organic C mineralization is carried out by the soil 
microorganisms, and overwhelmingly by the catabolic 
activity of the microbial community [102]. Consequently, 

the mechanisms of microbial metabolism are ultimately 
responsible for SOC stabilization [103]. There have been 
several descriptions of SOC stabilization mechanisms. 
Here we rearrange previous concepts under three main 
types of SOC stabilization mechanisms: microbial physi-
ological inhibition; microbial metabolic limitation, and 
microbial access constraint [104, 105]. We define physi-
ological inhibition as conditions inducing overall micro-
bial inactivity or dormancy; metabolic limitation as 
conditions modulating microbial catabolism, including C 
use efficiency (CUE) [100]; while access constraint refers 
to the physical barriers for microorganisms or their 
exoenzymes to reach and metabolize a SOC substrate 
(Fig. 7). Microbial physiological inhibition and metabolic 
limitation can be considered as spanning a continuum, 
in which when conditions that determine inhibition pass 
a threshold allowing microorganisms to break dormancy 
and become active [101], the rate of SOC mineralization 
will become controlled by the factor(s) limiting micro-
bial activity [106]. On the other hand, if SOC is pro-
tected from microbial access by spatial impediments, it 
will be less sensitive to microbial metabolic limitations 
[107, 108]. Microbial physiological inhibition and access 
constraint are responsible for SOC persistent on the long 
term (century to millennia), while microbial metabolic 
limitation controls short-term SOC persistence (years to 
decades) in the Loess Critical Zone.

Fig. 6  Physical and chemical protection mechanism of SOC stabilization in the Loess Critical Zone
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7 � Controls of SOC persistence in the Loess Critical 
Zone

7.1 � Climate change
Here, we proposed the simply framework to overcome 
this knowledge gap and provide a hierarchical structure 
to test the effect of different factors on SOC persistence 
(Fig. 8). We propose climate change and human activity 
to be the overarching control on SOC persistence when 
it imposes either a physiological inhibition (freezing tem-
perature, anoxic conditions, severe drought), or a large 
metabolic limitation (low/very high temperature and 
moisture) on microbial activity [109, 110].

Climate regimes also affect microbial access to 
resources, thus controlling SOC persistence by modu-
lating the microbial access constraint mechanism. For 
example, areas with higher precipitation and humid soils 
are associated with higher SOC storage, likely because 
of the increased plant productivity and inputs, but pos-
sibly also because higher precipitation promotes dis-
solved organic C (DOC) leaching and mineral-associated 
organic C (MAOC) formation [111]. Warming increases 
the soil temperature and microbial activity and therefore 

stimulates SOC transformations. Typically POC is most 
vulnerable to the temperature because it’s largely unpro-
tected, and the temperature controls microbial energy 
limitation, which is the primary mechanism of POC sta-
bilization. Accelerated POC losses with warming may 
result in increased MAOC formation [112], as more 
microbial products are formed from POC decomposition 
which can associate to minerals. In addition, atmospheric 
precipitation-induced surface runoff can cause soil ero-
sion, resulting in soil eroded C [29]. During the migration 
process, eroded C may undergo selective degradation, 
sedimentation, and other biogeochemical and physical 
processes, ultimately leading to the formation of stable 
SOC by burial effect.

7.2 � Biotic and abiotic factors
We now understand that the persistence of SOC is also 
driven by a complexity of biotic and abiotic factors [107, 
108]. Variations in physicochemical and biological prop-
erties are evident across different soil layers [26]. In terms 
of chemical weathering, plant roots play a significant 
role, while mycorrhizal fungi release nutrients through 

Fig. 7  Schematic representation of the mechanisms of stabilization of SOC in the Loess Critical Zone. Microbial physiological inhibition (MPI) 
is caused by freezing temperatures or lack of oxygen, and results in extremely low microbial processing of plant inputs, which thus accumulate 
largely as particulate organic C (POC) and can persist for millennia, forming C-rich organic soils characterized by low C:N ratios. MPI transitions 
to microbial metabolic limitation (MML) when conditions still limit but do not entirely inhibit microbial activity. Thus, MML is controlled 
by the availability of energy, nutrients, and moisture to microorganisms. High levels of MML result in higher accumulation of soil organic matter 
(SOC) in POC, higher soil C:N, relatively low SOC persistence, and high SOC vulnerability to changes that may release MML. Microbial access 
constraints (MAC) limit the access of microorganisms and their enzymes to SOC. Since organo-mineral associations and protection within small 
pores are the main spatial constraints on microbial access to SOC, MAC is controlled by the soil mineral capacity to form strong organo-mineral 
bonds (i.e., Al, Fe, Ca, and available reactive surface area), and by pore space and moisture. Most of the SOC protected by MAC is in MAOC, 
which may persist in soils for up to millennia and is generally less vulnerable to environmental changes. In soils with lower overall SOC stocks, 
where available SOC is likely have undergone microbial processing, MAC is the prevailing mechanism of SOC persistence
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organic acid dissolution, making them accessible for 
uptake and utilization by organisms [113]. The chemi-
cal composition of deep soil has a considerable impact 
on plant biomass and ecosystem self-evolution. Factors 
such as microbial biomass, extracellular enzymes, sub-
strate quality and quantity, and environmental conditions 
can influence the mineralization rate of organic materials 
from various sources [9, 114, 115]. Factors such as vege-
tation primary productivity, litter production and decom-
position rates directly impact the content and turnover 
rate of SOC, thereby affecting soil C migration, transfor-
mation, and sedimentation in the critical zone [114, 115]. 
Given that climate is a soil forming factor in interactions 
with parent material, topography, time, vegetation and 
other biotic factors [116], in the long term it affects SOC 
persistence in all soils. Additionally, climate controls 
long-term mineral weathering, and thus the interactions 
between geochemistry and climate need to be taken into 

account when studying SOC dynamics and storage [103, 
117]. This interaction, in fact, determines mineral reac-
tivity, thus controlling nutrient availability and microbial 
community composition and metabolism, and modulat-
ing the energy and nutrient availability and pathways ulti-
mately responsible for SOC persistence [103].

8 � Soil C cycling model in the Loess Critical Zone
Recently, most of studies develop C budget models for 
terrestrial ecosystems and investigate the mechanisms 
underlying the dynamics of SOC by the indoor and field 
experiments [19, 58]. However, the complex interactions 
among C pools and the scarcity of long-term, site-specific 
data limit the measurements of SOC. Consequently, the 
mutual interaction mechanisms among the various SOC 
pools in the LCZ are not yet fully elucidated. The contri-
bution of soil microbial residues to SOC may have been 
significantly underestimated [89]. Most of terrestrial 

Fig. 8  Conceptual representation of SOC persistence framework in the Loess Critical Zone. Arrows in top and bottom panel are color-coded 
according to potential controls. We hypothesize (right panel) that C input limits soil C cycling when plant photosynthesis is constrained relatively 
more than microbial activities. In these ecosystems, microorganisms process the small available plant C inputs, resulting in low soil C stocks 
with relatively high mineral-associated organic C (MAOC) accumulation controlled by the availability of soil minerals for stabilization of microbial 
products. C input-limited ecosystems are expected to have decoupled C cycling. We also hypothesize (left panel) C output limitation to control 
soil C cycling in systems where microorganisms are more inhibited than plants. C-output limited systems would be characterized by higher POC 
relative to MAOC. Further, we hypothesize (central panel) that balanced plant C inputs vs microbial C outputs will result in soils having more equal 
shares of POC and MAOC. Further, we expect climate changes and human activities to be the main driver of C input- and C output-limited systems, 
while ecosystem traits emerging from the interaction of plant, microbial, and soil traits to be significant drivers of soil C dynamics in ecosystems 
with more balanced inputs and outputs. Finally, we hypothesize (bottom panel) that subsoil are input-limited and their SOC dynamics are largely 
controlled by soil traits, including mineral properties
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ecosystem models in domestic and international research 
have overlooked or rarely considered microbial effects 
[118–121]. However, the development of microbial mod-
els provides an opportunity to integrate them with eco-
system models [122–124]. Recent advancements have 
explicitly incorporated the role of microorganisms as 
decomposers in simulating SOC decomposition [88, 98]. 
These models separate microbial biomass C from extra-
cellular enzymes and analyze their independence, inte-
grating enzyme-driven dynamics of SOC [88].

The microbial residues play a direct role in contribut-
ing to the stable C pool in the soil [93]. Traditional mod-
els for SOC decomposition often utilize first-order decay 
kinetics equations, neglecting the role of microorgan-
isms [93, 98]. However, in recent years, several models 
have employed Michaelis–Menten equations to describe 
SOC decomposition, such as CON (Conventional 
Model), GER (German), and MEND (Microbial Enzyme-
mediated Decomposition). These models consider the 
microbial biomass C pool and have shown better perfor-
mance compared to first-order kinetics models [88, 93]. 
The formation of stable soil C pools through microbial 
metabolites and residues is critical in SOC decomposi-
tion process [93]. Nevertheless, these models do not treat 

the microbial residue C pool as a separate entity. Recently 
developed SOC-microbial decomposition models pro-
vide a solid theoretical foundation and can be applied 
to the C cycling model in the Loess Plateau [7, 29, 95]. 
For example, increase microbial residue C pool to the 
first-order kinetics model and Michaelis–Menten model 
(Fig.  9). Fan et  al. [74] established two models named 
Michaelis–Menten Necromass Decomposition (MIND) 
and First-order Necromass Decomposition (FOND), to 
simulate the microbial residue C pool. These models were 
validated using a 13C decomposition experiment, demon-
strating their accuracy and effectiveness. The Michaelis–
Menten model exhibited superior precision compared to 
the first-order kinetics model. Based on these findings, it 
was estimated that the microbial residue C pool accounts 
for 10%-27% of the total organic C in various global eco-
systems [8, 98]. Further, soil microbial residues are 40 
times greater than the living microbial biomass, and they 
contribute 25%-40% to the SOC pool [8]. Therefore, it is 
essential to incorporate the microbial residue C pool into 
the SOC model of the Loess Plateau. This integration can 
improve the simulation accuracy of SOC and reduce the 
uncertainties associated with C stock estimation. Fur-
thermore, by comparing with global SOC databases, it 

Fig. 9  Model of C pools model of SOC cycling in the Loess Critical Zone (including microbial biomass poll and residue C pool). Note: There are two 
pathways through which soil organic carbon is formed from plant litter. The first pathway involves the direct sedimentation and coagulation of litter 
C modified by microbial extracellular enzymes into the soil. The second pathway is an indirect transformation where litter carbon is first assimilated 
by soil microorganisms and then synthesized into microbial biomass C. When these microorganisms die, their residues accumulate in the soil, 
contributing to the organic carbon pool. The direction and magnitude of these processes are influenced by environmental factors, as indicated 
by the valve symbols on each arrow. The blue solid line represents the Michaelis–Menten kinetics, which regulates the size and dynamics 
of the microbial biomass C pool. The red solid line arrow represents the pathway when.13C-labeled C in microbial residues is introduced 
into the system (adapted from [74])
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is possible to enhance the model’s predictive capabilities 
effectively.

9 � Perspective
9.1 � Exploring soil C cycling at the long‑ and short scale
The soil C cycling in the LCZ encompasses both short-
term and long-term biogeochemical processes. To gain 
a better understanding of these processes, it is crucial 
to investigate the short-term scale changes in C cycling 
within the LCZ. It is recommended to establish a high-
resolution online monitoring system and a comprehen-
sive database for typical subsystems in the LCZ. This can 
be achieved through surface observations, remote sens-
ing techniques, geographic information technology, and 
advanced automatic monitoring instruments. By this 
way, we can analyze the diurnal and seasonal patterns 
of C transport and investigate their responses to rainfall, 
climate variations, and human activities. In addition, it is 
important to incorporate big data geoscience and global 
C emission pathways, along with other contemporary 
factors. Developing a unified spatiotemporal observation 
and statistical approach will facilitate the study of SOC 
stock and its dynamics in the LCZ.

9.2 � Binding the multi‑process of C and hydrologic process
The SOC cycling in the LCZ is intricately linked to hydro-
logical processes and nutrient cycling. However, due to 
their complex interactions and interdependencies, accu-
rately quantifying the contributions of these processes 
to the C cycling remains challenging. In order to address 
this knowledge gap, it is crucial to conduct comprehen-
sive research in typical small watersheds within the LCZ. 
Future study should focus on soil C flux, turnover, aver-
age retention time, and exchange rates among different C 
pools under different hydrological conditions, climates, 
and human activities. Such studies will help elucidate 
the mechanisms and characteristics of changes in SOC, 
nutrient components, and hydrological processes, as well 
as their primary influencing factors. Furthermore, it is 
important to enhance our understanding of the impacts 
of human activities on SOC migration and transforma-
tion by conducting investigations on the identification 
and tracing of C caused by human activities in the LCZ.

9.3 � Paying attention to the roles of microorganisms in C 
cycling

Advancements in technology, such as third-generation 
sequencing techniques, stable isotopic tracer meth-
ods, DNA-stable isotope probes, and high-throughput 
sequencing, provide the opportunities to investigate 
the mechanisms by which microorganisms decompose 
SOC pool and drive its transformation. In addition, 
metagenomics can provide valuable information on the 

structure and function of soil microbial communities, 
enabling the determination of species types, metabolic 
functions, and their association with C cycling pro-
cesses. In our future study, it is necessary to employ a 
comprehensive approach using techniques from molec-
ular biology, isotopic tracing, and earth system sci-
ence, with a focus on microbiology and soil C cycling 
models. This interdisciplinary approach will enhance 
our understanding of the biogeochemical processes 
involved in soil C cycling and facilitate the evaluation 
of C sequestration potential in the LCZ, ultimately aid-
ing in achieving C-related targets.
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