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Abstract 

The large-scale vegetation restoration project on the Loess Plateau increased the ecosystem carbon (C) stocks and 
affected C budget in arid and semi-arid ecosystems. The specific details affecting the C stocks, their distribution, and 
dependence on land use and climate were never presented and generalized. We assessed the effects of climate 
factors and soil properties on ecosystem C stocks through field investigation across the Loess Plateau. The total C 
stocks in the four ecosystems: forestlands [0.36], shrublands [0.24], grasslands [1.18], and farmlands [1.05] was 2.84 Pg 
(1 Pg =  1015 g), among which 30% were stored in topsoil (0–20 cm), 53% in above-ground biomass, and 17% in roots. 
The total ecosystem C density decreased according to the climate from the southeast (warm dry) to the northwest 
(cold moist) of the Loess Plateau. The ecosystem C density decreased with increasing temperature (from 5 to 15 °C), 
but increased with precipitation (from 200 to 700 mm). Variation partitioning analysis and structural equation models 
indicated that ecosystem C density was more explained by climate compared with soil properties. This supports the 
theory and empirical findings that large scale pattern of ecosystem C density is predominantly regulated by climate 
on the Loess Plateau. Our results highlight that grasslands are more predestined to store C compared with the other 
ecosystems, and the C stored in roots is substantial and should be considered when assessing C stocks and strongly 
contributes to soil organic matter formation. We suggest that investing in roots can be an effective strategy for meet-
ing part of Loess Plateau C reduction goals to mitigate climate change, which is necessary for validating and param-
eterizing C models worldwide.
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1 Introduction
Terrestrial ecosystem stores a large quantity of carbon 
(C) in plant and soil [1–4], and constitutes an impor-
tant C sink of the Earth, with annual net C uptake of 
2.0–3.4 Pg C per year (1 Pg =  1015 g) [5–7]. The Inter-
governmental Panel on Climate Change (IPCC) esti-
mated that the global soil annual C sequestration 
ranged from 0.6 to 1.2 Pg C, and China was one of the 
highest soil C sequestration countries in the world 
[8–10]. Specially, the Chinese land biosphere sink was 
11 Pg  (1015 g) of C during 2010 to 2016, and in the next 
40 years (2021–2060), the potential C sink of Chinese 
land biosphere is about 3.0–3.6 Pg of C [11–15]. A new 
paper reported that terrestrial C sink of 0.20–0.25 Pg C 
 yr− 1 in China during the past decades, and predicted 
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it to be 0.15–0.52 Pg C  yr− 1 by 2060 [15], and the total 
terrestrial ecosystem C pool in China was about 89 Pg 
C (vegetation, 14 Pg; soil (0–1 m), 75 Pg) [6].

Over recently decades, vegetation restoration pro-
ject has been extensively adopted in many countries 
and regions for economic, ecological and climate 
change mitigation purposes [16–24]. Vegetation res-
toration reduces soil erosion and  CO2 release to the 
atmosphere, which further increases soil C sequestra-
tion [25–27]. The ecosystem C stocks increased due to 
China’s national ecological restoration project [28–31]. 
Specially, the Chinese Loess Plateau is one of the most 
typical regions for vegetation restoration [32–35]. With 
increasing scientific and political interest in regional 
aspects of the global C cycle, there is a strong impetus 
to better understand the ecosystem C stock of the Loess 
Plateau [32, 33]. In fact, soil C sequestration, distribu-
tion and stocks depending on land use types or vegeta-
tion restoration of the Loess Plateau has been largely 
described [36, 37]. Though most of works have been 
conducted on C pools in various ecosystems, there are 
huge discrepancies in these estimations [32, 36, 38, 
39]. Such inconsistency can be ascribed to the limited 
samples, multiplicity of data sources, and difference in 
methodologies. For example, previous estimates at both 
regional and national scales were primarily obtained 
based on summarized data of the references and not 
from original studies [6, 29]. Therefore, our knowledge 
of the driving forces causing the changes in ecosystem 
C stocks on the Loess Plateau is also very limited.

Improving estimate of the size and spatial distribu-
tion of C stocks of the Loess Plateau is urgently needed 
for global C balance. Here, we made the wall-to-wall 
estimation of C stock in various pools of the Loess Pla-
teau. The C stocks are estimated for plants and soils, 
including above-ground, below-ground, soil organic 
C (0–20 cm) stocks for entire the Loess Plateau. We 
grouped all sites to forestland, shrubland, grassland, 
and farmland, which can represent the main ecosys-
tem types in this region. Climate data (temperature, 
precipitation) and soil properties were gathered across 
the whole Loess Plateau. The following hypothesis 
was tested: there was a critical role of climate factors 
in shaping the distribution of ecosystem C density. In 
this case, the following objectives were to assess the 
whole ecosystem C stocks across the Loess Plateau, and 
to investigate how climate factors affect ecosystem C 
stocks on a large scale. Thus, we employed a geostatisti-
cal semivariance fitting to acquire the large-scale eco-
system C stocks. To address the second objective, we 
applied structural equation models and variation par-
titioning analysis to explore the impacts of climate fac-
tors and soil properties on ecosystem C stocks.

2  Materials and methods
2.1  Study area
The Loess Plateau (100°52′–114°33′E, 33°41′–41°16′N) 
is within the semi-humid to semi-arid area in northwest 
China, which covers altogether 64 ×  104  km2, 6.5% of the 
overall area of China. This area is mountain-surrounded, 
with high complexity of topographic structures, which 
include basins, sub-plateaus, gullies and hills, and its 
elevation is 200–3000 m a.s.l. The temperate, semi-arid 
and arid continental monsoon climate is predominant. 
The annual average temperature is within the range from 
3.6 °C to 14.3 °C, and annual precipitation ranges from 
150 mm to 800 mm, mostly concentrated in June and 
September (55–78%). The parent materials for the soils 
are yellow loess or wind deposited materials that results 
in widespread soils with clay loamy texture. Silt-loamy 
soils take up around 90% of the Loess Plateau, with silt 
level being 60–75% in most soils [40]. The vegetation 
alters between forest from forest steppe, typical steppes 
and semidesert steppes from southeast to northwest.

2.2  Sampling set
In line with arid and semiarid region classification stand-
ards, we classified all sampling sites (as well as related 
datasets) as 3 groups based on annual precipitation 
including < 250, 500–250 as well as > 500 mm. We further 
classified annual temperature datasets as 3 groups includ-
ing < 5, 5–10, together with > 10 °C. Ecosystem types were 
divided according to land use to four groups: farmland, 
grassland, shrubland and forestland. The land cover/use 
data was the annual dataset of land cover in China from 
1985 to 2019 [41].

To obtain the latest ecosystem C data, we analyzed 
97 × 3 sampling sites across the Loess Plateau (Fig.  1) 
between July and October, 2021. In each site, we set three 
duplicate plots (100 m × 100 m) to vegetation survey and 
soil sampling. All sampling sites were localized by a GPS 
receiver (horizontal precision, 5 m) and grouped later 
to representing major ecosystem type, vegetation and 
topography types (Table S1).

Soil was sampled using the auger (diameter, 5 cm), and 
collected samples at intervals of 10 cm: 0–10 cm and 
10–20 cm soil layers from 5 locations of every plot in the 
radius of 10 m. In every layer, we merged those 5 sam-
ples manually for forming the typical sample of respec-
tive layer at that site. We harvested undisturbed soil in 
0–10 cm as well as 10–20 cm soil layers, and sealed them 
within the leak tight containers to measure bulk density.

2.3  Estimation of plant C stocks
As for forestland, three standard 20 m × 20 m plots were 
randomly established within each forestland accord-
ing to on-site inspection. Species names, diameter at 
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breast height (DBH) and height (H) were documented 
for all trees within each plot. Specially, we surveyed all 
trees > 5 cm DBH and height in each of plot, and three 
standard trees were chosen and logged from standard 
sampling plots for biomass determination, using the seg-
menting method. Standard trees were divided into four 
components: trunk, stem, branches and leaves. Above-
ground biomass (AGB) was calculated by summing the 
trunk, stem, branches and leaves mass of individual trees, 
using the following component-wise allometric equations 
(Table 1). Then the above-ground and below-ground bio-
mass were added to derive total biomass.

For below-ground biomass (BGB), as the excavation 
of entire trees is very time- and labor-consuming and 
destructive, we only dig the root in 0–20 cm by the skel-
eton method (dry excavation), and fresh weights of these 
components were determined in the field. The compo-
nent parts were later sub-sampled for moisture deter-
mination and C concentration analysis. Each subsample 
was taken to the laboratory and oven-dried at 60 °C to a 
constant weight. Dry weights of every component were 
determined and mechanically ground into pass through 
a 0.5 mm mesh screen. In addition, air-dried soil sam-
ples were treated with 10% hydrochloric acid for 12 h to 
remove carbonates, dried at 70 °C for 48 h, milled, and 
passed through a 0.25 mm mesh screen. The powder 
samples of different components were analyzed for the 
C concentrations using a vario macro elemental analyzer 

Fig. 1 Distribution of sampling sites in four ecosystem types (Farmland, 19; Grassland, 22; Forestland, 28; Shrubland, 28) across the Loess Plateau. 
Digital elevation models (DEMs) represent the elevation across the Loess Plateau. DEM data were downloaded from the United States Geological 
Survey and are free for public use. The figure was generated with ArcGIS 10.0 (http:// www. esri. com/)

Table 1 Biomass models and parameters of different trees. Note: 
 WS meas biomass of trunk;  WP meas biomass of stem;  WB meas 
biomass of branches;  WL meas biomass of leaves;  WT meas total 
above-ground biomass;  WR meas total below-ground biomass

Tree species Biomass models and parameters

Picea asperata WT = 0.067732(D2H)0.865949;  WR = 0.0088D2.53827

Hemlock WT = 0.149707(D2H)0.80139;  WR = 0.19758D0.6058

Larix gmelini WT = 0.046238(D2H)0.905002;  WR =  WT/4.81

Pinus tabuliformis WS = 0.027636(D2H)0.9905;  WB = 0.0091313(D2H)0.982

WL = 0.0045755(D2H)0.9894;  WT =  WS+  WB+  WL;
WR = 0.0084800D0.988

Pinus armandi WS = 0.01308(D2H)1.0038;  WB = 0.0055(D2H)1.0439

WL = 0.0011(D2H)1.12566;  WT =  WS+  WB+  WL;
WR = 0.0033D1.0148

Pinus massoniana WT = 0.071556(D2H)0.857209;  WR =  WT/6.23

Cunninghamia WS = 0.073429(D2H)0.86262;  WP = 0.013775(D2H)0.84463; 
 WB = 0.000482(D2H)1.23314

WL = 0.019638(D2H)0.78969;  WT =  WS+  WP

Cupressus WS = 0.12531(D2H)0.733; 
 WB = 0.137403 + 0.012887D2H
WL = 0.05349 + 0.00997D2H;  WT =  WS+  WB+  WL;
WR = 0.01109  D2H-0.160386

Betula WT = 0.0278601(D2H)0.993386;  WR =  WT/2.89

Broad-leaved forest WS = 0.044(D2H)0.9169;  WP = 0.023(D2H)0.7115;
WB = 0.0104(D2H)0.9994;  WL = 0.0188(D2H)0.8024;
WT =  WS+  WP+  WB+  WL;  WR = 0.0197D0.8963

Coniferous forest WT = 0.0495502(D2H)0.952453;  WR =  WT/3.85

http://www.esri.com/
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(Elementar Analysensysteme GmbH, Germany). The car-
bon storage in the tree components is estimated as fol-
lows [42]:

As for shrubland, grassland and cropland, the above-
ground biomass (AGB) as well as below-ground biomass 
(BGB) was collected in the 5 plots (1 × 1 m). The roots 
were excavated as completely as possible in 0–20 cm soil 
depth, and separated into fine roots (< 2 mm diameter) 
and coarse roots (> 2 mm diameter). Both the coarse and 
fine roots were weighed in the field. The portion of the 
stump that remains underground was treated as a part 
of the coarse root. The root samples in triplicate were 
brought to the laboratory and oven-dried at 80 °C till 
constant weight was achieved [43]. Also, carbon storage 
in each stand = (carbon content in different components 
× biomass in different components.

Apart from that, we collected dead above-ground bio-
mass samples but did not consider them for eventual 
measurements. According to our results, dead biomass 
for just 0.1% of overall biomass for forestland and shrub-
land, and it had almost no effect on C stocks.

2.4  Estimation of soil C stocks
We sieved soil samples through the 2.0-mm mesh to 
exclude some gravel and plant residual roots [44], to 
determine soil texture (%) by laser diffraction using a 
Mastersizer 2000 (Malvern Instruments, England). The 
soil bulk density (g  cm− 3) was determined in the original 
undisturbed soil core dry mass volume following oven-
drying under 105 °C.

The total soil C density (SOCD, kg·m− 2) was quanti-
tatively measured by collecting soil at 0–20 cm depth. 
SOCD was computed as [16]:

SOC refers to soil organic carbon (g·kg− 1), BD indi-
cates soil bulk density (g·cm− 3) and D suggests soil thick-
ness (cm).

AGCD means above-ground C density, BGCD means 
below-ground C density, ETCD means the ecosystem 
total C density.

2.5  Estimation of ecosystem C stocks
To estimate ecosystem C stocks, data on the AGCD, 
BGCD, SOCD, ETCD as well as the area of the 
research region are needed. With optimal interpolation, 

Carbon storage in each stand = (carbon content in different components × biomass in different components

(1)SOCD = SOC× BD× D/10

(2)ETCD = AGCD+ BGCD+ SOCD

Geostatistics is applied to convert AGCD, BGCD, SOCD 
and ETCD dataset from discrete points to a spatially 
continuous surface. With the application of regionalized 
variable theory [45], geostatistics adopts semivariograms 

[46] for quantifying spatial autocorrelations and afford 
input parameters to spatial interpolation, including krig-
ing. An empirically derived semivariogram can be writ-
ten as:

where N(h) means the sample amount at every distance 
interval h, and z (xi), z(xi + h) suggests the value obtained 
through dividing soil moisture of any two samples by lag 
distance h.

Subsequently, standard theoretical models (such as 
spherical, Gaussian, exponential and linear models), were 
fitted to the empirical semivariogram based on measured 
data. The best fitted model, with minimum residual sum 
of squares and maximum determination coefficient, was 
applied to present input parameters to kriging interpo-
lation. The equations applied for the above-mentioned 
models are presented as:

Linear model:

Spherical model:

Exponential model:

where Co indicates the nugget variance, i.e., the y inter-
cept in the model suggesting the measurement error or 
variance at a shorter distance; C suggests the asymptote 
of semivariance γ(h); Co + C means the sill and Ao rep-
resents the range, as an index for area (auto-correlation) 
similarity in the tested samples, relying upon both study 
area and sampling patterns. Spatial dependence, fre-
quently expressed as (C/[(C + Co]), links small-scale vari-
ability to large-scale variability.

After the spatial interpolation, AGCD, BGCD and 
SOCD surface were formed to contain the whole area 
of the Loess Plateau. The surface was exported as a ras-
ter layer having a defined resolution (3000 m × 3000 m), 
with every grid square assigned with AGCD, BGCD, and 

(3)γ (h) =
1

2N (h)

N (h)

i=1

[z(xi)− z(xi + h)]2

(4)γ(h) = Co+ C[(h/Ao)]

(5)
γ(h) = Co+ C[1.5(h/Ao)− 0.5(h/Ao)3], h ≤ Ao

γ (h) = Co+ C , h ≥ Ao

(6)γ (h) = Co+ C[1− (sin(h/Ao)× h/Ao)]
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SOCD value and an area value. Based on the Spatial Ana-
lyst module, AGCs (AGC stock), BGCs (BGC stock) and 
SOCs (SOC stock) (Pg;  1015 g) were carried out by adopt-
ing the GIS software package Arcmap Desktop (version 
9.1). Finally, ETCs (ETC stock) was calculated by AGCs + 
BGCs + SOCs.

According to previous studies, random forest grows a 
large number of regression trees from different random 
subsets of training data and predictor variables, thereby 
reducing variance relative to single trees, and greatly 
reducing the risk of over-fitting model predictions and 
non-optimal solutions— though at the cost of inter-
pretability [47]. In this case, we tried to estimate soil C 
stocks by random forest model compared with the spatial 
interpolation method (Tables S2 and S3). The predicted 
results from random forest are similar to those of kriging 
interpolation. There was the lower p value and the higher 
R2 in kriging interpolation model, and the standard error 
of the mean, root mean square error of kriging interpola-
tion were lower. It means that the precision of the model 
of kriging interpolation was better than random forest 
model for ecosystem C stocks. This is possible because 
that there was no more topographic and vegetation data, 
climate data, and remote-sensing image, therefore, there 
was error transfer and accumulation when using ran-
dom forests to extract these environmental explanatory 
variables, moreover, the complex terrain across the Loess 
Plateau made the verification results were not satisfac-
tory. Thus, if we made the total ecosystem carbon stocks, 
the interpolation methods should be consistent. Based 
on these reasons, kriging interpolation was selected to 
calculate the ecosystem C stocks and their factors across 
Loess Plateau.

2.6  Climate factors and soil properties
Mean annual temperature (MAT, °C) and precipitation 
(MAP, mm) were measured using meteorological data 
between 1953 and 2013 from China Meteorological Data 
Sharing Service System (http:// cdc. cma. gov. cn/). This 
dataset covers climatic data of 64 national-level weather 
stations near or on the Loess Plateau. Later, we interpo-
lated those data in respective stations by kriging to create 
continuous data surfaces of the meteorological variables. 
Afterwards, we utilized sampling sites’ spatial coordi-
nates for extracting their meteorological parameters 
from respective data surface. Soil pH was determined 
by the soil-water extraction (1:1.5, v/v). We utilized Kjel-
dahl approach [48] for measuring soil total nitrogen (TN, 
g·kg− 1). Soil cation exchange capacity (CEC, cmol  kg− 1) 
was determined based on Tucker’s method [49] using a 
leaching device. Summary of soil properties and their 
geostatistical parameters in different ecosystems were 
shown in Tables S4 and S5.

2.7  Data analysis
Kolmogorov–Smirnov test was used to determine 
whether ecosystem C density followed a normal distri-
bution. All data were checked using SAS v.9.3 (https:// 
www. sas. com/ zh_ cn/ softw are/ platf orm. html) through 
one-way ANOVA followed by performing Fisher’s test 
(p < 0.05). Linear regression analysis was used to explore 
the relationships among ecosystem C densities. The R 
software (http:// www. datav is. ca/R/) with ‘varpart’ pack-
age was used for variation partitioning analysis. Pearson’s 
correlation coefficients were adopted for determining the 
relationships between environmental factors and ecosys-
tem C stocks, and then, heatmaps were made by using 
‘pheatmap’ package.

Finally, structural equation models (SEMs) were used 
to explain the effects of climate factors (MAT, MAP) 
and soil properties (TN, CEC, pH, Clay) on the ecosys-
tem C stocks. The final SEMs were constructed using 
the Mantel R-values in AMOS v. 21.0 (https:// www. ibm. 
com/). The criteria used to evaluate the suitability of 
the SEMs included the decreased chi-square value (χ2), 
the decreased root mean square error of approxima-
tion (RMSEA< 0.05), the increased comparative fit index 
(CFI > 0.90), the decreased Akaike information criterion 
value (AIC), as well as non-significance (p > 0.05).

3  Results
3.1  Spatial distribution of C densities across the loess 

plateau
Spatial distribution of SOCD (0–10 and 10–20 cm), 
AGCD, BGCD and ETCD by geostatistical approaches 
showed the nugget-to-sill ratios of 0.22 and 2.0 (Table 
S6). No anisotropy was detected, while the spherical 
model/ exponential model/ linear model well fitted the 
isotropic semivariograms (Table S6). The SOC, SOCD 
and ETCD were presented in spherical model, while 
AGCD and BGCD were presented in the exponential and 
linear models, respectively.

Kriging interpolation resulted in the continuous SOC, 
SOCD, AGCD, BGCD and ETCD, which covered the 
whole Loess Plateau area. There was a strong linear rela-
tion between SOC/SOCD in 0–10 cm and 10–20 cm 
(p < 0.05) (Fig. S1), but a quadratic equation relation 
between AGCD and BGCD (p < 0.05) (Fig. S2).

Here, ETCD reduced from southeast to northwest, 
with uneven distribution within eastern and western 
Loess Plateau (Fig. 2). The AGCD showed a zonal distri-
bution (Fig. 3), SOCD was higher at the depth of 0–10 cm 
compared with 10–20 cm, and gradually decreased from 
southeast to northwest (Fig. 3). However, BGCD showed 
the inhomogeneous distribution across the Loess Plateau 
(Fig. 3).

http://cdc.cma.gov.cn/
https://www.sas.com/zh_cn/software/platform.html
https://www.sas.com/zh_cn/software/platform.html
http://www.datavis.ca/R/
https://www.ibm.com/
https://www.ibm.com/
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Fig. 2 Spatial pattern of ecosystem total carbon density (ETCD) along longitude and latitude across the Loess Plateau

Fig. 3 Spatial distribution of above-ground carbon density (AGCD) (a), below-ground carbon density (BGCD) (b), soil organic carbon density 
(SOCD) in 0–10 cm layer (c), and soil organic carbon density (SOCD) in 10–20 cm layer (d) across the Loess Plateau
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3.2  Carbon stocks across the loess plateau
The C stocks in ecosystem types across the Loess Pla-
teau (Fig. 4) contain 1.05, 1.18, 0.24 and 0.36 Pg C for 
farmland, grassland, shrubland and forestland, respec-
tively. The SOC stock in the 0–10 and 10–20 cm soil 
were 0.47 and 0.37 Pg C, respectively. The above-
ground and below-ground C stocks were 1.51 and 0.49 
Pg C, respectively.

3.3  Carbon densities across ecosystems and climate zones
The SOCD was higher than AGCD and BGCD in farm-
land and grassland (Fig. 5), while SOCD was lower than 
AGCD in shrubland and forestland. The SOCD increased 
according: shrubland < forestland < farmland < grass-
land. The AGCD and BGCD in forestland and shrubland 
were higher than farmland and grassland. The SOCD 
gradually decreased from farmland to forestland, while 
AGCD increased.

Fig. 4 Summary of the ecosystem C stocks across the Loss Plateau of China (a). Statistics of C density and stocks in the Loess Plateau and China 
derived from various studies, compared with our study (b). AGCs: above-ground carbon stock; BGCs: below-ground carbon stock; SOCs: soil organic 
carbon stock; ETCs: ecosystem total carbon stock
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Average mean annual temperature (MAT) and precipi-
tation (MAP) impacted ecosystem C densities depending 
on ecosystem types (Fig. S3). The SOCD was obviously 
higher in zones with temperature higher than 10 °C. The 
AGCD and BGCD, ETCD in zones with temperature 
lower than 5 °C were higher than in warmer climate. The 
SOCD had the same trend as those of AGCD and BGCD. 
Thus, the ETCD was obviously higher in zones with tem-
perature lower than 5 °C, compared with those with the 
temperature higher than 10 °C (p < 0.05). Similarly, SOCD, 
AGCD and ETCD showed the same change trend, and 
increased within zones with precipitation higher than 
500 mm, although BGCD increased within precipitation 
lower than 250 mm. Thus, wetter and warmer conditions 
contributed to superior biomass productivity and so, to 
ecosystem C accumulation.

3.4  Effects of climate conditions and soil properties on C 
densities

According to Pearson correlation analysis, ecosystem C 
densities were strongly dependent on climate factors and 
soil properties (Fig. 6). The SOCD and ETCD in farmland 
decreased with mean annual precipitation (MAP), mean 
annual temperature (MAT) and pH, while increased with 
soil total nitrogen (TN). The ETCD in grassland, shrub-
land and forestland increased with MAP while negatively 
related to MAT. The SOCD in grassland, shrubland and 

forestland raised with soil clay and TN, while dropped 
with soil pH (p < 0.05).

Climate factors used in the variation partitioning analy-
sis explained 59%, 56%, 66% and 64% of the total variance 
of ABGD, BGCD, SOCD and ETCD, while soil proper-
ties explained 41%, 44%, 34% and 36% of the total vari-
ance of ABGD, BGCD, SOCD and ETCD, respectively 
(Fig.  7). The most important factors controlling ABGD 
and BGCD were MAP, TN (p  < 0.01). The SOCD were 
mainly dependent on MAT and TN (p < 0.01), while the 
ETCD were dependent on MAT and MAP (p < 0.01).

Structural equation models (SEMs) were used to 
identify and quantify the driving factors to ecosystem 
C densities. The driving factors were divided into cli-
mate factors (MAT, MAP) and soil properties (i.e., pH, 
TN, clay and CEC) (Fig. 8). The final SEMs were built to 
describe the underlying flows of causality in driving fac-
tors to ecosystem C densities. Due to the high compara-
tive fit index (CFI > 0.90), insignificant chi-square test 
(p > 0.05), and low root mean square error of approxima-
tion (RMSEA < 0.05), the verified SEMs showed the good 
model fit. According to SEMs, the C density reduced 
with MAT while increased with MAP. To be specific, cli-
mate conditions, especially MAP, increased with AGCD 
in all ecosystem types, which can thereby offset the 
direct decline effect on SOCD, finally leading to the posi-
tive effect on ETCD. By contrast, AGCD decreased with 
MAT in all ecosystem types, thus offsetting the increase 

Fig. 5 Box plots show the C density in above-ground, below-ground and soil in farmland, grassland, shrubland, forestland. The lower and upper 
boundaries of the box represent the first and third quartiles, respectively; the horizontal line represents the mean; the bounds of the lower and 
upper bars reflect the 10th and 90th percentiles, respectively. The proportion of above-ground carbon density (AGCD), below-ground carbon 
density (BGCD) and soil organic carbon density (SOCD) in the ecosystem total carbon density (ETCD) in farmland, grassland, shrubland, forestland
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effect on SOCD, and finally generating the negative effect 
on ETCD, except for farmland.

4  Discussion
4.1  Spatial distribution of ecosystem C density
Based on the geostatistical analysis, the explanation for 
the proportions of the variances of ecosystem C density 
are more than 80% (R2 > 0.80, Table S6), so the fitting 
model is significant in terms of ecosystem C density. Pre-
vious studies have reported a high spatial heterogeneity 
in soil nutrients at large scale of Loess Plateau [50–52]. 
In this study, an exponential, spherical, or linear model 
with a sill were fitted using spatial auto-correlation for 
ecosystem C density (Table S6). Generally, there is a 
strong spatial auto-correlation with C/(Co + C) over 75%, 
moderate auto-correlation with 25–75%, and lower auto-
correlation with less than 25% [51, 52]. We found that the 
C/(Co + C) was over 50%, indicating that ecosystem C 
density had the obvious spatial auto-correlation. This is 
presumably due to the offset effects of spatial variances of 
ecosystem C density in different directions, and the com-
plex terrain characteristics [53]. Further, the C/(Co + C) 

of above-ground C density (AGCD), below-ground C 
density (BGCD) and ecosystem total C density (ETCD) 
had a strong spatial auto-correlation, while SOC density 
(SOCD) had a moderate spatial auto-correlation, sup-
porting the evidence that the spatially structured vari-
ance can account for ecosystem C density [54].

The kriging estimates could be mapped, to reveal the 
overall trend of the C density. In detail, the high eco-
system C density mainly located in the northwest and 
southwest parts of Loess Plateau (Fig.  2), and relatively 
low C density in the northern. This spatial distribution 
patterns reflected a gradually decreasing trend from 
southwest to northeast, roughly in line with Loess Pla-
teau’s topographic feature, as well as differences in land 
use, forest management, economic and social develop-
ment [39]. Furthermore, the SOCD generally increased 
with MAP, while it decreased with MAT [36, 55]. Our 
findings showed that SOCD were higher in zones with 
MAT higher than 10 °C, and ETCD were obviously higher 
in zones with MAT lower than 5 °C (Fig. S3). It indicates 
that C is accumulated more in cold or moist ecosys-
tems across the Loess Plateau. Generally, the AGCD and 

Fig. 6 Pearson correlation between C density and climate factors and soil properties for four ecosystem types. The color of each roundness is 
proportional to the value of Pearson’s correlation coefficient. Green indicates a positive correlation (dark green, r = 0.80); orange indicates a negative 
correlation (dark orange, r = 0.80). * p < 0.05; ** p < 0.01. AGCD: above-ground carbon density; BGCD: above-ground carbon density; SOCD: soil 
organic carbon density; ETCD: ecosystem total carbon density; MAP: mean annual precipitation; MAT: mean annual temperature; pH: soil pH; TN: soil 
total nitrogen; CEC: soil cation exchange capacity
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BGCD were remarkably higher across regions with MAP 
above 500 mm compared with those with MAP below 
500 mm [6, 56]. This is because that the higher MAP was 
due to higher vegetation growth rates, and therefore C 
input rates were higher in ecosystem [9, 13, 14, 22].

The mean SOCD in this area was lower than the aver-
age of China [6], but higher than the average on the 
Loess Plateau [39]. Specially, forestland and grassland 
SOCD was higher than farmland (Fig.  5). Similarly, a 

meta-analysis indicated an increase of SOC by 19% and 
53%, following farmland conversion to forestland and 
grassland [40]. Thus, the findings supported that the con-
version from farmland to forestland/grassland increases 
soil C contents [17, 18]. On the one hand, forestland and 
grassland soils had especially high organic C because of 
large litter and root input [57]. When these ecosystem 
converted to farmland, the organic C would be lost. On 
the other hand, plant biomass as returned nutrients to 

Fig. 7 The variation partitioning analysis of the relative explanatory rate of environmental factors to explain AGCD, BGCD, SOCD, ETCD. The circular 
rings mean the relative explanatory rate of soil and climate factors to AGCD, BGCD, SOCD, ETCD. The explained variability was calculated after 999 
bootstraps. AGCD: above-ground carbon density; BGCD: above-ground carbon density; SOCD: soil organic carbon density; ETCD: ecosystem total 
carbon density; MAP: mean annual precipitation; MAT: mean annual temperature; pH: soil pH; TN: soil total nitrogen; CEC: soil cation exchange 
capacity
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soil through above-ground litter and root debris, thus 
rapidly increasing SOC content as above-ground biomass 
increased [17, 18, 21].

4.2  Carbon stocks across the loess plateau
Due to the large scale of vegetation restoration projects 
since the early 1990s, the accurate assessments on C 

Fig. 8 Structural equation models (SEMs) depicting the multiple relations of ecosystem total carbon density (ETCD) with climate factors and soil 
properties, and the values are standardized coefficients of the models. The solid orange lines are the negative relationships, and the solid green 
lines are the positive relationships, and the solid black lines are no significant relationships, respectively. Arrows represent a directional influence 
of one variable upon another. The numbers beside the arrows are standardized coefficients. The thickness of the arrows is proportional to the 
magnitude of the standardized path coefficients or covariation coefficients. R2 stands for variation interpreted by variables, which is calculated after 
999 bootstraps, and the significant level is set at α = 0.05, *p < 0.05, **p < 0.01. AGCD: above-ground carbon density; BGCD: above-ground carbon 
density; SOCD: soil organic carbon density; ETCD: ecosystem total carbon density; MAP: mean annual precipitation; MAT: mean annual temperature; 
pH: soil pH; TN: soil total nitrogen; CEC: soil cation exchange capacity



Page 12 of 16Yang et al. Carbon Neutrality             (2023) 2:5 

storage on the Loess Plateau were started [36, 39, 58–60]. 
However, the assessed size differed substantially among 
the early studies due to the limited field measurements 
[39]. Here, we made the statistics of C density and stocks 
on the Loess Plateau and China derived from various 
studies, and compared with our results (Fig. 4). A meta-
analysis pointed out that the total C stock of the Loess 
Plateau is approximately 2.3 Pg [39]. In this study, the 
total C stock in forestlands, shrublands, grasslands, and 
farmlands is higher than Li et al. [39], but lower than Liu 
et  al. [60]. The data, covering almost 6.5% territory in 
China, held around 1.5%–3.2% total SOC stocks (ranged 
from 89 to 192 Pg C) at 0–10 cm across the country [6, 
61]. The total C stock among which 30% was stored in 
soil (0–20 cm), 53% in above-ground biomass, and 17% 
in below-ground biomass. Consequently, the amount of 
C stored in roots (about 17%) is substantial and should be 
considered when assessing C stock.

For plant C stock, our data (1.51 Pg C) was higher than 
a meta-analysis over the Loess Plateau (0.44 Pg C) [39], 
and also was far below the average in China (from 6.1 to 
53 Pg C) [61, 62], because the Loess Plateau area is only 
one of the large-scale ecological restoration projects [6]. 
For soil C stock, previous studies conducted the assess-
ment using soil profiles across the Loess Plateau [36, 58, 
59]. However, due to the limited number of soil profiles 
and the fact that soil gravel was not excluded, the soil C 
stock estimation was quite large [36, 58, 59]. In fact, soil 
C stock of 0–20 cm was lower than those obtained by 
Li et al., (1.52 Pg) [39]; Fu et al., (1.64 Pg) [59]; Liu et al., 
(1.68 Pg) [36]; Xu et al., (1.07 Pg) [58]. In these previous 
studies, most of vegetation was artificially planted about 
20 years, and the large root system is benefit to the soil C 
sequestration, then, the SOC storage generally increases 
with afforestation years [36, 59]. Specially, the C stocks 
in the soil of grassland and farmland were higher than 
below-ground biomass, which is similar to the estimates 
for the continental China (3.9 Pg) [6], United States (3.0 
Pg) [63] and Europe (3.5 Pg) [64]. However, higher SOC 
stock does not necessarily lead to greater ecosystem C 
stocks. For example, the C stocks in the soil of forest-
land and shrubland were lower than the biomass due to 
the “Grain-for-Green” project in China, which had built 
numerous forestland and shrubland regions [6, 56]. As 
for these biomass, there was a quadratic equation rela-
tion between AGCD and BGCD (p < 0.05, Fig. S2). 
Hutchings and John [65] suggested that plants can adjust 
biomass partitioning to equalize growth limitations by 
essential resources, and thought that both ontogeny and 
environmental conditions exert influences on AGB and 
BGB partitioning, which is consistent with the optimal 
allocation hypothesis. In this case, plants adjust their 
growth strategy according to different environments, 

and in particular, tend to partition more biomass to root 
systems under more stressful, low-nutrient and harsh cli-
matic conditions [66]. This made the parabolic regression 
between AGCD and BGCD on the Loess Plateau, and 
consequently, ecosystem C stocks can be substantially 
enhanced by fostering above-ground and below-ground 
C stocks.

The area-weighted mean AGCD and BGCD in forest-
land (72 Mg  ha− 1), and grassland (1.0 Mg  ha− 1) across 
the Loess Plateau (Fig.  5) were substantially lower 
than the global means [94 Mg  ha− 1 in forestland and 
7.2 Mg  ha− 1 in grassland] [6, 28, 56]. Large-area young 
forests, extensive grazing and soil water limitation are 
the possible contributors of low C density of the Loess 
Plateau [32, 33]. Most vegetation was artificially planted 
between 1990 and 2000, and the forest age was only 
about 20–30 years [39, 40]. This relatively short period 
of time since vegetation restoration was not sufficient to 
develop the root system into the deep soil layers [21, 67, 
68]. Almost 90% forests are aged below 60 years, and cor-
responding biomass is below 60 Mg  ha− 1, obviously lower 
compared with that (105 ± 30 Mg  ha− 1) in old forests 
(≥100 years) and mean of forests (200 Mg  ha− 1) in China 
[69]. As these young and middle-aged forests gradually 
grow, the C sequestration of forestland on the Loess Pla-
teau will increase [21, 57, 70]. In this case, future C sinks 
may surmount our estimates after forest areal expansion, 
vegetation restoration and protection and soil C increas-
ing needs to be examined [71].

4.3  Effects of climate factors and soil properties on C 
density

We found the negative correlation between AGCD and 
MAT in forestland and grassland (Fig.  6), suggesting 
that the water stress rather than temperature limited 
plant growth in this area. We thought this result may be 
attributed to the high soil salinity, which is consistent 
with previous results [72]. However, BGCD is positively 
correlated with CEC. The CEC of a given soil can indi-
cate how well some nutrients (mainly cations) could be 
bound to the soil. The improvement in soil CEC reflects 
a higher nutrient retention capability and a lower nutri-
ent loss through leaching, which is beneficial for soil 
microbial activity and C sequestration [73]. For exam-
ple, in sandy soil, SOC increased the CEC, and Oorts 
et al. [74] found that up to 95% of variation in CEC was 
attributed to SOC. Previous study also showed that 
some cations such as  Ca2+ could play a role in stabi-
lizing organic C in alkaline soils, because some cati-
ons can bridge negatively charged organic compounds 
together, forming organo-metal structures which pro-
tect SOC [75]. As for soil properties, the fine particles 
(clay and silt) reinforce organic matter retention due to 
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their capacity of providing physical protection against 
microbial decomposition [16, 67], and thus the signifi-
cant correlation between SOC and clay content [16, 
37, 67, 76]. For example, Liu et  al. [36] collected soil 
samples for over 380 sites on the Loess Plateau, and 
showed the general control of soil texture on the SOC 
density. Similar, Pearson correlation analysis revealed 
that clay content was an important factor influenc-
ing SOCD and ETCD (Fig. S3). The findings primarily 
revealed how clay and silt protect SOC. The high soil 
pH (> 8.0) reduced SOC accumulation through sup-
pressing microbial activity and expediting the leach-
ing of dissolved organic C in subsoil layer [56, 63]. The 
lower pH forms increasing complexes with high-molec-
ular weight organic compounds for binding aggregates, 
which is conducive to SOC stability [77]. Such improve-
ment of aggregate stability increases SOC stability and 
accumulation.

According to the variation partitioning analysis, the 
total explained variance of climate factors to ABGD, 
BGCD, SOCD and ETCD were higher than soil prop-
erties (Fig. 7), and ETCD were dependent on MAT and 
MAP (p < 0.01). Moreover, the biogeographical pattern of 
ecosystem C density coincide with temperature and pre-
cipitation distribution patterns (Fig.  2), supporting our 
hypothesis that there was a critical role of climate factors 
in shaping the distribution of ecosystem C densities. Spe-
cially, climate factors influence ecosystem C accumula-
tion by biotic processes related to vegetation productivity 
and organic matter decomposition [3, 14, 78, 79]. These 
results also indicated the control of climate factors on 
ecosystem C density, supporting the results from Tang 
et al. [6] who revealed the intimate correlation between 
C density and climate: it reduced with temperature but 
increased with precipitation in China.

According to structural equation models, MAT exerted 
relatively large, direct, and negative effects on SOC stock 
(Fig. 8). MAT in this region decreased from the southeast 
to the northwest, and lower MAT reduced SOC turnover 
rates, causing an increase of SOC [16, 36]. By contrast, 
higher MAT led to the faster SOC decomposition [80]. 
Generally, SOCD increased with MAP from the south-
east to the northwest across the research area, because 
the higher MAP led to the higher soil moisture, which 
increases microbial metabolic activities and enzymatic 
activities, and thus formed relatively high SOC  [36]. At 
specific precipitation level, SOCD reduced with MAP 
mainly because of the growing of soil respiration [81]. 
Nevertheless, MAT might increase SOC and offset the 
precipitation’s positive effect, which was obvious in farm-
land and grassland (Fig.  8). Similar, MAP was strongly 
related to AGCD, therefore counteracting the decreasing 
effect against SOCD. Comparatively, AGCD decreased 

with MAT in all ecosystem types, thus offsetting the 
increasing effect on SOCD, and finally generating the 
decreasing effect on ETCD, except for farmland.

5  Conclusions
The large-scale ecosystem C stocks and their driving 
factors were studied by the widespread field sampling 
across the Loess Plateau, to fill major gaps and uncer-
tainties in the C stock estimations. The total ecosystem 
C stock was 2.8 Pg, among which 30% was stored in soil 
(0–20 cm), 53% in above-ground biomass, and 17% in 
below-ground biomass. Ecosystem C density decreased 
with MAT, while increased with MAP. In detail, climate 
factors (MAP, MAT) explained 59%, 56%, 66% and 64% 
of the total variance, while soil properties explained 41%, 
44%, 34% and 36% of the total variance of above-ground 
C density, below-ground C density, SOC density, and 
total ecosystem C density, respectively. The findings sup-
ported the theoretical forecasts that on similar soils par-
ent materials the large-scale patterns for ecosystem C 
density mainly come under climate control.
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