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Abstract
This article aims to study  MoSe2/CIGS tandem solar cells employing SCAPS-1D computational package based on ant 
colony algorithm. The simulation of Monolithic  MoSe2/CIGS tandem solar cells has been implemented successfully by 
employing the Matlab/Simulink. The power output of the Monolithic  MoSe2/CIGS tandem modules increases by the solar 
irradiations during the first few days of operation. The J–V characteristic and average daily energy production throughout 
the year has been calculated. The results show 80.71% FF and 19.29% efficiency of the solar cell. The other parameter for 
the  MoSe2/CIGS tandem solar cell are  Voc = 0.62 V;  Jsc = 38.69 mA/cm2.
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1 Introduction

There are many sources of renewable energy and solar energy is one of the most abundant of the sources [1, 2]. To harness 
the solar energy, solar radiations are directly converted into electrical energy by using photovoltaic cell which works on 
the photovoltaic effect [3]. There are many different variations of solar cells and the most common among them are the 
cells based on silicon for being cost effective [4, 5] and this has resulted in widespread usage of these solar cells in variety 
of applications [6–9]. The preparation of materials and fabrication of the solar cells with many layers of different materi-
als is costly and time intensive. To investigate the material performance in complex systems, computational techniques, 
numerical method or simulations can be employed. In the present study also, the simulation technique has been applied 
to determine the variation of the properties critical for the performance of the solar cells. The present study demonstrates 
the possibility of the  MoSe2/CIGS tandem solar cells as the possible material combination for the solar cell applications. 
There are lots of experimental [10–12], theoretical [13–15] as well as computational studies [16, 17] about the potential 
materials that can be used in photovoltaic (PV) solar cells. Availability of computers with high computational powers 
and many computational packages, it has become relatively easy to carry out simulations prior to any experiment. In 
this study, the computational study has been undertaken to determine the electrical energy generated by a  MoSe2/CIGS 
tandem solar cell. The electrical energy has been simulated with the variation of amount of solar energy received and 
optimum angle for orientation of the solar panels placed in Batna, Algeria located at 35.56° north, 6.19° east [18–20]. 
This summers in this desert area are longer & with higher temperatures during most of the year. Whereas winters are 
brief, warm with scarce rainfall. The optimum angle of orientation of the photovoltaic generator is kept between l to 
32° with respect to the horizontal. The azimuth of 0° to the south, has been kept throughout the measurement [21, 22].
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2  Material parameters

Figure 1 presents the schematic diagram of the solar cell studied. The schematic diagram shows that the front contacts 
(exposed to light) on the left side, and the rear contacts on the right as simulated by SCAPS-1D convention. According 
to Shockley–Read–Hall (SRH) interface approach, the carriers from the conduction bands (CB) as well as valence bands 
(VB) can contribute in the interface recombination process.

Figure 1 describes different layers of the materials used in a PV device and the conventions. The following parameters 
are employed in this study: solar spectrum AM1.5, P = 100 mW/cm2, and T = 300 K. Details of Materials parameters used 
in SCAPS-1D simulation are given in Table 1.

3  Ant colony optimization algorithm

There are many probabilistic algorithms used to get the global optimal solution for all nonlinear problems and ant colony 
optimization (ACO) is one of these. The ACO was implemented in different studies [23, 24], has been formulated to oper-
ate continuously, and can be easily adjusted to changing in environmental conditions. The main benefit of ACO’s is its 
need of only one combination of voltage and current sensors that increases the system’s reliability at considerably lower 
cost. This also increases the PV system’s efficiency even though it is not applied to the distributed MPPT controllers. It 
has a set of associated parameters with graph components (either nodes or edges) and values of the components can 
be modified at runtime by the ants. The block diagram of the proposed system is shown in Fig. 2.

The probability of an ant to move from node i to j is given below:

whereas Tij is the amount of pheromone on edge i, j; α is a parameter to control the influence of Tij; ηij is the desirability 
of edge i j (typically 1/dij); β is a parameter to control the influence of ηij.

The variation in amount of pheromone is recorded using the following equation:

ρ Pheromone concentration rate (0–1); ΔTij is the amount of pheromone deposited.
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Fig. 1  Structure (Left) and the 
energy band diagram (right) 
of the solar cell simulated by 
using SCAPS-1D ZnO:Al ZnO:Al
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Table 1  Materials Parameters 
used in solar cell simulation

Parameters ZnO SnS MoSe2 CIGS

Thickness (µm) 0.08 0.1 1 1
Eg (eV) 3.4 1.25 1.6 1.2
Na  (cm−3) 1014 1014 1014 1014

Nd  (cm−3) 1020 1020 106 106
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4  Results and discussion

Figure 3 presents the calculated (J–V) characteristic by simulation of  MoSe2 based solar cells having illumination 
below AM1.5 (100 mW/cm2) and T = 300 K. At this stage the optimum thickness of  MoSe2 layer was set to 0.4 µm. 
From the model simulations, the (J–V) curve predicts short-circuit current densities (Jsc) and open-circuit voltages 
(Voc) as 38.69 mA/cm2 and 0.62 V respectively. 

The parameters of the cells deduced from the characteristic (J–V) plot are summarized in the Table 2.
Figure 4 exhibits the amount of global radiations received per unit area of the system by the PV modules through 

a year. The irradiations start increasing from March and the estimated irradiations reach to the maximum (more than 
327 kW/m2) during July. The average daily energy production throughout the year is presented in Fig. 5. The energy 
production mirrors the global irradiations received. The energy production also increases with the increasing of 
received irradiations. The energy production increases with a peak in the month of July that is about 240 Wh/day 
and vice versa. 

Fig. 2  Block diagram of the 
proposed system [25]
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Table 2  Photovoltaic 
parameters of MoSe2/CIGS 
tandem solar cells

Solar cell configuration

Voc (Volt) 0.62
Jsc (mA/cm2) 38.69
FF (%) 80.71
ƞ (%) 19.29
VMPP (Volt) 0.53
JMPP (mA/cm2) 36.61
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5  Conclusion

In this article, the simulation of Monolithic  MoSe2/CIGS tandem solar cells has been implemented successfully by 
employing the Matlab/Simulink. The power output of the Monolithic  MoSe2/CIGS tandem modules increases by get-
ting exposure to light during the first few days of operation. The heat affects the solar panels Therefore; the yields of 
Monolithic  MoSe2/CIGS tandem are high even in desert environments.
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Fig. 4  Estimation of global 
irradiance gathered by the 
modules solar cell
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Fig. 5  Average daily energy 
production throughout the 
year
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