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Abstract 

Solar energy is the most sustainable alternative to fossil fuels. The production of solar thermochemical fuels from 
water/carbon dioxide not only overcomes the intermittent nature of solar energy, but also allows for flexible trans-
portation and distribution. In this paper, the challenges for solar thermochemical  H2/CO production are reviewed. 
New perspectives and insights to overcome these challenges are presented. For two-step cycles, the main challenges 
are high temperatures, low conversions and the intensive oxygen removal work. Theoretically feasible temperature 
and pressure ranges are needed to develop reactant materials. The fundamental mechanism to reduce the tempera-
ture and the potential to improve the efficiency by minimizing the oxygen removal work need be revealed. Various 
material modification strategies and advanced reactors are proposed to improve the efficiency by reducing the 
temperature and enhancing heat transfer process. But the oxygen removal work required has not been minimized. 
For multi-step cycles, the main challenges are the separation of corrosive acid and insufficient reaction kinetics. For 
the separation of acids, many methods have been proposed. But these methods require extra energy and causes 
undesired side reactions or byproducts. The reaction kinetics have been enhanced by improving catalysts with noble 
materials or complex fabrication methods. Developing novel multi-step cycles using metal oxides, hydroxides and 
carbonates may be promising.

Keywords Solar energy, Thermochemical cycle, Solar fuel, Efficiency

1 Introduction
Renewable energy resources are most promising sustaina-
ble alternatives to the fossil fuels and are attracting grow-
ing attention globally due to increasing climate change 
[46, 189]. Among different kinds of renewable energy, 
e.g., solar, wind, water, tidal, geothermal, biomass, solar 
energy is most abundant and prevalent [24, 115]. The 
incident solar energy on the surface of the Earth is over 

1.3 ×  105 TW, which is roughly four orders of magnitude 
larger than the predicted global energy consumption rate, 
i.e., ~ 16.9 TW in 2013 [163]. Moreover, solar energy is 
attractive with the market and the political stabilization. 
However, the intermittent nature of solar energy limits its 
capability of providing continuous power supply. In order 
to overcome the limitation of intermittence, solar energy 
can be stored in the form of fuel and heat [45, 173]. Solar 
fuel, as a stable chemical form for both short- and long-
term storage, can be transported and distributed flexibly 
(see Fig. 1) [173]. The application of the solar fuel is also 
flexible. Solar  H2 and CO cannot only be used directly as 
the fuel of power sources but also as feedstocks for other 
chemicals including methanol, ammonia and other car-
bon-based fuels [114, 133, 143].
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The process to produce solar fuel can be viewed as a 
chemical reaction with reactants of either  H2O or  CO2. 
Figure 2 shows the reaction process that converts solar 
energy into solar fuel. Sunlight (photochemical), elec-
tricity (photovoltaic), and heat (thermochemical), col-
lected or converted from solar energy, act as the driving 
force for the reaction [170]. Among the methods, the 
photovoltaic has been studied extensively and used as 
an efficiency benchmark for alternative solar-driven 

fuel production [132]. While the practical photovol-
taic efficiency is impressive, the solar thermochemi-
cal pathway using concentrating solar power exhibits a 
higher theoretical efficiency potential [127, 175, 191]. 
The higher efficiency potential stems from the fact that 
more portions of solar resource can be converted to heat 
an endothermic chemical reaction [175]. Recently, pho-
tothermocatalysis is also interesting due to the combi-
nation effects on the electronic structure of the catalyst 

Fig. 1 Flexible paths by introducing solar fuel in the solar energy utilization

Fig. 2 Reaction process to convert solar energy into solar fuel
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and the adsorption state of the reaction species in the 
catalytic process [119, 203]. However, the operating con-
ditions, i.e., reaction temperature, solar irradiation and 
wavelengths of different catalytic system, are difficult to 
be adjusted for a desired performance.

Numerous thermochemical cycles have been inves-
tigated to produce  H2 or CO, which can be categorized 
into two-step and multi-step cycles based on the num-
ber of steps. The reaction temperature of the two-step 
cycle is higher than that of the multi-step cycle. With 
several decades of research and development, the solar 
thermochemical fuel production technology still has not 
been commercially viable. There are two limits, i.e., low 
efficiency and high cost [54]. Although using full solar 
spectrum is very promising with a high theoretical con-
version efficiency (over 20%) [108], while the state-of-
the-art efficiency of the practical solar thermochemical 
cycle is limited ~ 5% [129]. The cost of solar fuel pro-
duction system is associated with feedstocks, the main 
components of systems, and the balance of system (BoS) 
expenses, operating costs, and solar energy conver-
sion efficiency. Currently, the estimated levelized cost 
of hydrogen of the solar thermochemical cycle varies 
between 3 and 15 $/kg  H2 [153, 177], while commercial 
steam methane reforming (SMR) and coal gasification 
(CG) are much more cost-effective with a LCOH of 
1.93 − 2.26 $/kg  H2 and 2.24 − 2.68 $/kg  H2, respectively 
[148]. In order to breakthrough these limits, a compre-
hensive review on solar thermochemical fuel  (H2/CO) 
production is necessary. In this review, solar thermo-
chemical cycles, including two-step cycle and multi-step 
cycle, are reviewed from reactions to reactors, as well 
as the system. The specific technical challenges in solar 
thermochemical cycles are revealed and discussed, and 
thermodynamically favorable ways of improving solar 
thermochemical systems are discussed.

2  Solar concentrators
Solar concentrators are the prerequisite of the solar ther-
mochemical cycle. Categorized by the type, there are four 
primary configurations, i.e., Parabolic Trough Collector 
(PTC), Linear Fresnel Reflector (LFR), Parabolic Dish 
Systems (PDS) and Solar Power Tower (SPT). Figure  3 
shows the schematics and corresponding pictures of the 
four configurations [198, 204].

As shown in Fig.  3, the Parabolic Trough Collec-
tor (PTC) has parabolic reflector focusing sunlight to 
the absorber which is mounted in the focal line of the 
parabola [89]. The Linear Fresnel Reflector (LFR) has 
long rows of flat or slightly curved mirrors to reflect the 
sunlight onto a downward facing linear receiver [206]. 
The Parabolic Dish Collector (PDC) concentrates the 
sunlight at a focal point mounted above the center of a 

parabolic-shaped dish [21]. The PDC including the dish 
and receiver must track the sun on a two-axis tracking 
system to maintain light convergence at its focal point 
[22]. The Solar Power Tower (SPT) has a field of helio-
stats reflecting and concentrating the sunlight onto a 
central receiver placed in the top of a fixed tower. Here, 
heliostats are flat or slightly concave mirrors tracking the 
sun during the day. Due to the different mechanisms, the 
four configurations have different operating temperature 
ranges, concentrations, and costs. Table 1 lists the prop-
erties of the four configurations [22].

As listed in the Table 1, SPT and PDC have relatively 
higher concentration ratios. That is because both SPT 
and PDC are point-focus systems, which can achieve 
higher concentration ratios with complex and expensive 
two-axis solar tracking [198]. On the other hand, PTC 
and LFR are line-focus systems that have lower concen-
tration ratios with simpler, less expensive one-axis solar 
tracking [206]. Since the operating temperature is deter-
mined by the concentration, SPT and PDC can supply 
the heat required for high-temperature thermochemical 
cycles (> 1000  K). In addition, SPT is anticipated to be 
feasible for large scale high-temperature solar thermo-
chemical cycles, as SPT is able to achieve an even higher 
operating temperature with a lower cost.

3  Two‑step cycle
The two-step thermochemical cycle mostly operates 
between the oxidized and reduced state of a metal oxide, 
which is expressed as:

Or

The endothermic reduction reaction proceeds at a much 
higher temperature than that for exothermic oxidation. 
Although there are other two-step cycles involving sul-
phates, e.g., MnO/MnSO4, FeO/FeSO4, and CoO/CoSO4 
[4], the sulphates is not popular due to the demand for the 
gaseous products separation of  SO2 and  O2. A large num-
ber of metal oxides have been proposed for thermochemi-
cal cycles. Based on whether the metal oxides remain in 
the condensed state or not, metal oxides can be catego-
rized as the volatile and the non-volatile [127]. Based on 

(1)Reduction : MOX → MOX−δ +
δ

2
O2

(2)
Oxidation : MOX−δ + δH2O → MOX + δH2

(3)MOX−δ + δCO2 → MOX + δCO
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the reduction mechanism, the non-volatile metal oxides 
can be further classified to be the stoichiometric, and 
the non-stoichiometric. The stoichiometric metal oxide 
is reduced to a lower-metal-valence oxide or the respec-
tive metal, while the non-stoichiometric metal oxide is 
reduced partially [131]. The non-stoichiometric metal 
oxides are non-volatile due to a relatively high structural 

and crystalline stability at high temperatures [35, 77, 100, 
131]. Figure 4 shows the category.

3.1  Volatile metal oxide
Most volatile metal oxide cycles including ZnO/Zn [27, 
101, 107],Loutzenhiser, P. G. et al. 2010; [197],  SnO2/SnO 
[1, 5] and  GeO2/GeO [96] all operate at temperatures 

Fig. 3 Four configurations of the CSP technologies [198]
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higher than 1700 K. However, the volatile cycle requires 
a high-temperature separation method, e.g., quench [20, 
59, 146, 149, 159], to prevent products recombination, 
which strongly lowers the conversion and efficiency. The 
majority of the high-grade thermal energy is lost through 
the separation method.

The reduction of ZnO at 1 atm cannot proceed spon-
taneously until the temperature reaches ~ 2300  K (cor-
responding ∆G° = 0) [101]. Although lower pressures 
and/or a carrier gas can shift the thermodynamic equi-
librium to favor the reaction at lower temperatures, the 
reduction reaction temperature is still above ~ 1700  °C 
[27], Loutzenhiser, P. G. et  al. 2010).  SnO2 has a lower 
reduction temperature ~ 1600 °C [1, 5, 158]. The conver-
sion rate of  SnO2 reduction is high and less dependent 
on the quenching rate than that of ZnO because of a nar-
rower gap between reaction temperature and SnO con-
densation temperature [5].  GeO2/GeO cycle [195], also 
referred as KIER 4, has a potential lower reduction tem-
perature 1400–1800  °C. But the research on  GeO2/GeO 
cycle is not enough to verify its practical feasibility.

For the oxidation, there are some challenges related to 
the kinetics of the oxidation. The recent researches for vol-
atile metal oxides mainly focus on modifying the morphol-
ogies to enhance the reaction kinetics and heat transfer of 

the oxidation, e.g., nanoparticles and micro-nanofibers. 
Table 2 lists the specific reactants and morphologies. For 
Zn oxidation, the exothermic oxidation reaction proceeds 
at temperatures lower than 1300  K [107]. The oxidation 
reaction proceeds faster at a high temperature with molten 
zinc [197]. Nonetheless, the ZnO layer formed during oxi-
dation limited the conversion. Further, it requires extra 
work for the system to continuously feed Zn and simulta-
neously remove ZnO layer in the real system. Wegner et al. 
[196] proposed a process for the oxidation, i.e., encom-
passes the formation of Zn nanoparticles followed by their 
in situ hydrolysis for  H2 generation. The high specific sur-
face area of the nanoparticle enhances the reaction kinetics 
and heat/mass transfer, which in turn permits operating at 
short residence times. The continuous operation mode of 
the oxidation can be realized by following the procedure 
of Zn-evaporation,  H2O or  CO2 quenching, and oxidation-
reaction. Although the process improves kinetics with a 
promising conversion, there is still more unsolved issues 
when incorporating the oxidation with the reduction step 
at such a high temperature. Specifically, extra energy is 
required to heat the Zn to 1023  K for nanoparticle for-
mation since the Zn from the reduction step is expected 
to be quenched to a low temperature (298 K). The activa-
tion energies for SnO oxidation is higher than that for Zn, 
which indicates a slower re-oxidation rate for SnO [31]. 
Abanades et  al. [30] investigated and compared the con-
version and the reaction rate of Zn and SnO nanoparticles 
hydrolysis in a fixed-bed. Their result shows that the SnO 
nanoparticle has much higher conversion whereas the Zn 
particle has a much faster reaction rate.

3.2  Non‑volatile metal oxide
In contrast to volatiles, non-volatile cycles inherently 
avoid undesired oxidization of gaseous products between 
the steps. Non-volatile cycles, including  Fe3O4/FeO [32, 

Table 1 Properties including operating temperature, relative 
cost, and concentration ratio of the four configurations [22]

Type Operating 
temperature range 
(°C)

Cost Concentration ratio

SPT 300–2000 High 150–1500

PTC 50–400 Low 15–45

LFR 50–300 Very low 10–40

PDC 150–1500 Very high 100–1000

Fig. 4 Category of the redox metal oxide
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57],  CeO2/Ce2O3 [6] and Perovskite  (ABO3), are limited 
by the high vacuum for lower reduction temperature or 
higher conversion. The recent improvements in non-
volatile cycles with respect to the reactant material are 
reviewed in this section.

The reactions of  Fe3O4/FeO pair are:

Although the cycle is volatile at 1  bar [179, 188], it 
becomes non-volatile at 1700  K under an inert atmos-
phere, e.g., under nitrogen gas flow. However, it requires 
another large energy input, e.g., pumping power for the 
inert sweeping gas. The PROMES group experimen-
tally investigated the performance of the cycle under 
nitrogen gas flow at 0.1  bar with a solar furnace [32]. 
They found that the conversion of the reduction can 
reach 100%, while the oxidation kinetics is limited by 
the coagulation due to alternating fusion and solidifica-
tion of FeO within the cycle. As a result, a granulation is 
needed in the continuous process, even though it is hard 
to be implemented. The mixed solid solutions of  Fe3O4/
FeO and  M3O4/MO (ferrites) can further reduce the 
reduction temperature [102]. Lots of ferrites with lower 
reduction temperatures have been investigated, which 
are listed in Table  3. Based on the theoretical thermo-
dynamic analysis [15], the stabilities of M-ferrite fol-
lows the rank of  Fe3O4 >  CoFe2O4 ∼  NiFe2O4 >  ZnFe2O4. 
Moreover, Fresno et al. [60, 61] experimentally evaluated 
the activity of commercially available ferrites with differ-
ent compositions,  NiFe2O4,  Ni0.5Zn0.5Fe2O4,  ZnFe2O4, 
 Cu0.5Zn0.5Fe2O4 and  CuFe2O4. The net hydrogen pro-
duction and cyclability after the first reduction–oxida-
tion cycle decreases in the order   NiF e2 O4 >  Ni0.5Zn0.5
Fe2O4 >  ZnFe2O4 >  Cu0.5Zn0.5Fe2O4 >  CuFe2O4. Among 
the ferrites in Table  3,  Ni0.5Mn0.5Fe2O4 has the lowest 

(4)Fe3O4 → 3FeO+
1

2
O2

(5)H2O+ 3FeO → Fe3O4 +H2

reduction temperature, while the cyclability is unfeasible. 
 NiFe2O4/m-ZrO2 has the highest hydrogen production 
rate [60, 61, 79].  ZnFe2O4 is least desirable because of the 
high temperature for the reduction.

CeO2/Ce2O3 was originally proposed as a stoichiomet-
ric redox pair under the conditions of 1 atm and 2300 K. 
Utilizing the non-stoichiometric reduction via the oxy-
gen-vacancies mechanism,  CeO2−δ can reach a δ value of 
0.10 at 1773 K and pO2 of  10−6 atm [37, 147]. The reduced 
 CeO2−δ can be oxidized by  H2O or  CO2 to produce  H2 
and CO [29, 144, 145]:

The reduction temperature is lower than the melting 
temperature of  CeO2, which not only alleviates the high 
temperature requirement but also avoids the impact of 
the sublimation. Figure  5 shows the non-stoichiometry 
of  CeO2 at different temperatures and partial pressures 
of oxygen by the thermogravimetric analysis [127]. In 
Fig.  5, the oxygen non-stoichiometry increases with the 
decrease of PO2. The high temperature and low non-
stoichiometry are main challenges for the  CeO2 cycle. 
Modifying  CeO2 by adding  MOx (M = Mn, Fe, Ni, Cu) 
[90], Kaneko, Hiroshi et al. 2007; Kaneko, H. et al. 2007), 
developing mixed solid solution [164], and morphologi-
cal modifications [85, 152] have been proposed. The pro-
duction rate has been increased, while the cyclability has 
not been verified. Adding transition metal ions including 
Zr [97] and Sm [36] into ceria is attractive with promis-
ing conversions and cyclability.

Perovskite  (ABO3) is attractive due to the high struc-
tural and crystalline stability at high temperatures [77]. 
The reactions can be expressed as:

(6)CeO2−δOX → CeO2−δred +
δred − δOX

2
O2

(7)
CeO2−�red

+

(

�red − �ox

)

H2O → CeO2−�ox +

(

�red − �ox

)

H2

Table 2 Specific reactants and corresponding morphologies for 
the oxidation step of the volatile cycles

Reactants Formation Operating 
temperature, 
T (K)

Zn Nanoparticles [196] 1023

Zn Nanoparticle-dispersed carbon 
micro-nanofibers [23]

873

SnO Nanoparticles [30, 31] -

SnO Nanopowders [2] 1073

Table 3 Ferrites investigated for thermochemical cycles

Ferrites Reduction 
temperature 
(K)

Ni0.5Mn0.5Fe2O4 [48, 186] 1073

ZnFe2O4 [90–92, 182, 184, 185, 187] 1773

MFe2O4 (M = Ni or CO) [10, 43] 1673

AlaCubFecO4 (3a + b + 3c = 8) [95] 1673

Fe3O4/m-ZrO2 [71] 1673

MxFe3−xO4/m-ZrO2 (M = Ni or CO) [102, 104] 1673

Fe3O4/YSZ [70, 86, 101, 103, 105] 1673
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ABO3 is known for a higher reduction extent than other 
cycles at relatively low temperatures. But it has a poorer 
oxidation performance [41, 53]. More than 100 perovskites 
are identified as thermodynamically favorable for the cycle 
based on the high-throughput density functional theory 
(HT-DFT) study [49]. Many experimental researches have 
been performed to investigate different kinds of perovs-
kites, which are summarized and listed in Table 4.

Recently, high entropy oxides (HEOs) have attracted 
significant interest due to their unique properties and 
designable structures. HEOs are referred to as a new 

(8)

1

δred − δox
ABO3−δox →

1

δred − δox
ABO3−δred +

1

2
O2

(9)
1

�red − �ox

ABO3−�red
+H2O →

1

�red − �ox

ABO3−�ox
+H2

group of crystalline solid solution materials formed from 
five or more ceramic elements with an equimolar ratio 
[13]. The thermochemical performance of the metal 
oxides can be improved by the dual actions of oxygen 
vacancies [13, 122]. The first action of oxygen vacancy is 
for adsorption and dissociation of  H2O/CO2 molecules. 
The second action is to anchor the doped ions by creating 
extra accommodation sites and strong adsorption [192]. 
In order to overcome the problem of the reduction/oxi-
dation reactions time imbalance, Gao et  al. [64] used 
short-term microwave irradiation to increase the oxy-
gen vacancy of the (FeMgCoNi)O1.2@SiC. The maximum 
hydrogen yield of 122 mL/ g at 700 W can be obtained. 
Later, they enlarged the Metal–Oxygen bond length of 
the spinel phase of  FeMgCoNiOx and produced more 
oxygen vacancies by introducing  Zr4+ [65]. A  H2 yield of 
4.84  mmol/g can be obtained with  FeMgCoNiOx/Zr0.6. 
But the cyclability of most HEOs are still not verified.

Fig. 5 Non-stoichiometry of  CeO2 at different temperatures and partial pressures of oxygen [127, 207]

Table 4 Perovskites investigated for thermochemical cycles

Perovskites Characteristics Operating 
temperature, 
T (K)

La1−xSrxMO3 [40, 52, 134, 201] Doping Sr enhances conversion but impacts the kinetics of oxidation 1323

La1−xCaxMO3 [42, 193] Doping Ca is better than doping Sr in enhancing the conversion 1273–1673

La0.6Sr0.4Mn1−xAlxO3 [39, 77, 130, 166] Doping Mn and Sr enhances the conversion and lowers the reduction tempera-
ture

1323–1673
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3.3  Reactors
The solar reactor (receiver), proceeds the reaction driven 
by solar energy, is very important. In this review, solar reac-
tors are classified to be stationary-bed, moving-bed and 
fluidized-bed reactors based on the method to load the 
reactant. Figure 6 shows the schematics of these reactors.

3.3.1  Stationary‑bed reactors
The stationary-bed reactor simply packs reactants for the 
reactor bed. In contrast to the other two kinds of reac-
tors, the stationary-bed reactor does not need energy for 
the movement. But its heat and mass transfer processes 
are generally insufficient. Moreover, heat recuperation of 
the high-temperature reduction cannot be applied eas-
ily. In this section, some typical stationary-bed reactors 
including ceramic honeycomb reactor [8, 161], porous 
monolithic reactor [35] and indirectly irradiated reactor 
[118, 128] are reviewed.

Ceramic honeycomb reactors have been developed by 
loading solid reactant powders on the multi-channeled 
ceramic honeycomb. Agrafiotis and Roeb et al. [66, 161] 

developed a volumetric solar reactor equipped with a 
multi-channeled ceramic honeycomb receiver coated 
with an active ferrite powder. Figure  7 shows a ceramic 
honeycomb reactor, which is subjected directly to con-
centrated solar irradiation. The reactor allows the quasi-
continuous removal of the evolved oxygen and hydrogen 
gases by alternate between steam flow and inert gas flow. 
However, it is difficult to adjust the appropriate alternat-
ing time with different scales and solar radiation. Later, 
the DLR group [159] developed another honeycomb 
reactor consisting of two separate chambers, which real-
ized the quasi-continuous operating and continuous 
supply of hydrogen. Further, the reactor is scaled up to 
100  kW and installed at the SSPS solar power plant in 
Spain for quasi-continuous hydrogen production [28]. 
Table 5 lists the research progress in improving the hon-
eycomb reactor. For the honeycomb reactor, the degrada-
tion of the redox material coated on a support structure 
is a challenge that has not been overcome.

The porous reactor can solve the problems of unde-
sired products from the metal oxides and ceramic [165], 

Fig. 6 The general schematics of (a) stationary-bed reactor [159], (b) moving-bed reactor [51] and (c) fluidized-bed reactor [83]
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which packs the reactants as a fixed bed. Figure 8 shows a 
porous monolithic reactor, which consists of a thermally 
insulated cavity receiver containing a porous monolithic 
ceria cylinder [35]. The porous monolithic reactor can 
be further improved with a reticulated porous ceramic 
(RPC) foams made of pure solid reactants, e.g.,  CeO2 
[63]. Compared with the porous monolithic reactor, the 
RPC foam reactor can be more advanced with volumetric 
radiative absorption and enhanced reaction rates by opti-
mizing the pore size and mass loading [14, 19, 63].

In contrast to the directly irradiated reactors, indirectly 
irradiated reactors eliminate a transparent window by 
enclosing reactants in opaque absorbing tubes or a sepa-
rate cavity (in Fig. 9 [11]). Inside the cavity, rays bounce 
around multiple times for a high optical efficiency (a low 
solar reflection), e.g., rays would not bounce out of the 
cavity with an ideal design [172]. But a large temperature 
difference can occur within the indirectly irradiated reac-
tors, affecting reaction rates and limiting the utilization 
of reactive particles [17, 76].

3.3.2  Moving‑bed reactors
Moving-bed reactors are rotational, in which the rota-
tion can be applied to the whole packed bed (Figs. 10 and 
11) [80],Kaneko, Hiroshi et  al. 2007; [171] and reactive 

particles (Fig. 12) [50, 51, 176]. A continuous evolution of 
the fuel can be achieved by rotating between the reduc-
tion and oxidation. In addition, the reactor enables solid–
solid heat recovery in an effective opposing arrangement 
[44, 110, 111]. However, the mass of the reactant 
mounted on the support is limited and only the reactant 
coated on a limited surface area can react effectively. It is 
hard to adjust the kinetics of both reduction and hydroly-
sis with rotation. The reactant mass, solar radiation and 
rotation speed have to be adjusted for different scales and 
locations [34]. Minimizing the power required for the 
rotation is another challenge that need to be overcome.

3.3.3  Fluidized‑bed Reactors
Fluidized-bed reactors, also known as aerosol reactors, 
are realized by flowing a carrier gas through the reactor 
to create the internal circulation. In the reactor, reaction 
particles did not sinter or coagulate throughout succes-
sive reactions. Fluidized-bed reactors commonly have 
better heat and mass transfer process and smaller risk of 
severe thermal shocks [141, 150]. However, large inert 
gas usage consumes lots of pumping power, which lowers 
the overall efficiency. In this study, fluidized reactors are 
classified as the upward-fed reactor, gravity-fed reactor, 
and rotational aerosol reactor.

Fig. 7 Schematics of the honeycomb receiver [8]

Table 5 Research progress in improving honeycomb reactors

Improvements Methods

Continuous operation [159, 160] Using two separate chambers with fixed honeycomb absorbers in 
both chambers built

Reducing thermal loss [84, 98] Using a hemispherical absorber shape and a secondary concentrator
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The upward-fed reactor absorbs solar radiation 
through the top of the bed (In Fig.  13) [69, 72, 73]. 
The inert gas and the oxidation reactant gas including 
 H2O [169] and  CO2  [123] are fed consecutively. The 
recent researches on the upward-fed single bed reac-
tor focus on enhancing the conversion by optimizing 

the reactant particle size and gas flow rate [199]. Using 
the dual-reactor configuration in Fig. 14 [83], the heat 
of the inert gas can be recuperated at some extent. Still, 
the overall energy efficiency is low even with the heat 
recuperation. Minimizing the pumping power is a big 
challenge.

Fig. 8 Solar porous monolithic reactor [35]

Fig. 9 Packed-bed solar reactor [11]
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The gravity-fed reactor can significantly decrease the 
pumping power by using gravity. In a gravity-fed solar-ther-
mochemical reactor (GRAFSTR) [106] shown in Fig.  15, 
gravity-driven reactive flows on a sloped surface by feed-
ing reactants continuously from the top with an aerosolized 

vortex flow. However, agglomerated particles may block 
the outlet and affect the conversion. To resolve the issue, 
proper operation methods are needed to prevent outlet 
blockages. Nevertheless, the economic viability and practi-
cal applicability of the reactor have not been validated.

Fig. 10 A rotary-type solar reactor using CeO2–MOx for solar hydrogen production [93]

Fig. 11 A 4.4 kW solar reactor capable of continuous CO production and gas-phase heat recuperation [80]
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Rotational aerosol reactors require the high-tempera-
ture resistant rotational assembly. Figure 16 shows a typi-
cal rotational aerosol reactor, which uses a crew feeder for 
the rotation [3]. The reactant powder can be fed continu-
ously in the reactor, while the reduced gaseous products 
are swept out of the reactor. The reactor with a rotating 
chamber receiver and an open window is more promising 
as it has been scaled up from 10 kW [81] to 100 kW [107]. 
The reactor in Fig. 17 has a dynamic feeder that extends 
and contracts within the cavity, enabling even spreading of 
solid reactants along the entire cavity wall. The efficiency 
of the reactor is unfeasible due to the energy consumption 
from the rotational assembly and the carrier gas.

4  Multi‑step cycle
The maximum operating temperature of thermochemi-
cal cycles decreases with reaction steps increasing. The 
multi-step cycle has lower operating temperatures at 
the expenses of more complex reactions and separa-
tion processes. The majority of multi-step cycles involve 
acids, which require the system to be high temperature 
corrosion resistant [162, 183]. Electro-chemical meth-
ods are also used in some multi-step cycles to simplify 
process and enhance conversion. There are different 
kinds of multi-step cycles with the operating tempera-
ture below 1100  K, among which the sulphur-iodine 
(S-I) cycle, the Westinghouse cycle and the copper-
chlorine (Cu-Cl) cycle are relatively mature. The com-
parisons of theses multi-step thermochemical cycles are 
listed in Table 6.

4.1  Sulphur‑Iodine cycle
The S-I cycle [47, 202] consists of three reactions:

Sulfuric acid decomposition: 

Bunsen reaction:

Hydroiodic acid decomposition:

4.1.1  Sulfuric acid decomposition
The endothermic sulfuric acid decomposition proceeds 
at a temperature over 1050 K. There are three sub-steps 
for the sulfuric acid decomposition:

1) H2SO4 solution is vaporized to concentrated sulfuric 
acid;

2) Concentrated sulfuric acid decomposes into  SO3 and 
 H2O;

3) The unstable  SO3 decomposes into  SO2 and  O2.

For the sulfuric acid decomposition process, the chal-
lenges are the poor catalyst activity, inefficient reactor, 
and insufficient product separation. The poor catalyst 
activity affects the production rate of  SO3 decomposi-
tion. Many studies try to improve the catalyst, including 
Pt-based catalysts [68, 142], complex metal oxides [180] 
and transition metal oxides [99, 205]. Compared to the 
other two kinds, complex metal oxides have better activi-
ties [180]. However, the techno-economic feasibility of 

(10)H2SO4(aq) → SO2 +H2O+ 0.5O2

(11)SO2 + I2 + 2H2O → H2SO4 + 2HI

(12)2HI → I2 +H2

Fig. 12 Moving packed particle bed reactor [51]
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using complex metal oxides in large scale systems has not 
been verified considering the complexity and expenses in 
manufacturing. Besides catalysts, the reactor is also criti-
cal for  SO3 decomposition. The reactor using moving cat-
alyst particles as the solar energy absorption media has 
been developed (Fig. 18) [9] to improve the heat transfer 
process. The extra heat, after the reaction, can be used to 
evaporate sulfuric acid into  SO3 and steam. Such catalytic 
systems exhibited excellent high temperature mechanical 
properties [74]. Nonetheless, moving catalyst particles 
require extra work.

The separation of of  SO2 and  O2 is another challenge. 
For the separation, yttria-stabilized zirconia (YSZ) mem-
brane has been proposed, which increases the decom-
position yield from 62.3% to 90.1% [18]. But the energy 
required to make the partial pressure difference between 
the membrane has not been investigated. Ionic liquids as 
absorbents for  SO2, e.g., 1-Butyl-3-methylimidazolium 

chloride ([BMIm][Cl]) and 1-Butyl-3-methylimidazolium 
acetate ([BMIm][OAc]), have also been proposed [112]. 
Hydroxyl ammonium ionic liquids [154] and Caprolac-
tam tetrabutyl ammonium bromide ([CPL][TBAB]) [121] 
exhibited better potential for the separation process. 
Nonetheless, the entire system become more complex 
and energy consuming.

4.1.2  Bunsen reaction
The Bunsen reaction is an exothermic reaction that con-
ventionally operates at 400  K. Excessive  H2O is added 
practically to make the reaction thermodynamically feasi-
ble. It is difficult to separate HI and  H2SO4 mixed solution 
since the distillation causes reverse Bunsen reaction. HI 
concentration of HI-H2O solution is close to HI and  H2O 
azeotrope, which requires excess heat to vaporize  H2O 
from HI. Commonly, extra  I2 is added to make a sponta-
neous separation of the reaction products by gravity [67]:

(13)xI2+SO2+ y+ 2 H2O → H2SO4 + y− z H2O light
+[2HI+ (x − 1)I2 + zH2O] heavy

Fig. 13 Solar thermochemical reactor with fluidized beds [69]
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The mixture of HI/I2/H2O solution and  H2SO4/H2O 
solution can be separated by a liquid–liquid phase sepa-
rator. The pure concentrated HI vapor can be obtained 
through distilling HI/I2/H2O solution and  H2SO4/H2O 
solution is concentrated for the next cycle. This method 
introduces several new problems:

1) The assistant distillation and purification for pure HI 
vapor and concentrated  H2SO4 significantly reduce 
the efficiency and increase the cost.

2) Purification of HI from  HIx solution needs a great 
amount of energy to overcome HI-H2O azeotrope.

3) Some undesired side reactions may occur:

In order to overcome the above challenges,  PbSO4 has 
been added in the mixture of  H2SO4 and HI solution to 
trigger the nature phase separation [167]. The corre-
sponding chemical reaction steps are given as follows: 

(14)H2SO4 + 8HI → H2S+ 4I2 + 4H2O

(15)H2SO4 + 6HI → S+ 3I2 + 4H2O

(16)
PbSO4(s)+ 2HI(aq)

293−393K
−−−−−−→ PbI2(s)+H2SO4(aq)

Fig. 14 Solar cavity receiver consisting of dual fluidized bed reactors [83]

Fig. 15 Gravity-fed solar-thermochemical reactor (GRAFSTR) [106]
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(17)PbI2(s) + 2HPO4(aq)
693−723K
����������������������������������→ 2HI

(

g
)

+ Pb
(

PO3

)

2
(s)

(18)Pb(PO3)2(s)+H2SO4(aq)+ 2H2O(1)
293−353K
−−−−−−→ PbSO4 (s) + 2H3PO4(aq)

H2SO4 (aq) and  PbI2 (s) can be separated easily. Simi-
larly, high concentrations of HI(g) can be obtained by 
allowing  HPO4 to react with  PbI2. The intermediates of 
 PbSO4 and  PbI2 are recycled. Energy consumption for 
distilling  H2SO4 solution and purifying HI is reduced.

Fig. 16 Aerosol reactor with rotation [3]

Fig. 17 Aerosol reactor with rotating assembly [81]

Table 6 Comparison of different multi-step thermochemical cycles

Cycles Advantages Disadvantages

Sulphur-Iodine (S-I) cycle High efficiency and production rate Side reactions and high temperature

Westinghouse cycle Simple reactions Low electrical efficiency

Copper Chlorine (Cu-Cl) cycle Lower temperature Side reactions and low electrical efficiency
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4.1.3  Hydroiodic acid decomposition
The endothermic hydroiodic acid decomposition can be 
ideally driven by the heat recuperated from sulfuric acid 
decomposition. As the mixture  (HIx) of HI,  I2 and  H2O are 
due to the excessive  H2O and  I2 in the Bunsen reaction, 
the actual hydroiodic acid decomposition step becomes: 

Hydroiodic acid decomposition reaction requires cat-
alysts. There are much research progress made in the 

(19)2HIx → xI2 +H2

catalyst to improve the reaction kinetics, including Pt 
based catalyst [78, 109, 194], active carbon [117, 151] and 
metal oxides supported by Pt and Ni [33]. It was reported 
that Pt-25%Ir/ C is a promising candidate for high activ-
ity and stability [78].

4.2  Westinghouse cycle
The Westinghouse cycle [25], namely the hybrid sulfur 
cycle [116, 190], avoids the Bunsen reaction and hydroi-
odic acid decomposition by introducing an electro-
chemical reaction. The process become much simpler. 

Fig. 18 Centrifugal particle receiver using particles with catalytic function [9]
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However, it brings many challenges for the electrolysis. 
The cycle consists of the following reactions:

Sulfuric acid decomposition:

Aqueous sulfur dioxide electrolysis:

High temperatures contribute to enhancing reaction 
kinetics and decreasing the concentration of  SO2 [125], 
while high pressures increase the sulfur dioxide solubil-
ity [126]. The electrolysis step can be driven by solar PV 
power (see Fig. 19) [82] or solar thermal power cycle (see 
Fig. 20) [74]. For the electrolysis, the practical electrical 
power, due to the high cell potential, can be larger than 
that of the water electrolysis [75, 87, 178], which makes 
the cycle less efficient than the direct water electrolysis. 
The cell potential increases due to the complex and irre-
versible mechanisms for  SO2 oxidation and the increased 
membrane resistance in the presence of concentrated 
sulfuric acid [88, 156]. Consequently, developing more 
active catalysts and more conductive membranes are 
meaningful. For the catalyst, the catalyzed carbon is 

(20)H2SO4(aq) → SO2 +H2O+ 0.5O2

(21)
2H2O+ SO2

electrolysis
−−−−−−→ H2SO+H2 T = 353K

considered as the best support [16]. Platinum (Pt) and 
Palladium (Pd) are found to have the high activity. Com-
pared with the Pd/C, Pt/C had better catalytic activity 
[38]. In addition, gold is more active than Pt [155].

4.3  Copper chlorine cycle
Copper chlorine cycle does not only operate at a much 
lower temperature (maximum 530 °C [56]) but demands 
a low voltage for the electrochemical step [12, 66, 136, 
158, 174, 195]. Based on the theoretical analysis [168], 
the solar copper chlorine cycle with the heat recover 
achieved the thermal efficiency of 49.84% and the exergy 
efficiency of 58.23%. In addition, the manufacturing 
materials are not required to be high-temperature corro-
sion-resistant [140]. There are four steps within the cycle 
[113, 139, 157, 200].

Hydrogen production step: 

Evaporation step:
(22)

2CuCl (aq) + 2HCl (aq)
<100◦C

������������������������������������→

electrolysis
H2

(

g
)

+ 2CuCl (aq)

(23)CuCl2 (aq)
<100◦C
−−−−→ CuCl2 (s)

Fig. 19 Schematic of solar HyS cycle [82]
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Endothermic hydrolysis step: 

Oxygen production/ Thermolysis step: 

The main challenges for the copper chlorine cycle are 
the membrane of the electrolyzer [136, 139], the evapora-
tion rate [136], and the side reaction [138]. For the mem-
brane, the crossover of copper ion cannot be prevented 
by Nafion [181]. The physically modified Nafion, polymer 
matrix with inter-winding Nafion chains, the polysulfone 
membranes based on Radel NT5500, and the porous pol-
yethylene membrane have been proved to be with higher 
copper diffusion and lower permeability [137, 140]. For 
the evaporation, spray drying and crystallization are two 
commonly-used methods for the evaporation. Spray dry-
ing is with a high evaporative drying rate [135] while the 
crystallization can be scaled up easily [140]. For unde-
sired side reactions, i.e.,  CuCl2(s) dissociates into CuCl(s) 
and  Cl2 (g), excess steam is used to enhance conversion of 

(24)
2CuCl2 (s)+H2O (g)

400◦C
−−−→ Cu2 OC12(s)+ 2HC1

(

g
)

(25)Cu2 OCl2(2)
500◦C
−−−→ 2CuCl (s) +

1
2O2

(

g
)

 CuCl2 (s) [58]. But the excessive reactants require extra 
energy, which significantly decreases the efficiency [55].

5  Challenges of solar thermochemical cycles
As discussed above, there have been many research 
achievements for solar fuel production with thermo-
chemical cycles. There are several challenges need to be 
addressed.

For reactants of two-step cycles, the material modi-
fication is attractive to improve the redox performance 
e.g., lower reduction temperature and higher conversion. 
With the development of the computational implements 
on the first-principle theory and high-throughput density 
functional theory, more material screening processes are 
provided. However, there are not much convincing guid-
ance for modification strategies. Although the research 
on experimentally testing and improving the existing per-
ovskites is ongoing, it takes much more efforts and time 
than the theoretical method to reach a conclusion. For 
the volatile metal oxides, there have been theoretical fea-
sible reduction temperature boundaries [7, 62]. But the 
theoretical feasible temperature boundary of the attrac-
tive non-volatile metal oxides is rarely defined. For non-
volatile metal oxides, the low oxygen partial pressure 
maintained by inert gas sweeping and vacuum pumping 

Fig. 20 Solar plant with thermal energy storage coupled to a HyS cycle [74]
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can effectively decrease the reduction temperature. But 
the extra pumping power and sweeping gas preheating 
are significant, which largely impacts the overall effi-
ciency. Therefore, the fundamental mechanism to reduce 
the temperature and the potential to improve the effi-
ciency by minimizing the oxygen removal work have not 
been revealed clearly.

For the reactor of two-step cycles, the stationary bed, 
moving bed, and fluidized bed all have pros and cons. 
The stationary bed did not require parts and energy 
for the movement. However, heat recuperation and the 
heat/mass transfer process are insufficient. Although 
porous foam has been used to enhance the heat/mass 
transfer, the scaling up capacity and techno-economic 
feasibility have not been verified. For the moving bed, 
the heat recovery can be employed. However, the reac-
tant mass, solar radiation and movements need be 
adjusted for different scales. Moreover, the power 
required for the rotation impacts the efficiency. For the 
fluidized bed (aerosol), the heat and mass transfer pro-
cesses are enhanced. The 100-kW aerosol reactor has 
been developed and demonstrated. But the preheating 
and pumping power required for the inert carrier gas 
lowers the efficiency. Considering the scale-up capabil-
ity, the stationary bed and fluidized bed are promising. 
The stationary bed need improve the heat/mass transfer 
processes and heat recuperation. The fluidized bed need 
minimize the extra energy consumption for the inert 
carrier gas.

For multi-step cycles, the separation of liquid acids is 
technically difficult. Introducing intermediate reactants 
and adding reactants have been proposed. But these 
methods may cause extra energy losses and undesired 
side reactions. In addition, reactions kinetics need be 
improved. Many advanced catalysts have been proposed. 
Their techno-economical feasibilities have rarely been 
validated. Using electro-chemical reactions can simplify 
the process and avoid the complicated acid separation. 
However, the electro-chemical reactions may require 
noble material for the membrane and catalyst. In addi-
tion, there is a gap between the theoretical and practical 
cell efficiency, which needs to be further minimized for 

a high overall efficiency of the cycle. The comparison of 
major challenges for different cycles are summarized and 
listed in Table 7.

6  Outlook
Thermochemical cycles offer valuable options for fuel 
production with solar energy. The challenges of both two-
step and multi-step cycles have been discussed in sections 
above. Here, new perspectives concerning from reactions 
to reactors and accessary separation processes are pro-
vided, in order to address the challenges and improve the 
efficiency.

For reactant candidates of two-step cycles, theoreti-
cal method is necessary to further select the existing 
metal oxides and develop novel metal oxides. Assum-
ing that the reduction and oxidation are at equilibrium 
(ΔGred = ΔGox = 0), the relations of reaction tempera-
tures, reaction enthalpy and reaction entropy can be 
quantified for existed metal oxides. As a result, theo-
retical temperature limit (the lowest reduction tempera-
ture) can be evaluated. Thermodynamically favorable 
temperature and pressure ranges can be obtained. With 
the DFT calculations, the relationships between the 
thermodynamic parameters (enthalpy and entropy) and 
the microscopic electronic structure of metal oxides can 
be analyzed. The relationships can provide guidance 
to develop novel metal oxides. Considering the practi-
cal reaction conditions, i.e., reactions are not in chemi-
cal equilibrium, the fundamental mechanism to reduce 
the temperature and the potential to improve the effi-
ciency by minimizing the oxygen removal work need 
be revealed. As the pump efficiency is low in practice, 
the corresponding exergy loss should never be ignored, 
which strongly affect the efficiency. Although the sen-
sible heat of the sweeping gas between the reduction 
and oxidation steps can be theoretically recovered, the 
exergy loss of the pump cannot be recovered. Devel-
oping novel efficient methods to keep a high vacuum 
is very attractive. Even though other methods includ-
ing electron-conducting (MIEC) membranes [52] and 
thermochemical oxygen pump [26, 120] have been pro-
posed, significant energy requirement is not avoided. 

Table 7 Comparison of challenges for different thermochemical cycles

Aspects Two‑step Multi‑step

Reaction temperature High (> 1200 K) Moderate (< 1000 K)

Reactants Unsatisfied reaction yield, kinetics and cyclability Corrosive

Endothermic reactor Large re-radiation loss, poor heat and mass transfer limits, and 
expensive high-concentration solar receiver

High-temperature corrosion resistant

Products separation / Separation of acids and gaseous products

System operation Difficult to achieve continuous operation Complex with multiple chemical processes
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Further, the temperature, conversion and vacuum 
should be simultaneously optimized, e.g., the lowest 
temperature or highest conversion may not be optimal. 
The cycles with both moderate temperature and oxygen 
removal work may have the potential to reach a high 
efficiency.

For two-step cycle reactors, the gap between the exper-
imental and theoretical efficiency is large, which is mainly 
caused by the insufficient heat recovery and heat/mass 
transfer processes. For the heat recovery, the theoreti-
cally feasible heat recuperation methods, e.g., solid–solid 
heat recuperation for solid reactants and gas–gas heat 
recuperation for sweeping gas, can hardly be achieved in 
practice. The heat recuperation become more difficult in 
the case of scaling up reactors. Absorbing solar energy 
with a heat transfer fluid and releasing heat for the reduc-
tion away from the solar receiver has the potential to 
improve the heat recovery. In order to enhance the heat/
mass transfer, porous foam stationary bed has been used, 
which in turn increases the pressure drop of the sweep-
ing gas. As a result, the pumping power required become 
larger, which lowers the efficiency. To improve heat 
transfer and reduce pressure drop in the stationary-bed 
reactor, microchannel reactors can be tried. The reac-
tants can be packed as structured micro channel and the 
pressure drop can be kept relatively low.

In terms of multi-step cycles, the separation of acids 
is difficult. Adding extra reactants for the separation 
and reaction spontaneity cause extra energy loss. The 
issue of energy loss has not been systematically analyzed 
or addressed. Introducing electrochemical reaction to 
multi-step cycles helps simplify reactions. But it sacri-
fices high grade electricity. The low practical efficiency of 
the electrical cell limits the overall efficiency of the sys-
tem. Designing novel multi-step cycles is welcome. Ideal 
cycles, with both advantages of low-temperature and 
simpler reactions, are anticipated. The use of automatic 
separation of products and introducing non-corrosive 
solid–gas reactions are feasible to avoid halide mixtures 
and the corresponding separations. Developing multi-
step reactions by replacing the stoichiometric reduction 
of metal oxides seems to be feasible. Hydroxides and car-
bonates can be involved in such solid–gas reactions, e.g., 
replacing water with a better oxidizing compound, such 
as potassium hydroxide, to enhance the oxidation of the 
reduced metal oxide.

7  Conclusions
In this work, the advances of both two-step and multi-
step thermochemical cycles for solar fuels production 
have been reviewed comprehensively. The challenges and 
perspectives concerning fundamental thermodynamics 
of reactants, mechanisms of reactors and performance 

of accessary separation processes are discussed and 
provided.

For two-step cycle reactants, non-volatile metal oxides 
including cerium-based oxides and the perovskite-based 
oxides are more promising. High temperature and low 
conversion at ambient pressure challenge the applica-
tions of non-volatile metal oxides. Theoretically feasible 
temperature and pressure ranges are needed to develop 
reactant materials. Various material modification strat-
egies including doping and mixed solid solutions have 
been proved to be effective for reducing reaction tem-
perature or increasing conversion. But the extra pump-
ing power and sweeping gas preheating are significant, 
which significantly impacts the overall efficiency. The 
fundamental mechanism to reduce the temperature and 
the potential to improve the efficiency by minimizing the 
oxygen removal work need be revealed. The temperature, 
conversion and vacuum should be simultaneously opti-
mized based on the overall efficiency.

With respect to two-step cycle reactors, the station-
ary bed, moving bed and fluidized bed are reviewed. 
The stationary bed did not require energy for the 
movement. But the heat recuperation and heat/mass 
transfer are insufficient. For moving bed reactors, the 
heat recovery can be realized. But the power required 
for the movement impacts the efficiency. For fluid-
ized bed reactors, the heat and mass transfer processes 
are enhanced. But the preheating and pumping power 
required for the inert carrier gas lowers the efficiency. 
To address the issues mentioned, reactors with second-
ary heat transfer fluid and microchannel reactors can 
be tried.

In terms of the multi-step cycle, the operating tem-
perature in multi-step cycles is much lower than two-
step cycles. Currently, the main challenges for multi-step 
cycles are the separation of corrosive acid and insufficient 
reaction kinetics. For the separation of acids, many meth-
ods have been proposed, including electrochemical reac-
tions. These methods require extra energy and causes 
undesired side reactions or byproducts. The reaction 
kinetics have been enhanced by improving catalysts with 
noble materials, e.g., Pt, or complex fabrication meth-
ods. But more research is needed to verify the techno-
economic feasibility for a large-scale system. In addition, 
developing novel multi-step cycles may be promising. 
The stoichiometric reduction of metal oxides can be used 
for reduction, while hydroxides and carbonates can be 
involved in the oxidation.
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