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Abstract
Herein, we review aspects of leading-edge research and innovation in materials science that exploit big data and machine 
learning (ML), two computer science concepts that combine to yield computational intelligence. ML can accelerate the 
solution of intricate chemical problems and even solve problems that otherwise would not be tractable. However, the 
potential benefits of ML come at the cost of big data production; that is, the algorithms demand large volumes of data 
of various natures and from different sources, from material properties to sensor data. In the survey, we propose a road-
map for future developments with emphasis on computer-aided discovery of new materials and analysis of chemical 
sensing compounds, both prominent research fields for ML in the context of materials science. In addition to providing 
an overview of recent advances, we elaborate upon the conceptual and practical limitations of big data and ML applied 
to materials science, outlining processes, discussing pitfalls, and reviewing cases of success and failure.

Keywords Materials discovery · Big data · Machine learning · Deep learning · Evolutionary algorithms · Chemical 
sensors · Internet of Things

1 Introduction

The ongoing revolution with artificial intelligence has the potential to transform society well beyond applications in 
science and technology. A key ingredient is machine learning (ML), for which increasingly sophisticated methods have 
been developed, thus bringing an expectation that within a few decades, machines may be able to outperform humans 
in most tasks, including intellectual tasks. Two converging movements are responsible for the revolution. The first may 
be referred to as “data-intensive discovery” [1], “e-Science”, or “big data” [3,4], a movement wherein massive amounts of 
data are transformed into knowledge. This is attained with various computational methods, which increasingly engage 
ML techniques, in a movement characterized by a transition in which data move from a “passive” to an “active” role. What 
we mean by an “active” role for data is that it is not considered solely to confirm or refute a hypothesis but also to assist 
in raising new hypotheses to be tested at an unprecedented scale. The transition into a fully active role for data will only 
be complete when the computational methods (or machines) are capable of generating knowledge themselves. Within 
this novel paradigm, data must be organized in such a way as to be machine-readable, particularly since computers at 
present cannot “read” and interpret. Attempts to teach computers to read are precisely within the realms of the second 
movement, in which natural language processing tools are under development to process spoken and written text. Sig-
nificant advances in this regard have been recently achieved upon combining ML and big data, as may be appreciated 
by the astounding progress in speech processing [5] and machine translation. Computational systems are still far away 
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from the human ability to interpret text, but the increasingly synergistic use of big data and ML allows one to envisage 
the creation of intelligent systems that can handle massive amounts of data with analytical ability. Then, beyond the 
potential to outperform humans, machines would also be able to generate knowledge–without human intervention.

Regardless of whether such optimistic predictions will become a reality, big data and ML already have a significant 
impact owing to the generality of their approaches. To understand why this is happening, we need to distinguish the 
contributions of the two areas. Working with big data normally requires proper infrastructure, with major difficulties being 
associated with the gathering and curation of much data. In Materials Science, for instance, access to large databases 
and considerable computational power are essential, as exemplified in this review paper in the discussion of sensor 
networks. Standard ML algorithms, on the other hand, can operate on small datasets and in many cases require only 
limited computational resources. Furthermore, there are major limitations in terms of what ML can achieve by virtue of 
fundamental conceptual difficulties.

The goals of ML fall into two distinct types [6]: (i) classification of data instances in a large database, as in image pro-
cessing and voice recognition; (ii) making inferences based on the organization and/or structuring of the data. Needless 
to say, the second goal is much harder to achieve. Let us consider, as an example, the application of ML to identify text 
authorship. In a classification experiment with tens of English literature books modeled as word networks, book authors 
were identified with high accuracy using supervised ML [7]. Nonetheless, it would be impossible with current technol-
ogy to make a detailed analysis of writing style and establish correlations among authors, which would represent a task 
of the second type. This will require considerable new developments, such as teaching computers to read. Today, the 
success of ML stems mostly from applications focused on the first goal, which encompasses most of its applications in 
materials science. Nonetheless, much more can be expected in the next few decades, as we shall comment upon in our 
conclusive Sect. 5.

Considerable work has been devoted to addressing the challenges that arise when materials science meets big data 
and ML. The evolution in computing resources allows scientists to produce and manipulate unprecedented data volumes 
to be stored and managed via algorithms with embedded intelligence [8]. Data processing has become a much more 
complex endeavour than just storage and retrieval, as concepts such as data curation and provenance come into play, 
particularly if the data are to be machine-readable. Materials scientists already employ substantial amounts of machine-
readable data in at least two major fields: in exploring protein databanks and in crystallography. These are illustrative 
examples of machine-readable content that require artificial intelligence.

In this review paper, we discuss two areas in Materials Science that are fundamental on their own but that also comple-
ment each other: ML-based discovery of new materials and ML-based analysis of chemical sensing compounds. The first 
presents the latest techniques to search the space of possibilities given by molecular interactions; the second reviews 
analytical methods to understand the properties of materials when used for sensing. They are complementary since new 
materials can lend sensing capabilities that, in turn, can produce more data to feed algorithmic methods for materials 
discovery. In addition to the acronym ML, we will use the acronyms AI for artificial intelligence, DL for deep learning, and 
DNN for deep neural networks - the latter two used interchangeably.

2  New trends in big data and machine learning relevant to materials sciences

Concepts and methodologies related to big data and ML have been employed to address many problems in materials 
sciences, as emphasized by the illustrative examples that we will discuss in the next sections. A description of the concepts 
and myths targeted at chemists and related professionals is given in the review by Richardson et al. [9]. In this section, 
we briefly introduce such concepts as background to assist the reader in following the paper.

2.1  Big data

The broadly advertised term “big data” has gained attention as a direct consequence of the rapid growth in the amount 
of data being produced in all fields of human activity. The magnitude of this increase is often highlighted even to the 
general public, as in a recent news piece by Forbes, which states that “There are 2.5 quintillion bytes of data created each 
day at our current pace, but that pace is only accelerating with the growth of the Internet of Things (IoT)” [10]. However, 
the term big data is not just about massive data production, a perspective that has popularized it as a jargon filled with 
expectations [3]. Big data also refers to a collection of novel software tools and analytical techniques that can generate 
real value by identifying and visualizing patterns from disperse and apparently unconnected data sources. Nevertheless, 
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to grasp the genuine virtues and potential of big data in materials science, its meaning must be interpreted in connection 
with the specificities of this particular domain. Big data might be understood as a movement driven by technological 
advances that accelerated data generation to a pace sufficiently fast to move it beyond the capacity of existing resources 
centralized in a single company or institution. Although this accelerated pace raises many computational problems, it 
also introduces potential benefits, as innovations induced by big data problems will certainly lead to a range of entirely 
new scientific discoveries that would not be possible otherwise.

In Materials Sciences, big data can be exploited in many ways: in computer simulations, miniaturized sensors, combi-
natorial synthesis, in the design of experimental procedures and protocols with increased complexity, in the immediate 
sharing of experimental results via databases and the Internet, to name a few. In quantum chemistry, for example, there 
exists the ioChem-BD platform [11], a tool to manage large volumes of simulation results on chemical structures, bond 
energies, spin angular momentum, and other descriptive measures. The platform provides inspection tools, including 
versatile browsing and visualization for a minimum level of comprehension, in addition to techniques and tools for 
systematic analysis. In data-driven medicinal chemistry [4], investigators must face critical issues and factors that scale 
with the data, such as data sharing, modelling molecular behaviour, implementation and validation with experimental 
rigor, and defining and identifying ethical considerations.

Big data have often been characterized in terms of the so-called five Vs: volume, velocity, variety, veracity, and value 
[3, 4]. Although it is not a strong definition, this description somehow captures the characteristic properties of the big 
data scenario. As far as volume is concerned, size is relative across research fields – what is considered big in Materials 
Science may be small in computer science; what matters is to what extent the data is manageable and usable by those 
who need to learn from it. Materials Science produces big data volumes by means of techniques such as parallel synthesis 
[12], high-throughput screening (HTS) [13], and first-principle calculations as reported in notorious efforts on quantum 
chemistry [14], molecules in general as in the AFLOW project [15], and organic molecules as in the ANI-1 project [16]. 
Big data volumes in materials science also originate from compilations of the literature and patent repositories [17, 18]. 
Closely related is velocity, which refers to the pace of data generation and may affect the capability of drawing conclu-
sions and identifying alternative experimental directions, demanding off-the-shelf analytical tools to support timely 
summarization and hypotheses validation. Variety refers to the diversity of data types and formats currently available. 
While materials science has the advantage of an established universal language to describe compounds and reactions, 
many problems arise when translating this language into computational models whose usage varies across research 
groups and even across individual researchers. Veracity in Materials Science is closely concerned with the potential lack 
of quality in data produced by imprecise simulations or collected from experiments not conforming to a sufficiently rigid 
protocol, especially when biological organisms are involved. Finally, value refers to the obvious urge for data that are 
trustworthy, precise, and conclusive.

The importance of big data for materials science is highlighted in several initiatives, such as the BIGCHEM project 
described by Tetko et al. [19]. Their work is illustrative of the issues in handling big data in chemistry and life sciences: it 
includes a discussion on the importance of data quality, the challenges in visualizing millions of data instances and the 
use of data mining and ML for predictions in pharmacology. Of particular relevance is the search for suitable strategies 
to explore billions of molecules, which can be useful in various applications, especially in the pharmaceutical industry, 
to reduce the massive cost of identifying new lead compounds [19].

2.2  Machine learning (ML)

In computer science, the standard approach is to use programming languages to code algorithms that “teach” the 
computer to perform a particular task. ML, in turn, refers to implementing algorithms that tell the computer how to 
“learn”, given a set of data instances (or examples) and some underlying assumptions. Computer programs such as 
those deployed over the DL frameworks can then execute tasks that are not explicitly defined in the code. As the very 
name implies, it depends on learning, a process that in humans takes years, even decades, and that often happens 
based on the observation of both successes and failures. It is thus implicit that such learning depends on a large degree 
of experimental support. In its most usual approach, ML depends on an extensive set of successful and unsuccessful 
examples that will mold the underlying learning algorithm. This is where ML and big data collide. The abundance of 
both data and computing capacity has brought feasibility to approaches that would not work otherwise due to a lack 
of sufficient examples to learn from and/or processing power to drive the learning process. In fact, specialists argue that 
data collection and preparation in ML can demand more effort than the actual design of the learning algorithms [20]. 
Nevertheless, solving the issues to build effective learning programs is worthwhile; computers handle datasets much 
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larger than humans can possibly do, as they are not susceptible to fatigue; and, unless mistakenly programmed, they 
hardly ever make numerical errors.

ML is a useful approach to problems for which designing explicit algorithms is difficult or infeasible, as in the case 
of spam filtering or detecting meaningful elements in images. Such problems have a huge space of possible solutions; 
thus, rather than searching for an explicit solution, a more effective strategy is to have the computer progressively learn 
new patterns directly from examples. Many problems in materials science conform to this strategy, including protein 
structure prediction, virtual screening of host-guest binding behaviour, material design, property prediction, and the 
derivation of models for quantitative structure-activity relationships (QSARs). This last one is, itself, an ML practice based 
on classification and regression techniques; it is used, for example, to predict the biological activity of a compound hav-
ing its physicochemical properties as input.

2.3  An overview of deep learning

The latest achievements in ML are related to techniques broadly known as deep learning (DL) achieved with deep neural 
networks (DNNs) [21], which outperform state-of-the-art algorithms in handling problems such as images and speech 
recognition (see Fig. 1a). DL algorithms rely on artificial neural networks (ANNs), a biology-inspired technique in which the 
underlying principle is to approximate complex functions by translating a large number of inputs into a proper output. 
The principles behind DL are not new, dating back to the introduction of the perceptron neural network in 1958. After 
decades of disappointing results in the 1980 and 1990 s, ANNs were revitalised with impressive innovations in 2012 in 
the seminal paper by Krizhevsky et al. [22] and their AlexNet architecture for image classification, inspired by the ideas 
of LeCun et al. [23]. The driving factors responsible for this drastic change in the profile of a 50-year research field were 
significant algorithmic advances coupled with huge processing power (thanks to GPU advances [24]), big data sets, and 
robust development frameworks.

Figure 1 illustrates the evolving popularity of DL and its applications. Figure 1a shows the rate of improvement in the 
task of image classification after the introduction of DL methods. Figure 1b shows the increasing interest in the topic 
in the number of indexed publications by the Institute for Scientific Information, while the increasing popularity of the 
major software packages [24], Torch, Theano, Caffe, TensorFlow, and Keras, is demonstrated in Fig. 1c.

A common method of performing DL is by means of deep feedforward networks or, simply, feedforward neural net-
works, a kind of multiplayer perceptron [25]. They work by approximating a function f*, as in the case of a classifier y = f* 
that maps an input vector x to a category y. Such mapping is formally defined as y = f(x;θ), whereas the network must learn 
the parameters θ that result in the best function approximation. One can think of the network as a pipeline of intercon-
nected layers of basic processing units, the so-called neurons, which work in parallel; each neuron is a vector-to-scalar 
function. The model is inspired by neuroscience findings according to which a neuron receives input from many other 
neurons; each input is multiplied by a weight – the set of all the weights corresponds to the set of parameters θ. After 
receiving the vector of inputs, the neuron computes its activation value, a process that proceeds up to the output layer.

Fig. 1  Facts about deep learning. a The improvement of the image classification rate after the introduction of the AlexNet deep neural net-
work. b The increasing number of publications as indexed by ISI (International Scientific Indexing). c The popularity (Google Trends Score) of 
major deep learning software packages in the current decade: Torch, Theano, Caffe, TensorFlow, and Keras [24]. Elaborated by the authors of 
this paper
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Initially, the network does not know the correct weights. To determine the weights, it uses a set of labelled examples so 
that every time the classifier y = f* misses the correct class, the weights are adjusted by back-propagating the error. During 
this back-propagation, a widely used method to adjust the weights is named gradient descent, which calculates the deriva-
tive of a loss function (e.g., mean squared error) for each weight and subtracts if from that weight. The adjustment repeats 
for multiple labelled examples and over multiple iterations until approximating the desired function. All this process is called 
the training phase, and the abundance of labeled data produced currently has drastically changed the domains in which ML 
can work upon.

With an appropriately designed and complex architecture, possibly consisting of dozens of layers and hundreds of neurons, 
an extensively trained artificial neural network defines a mathematical process whose dynamics are capable of embodying 
increasingly complex hierarchical concepts. As a result, the networks allow machines to mimic abilities once considered to 
be exclusive to humans, such as translating text or recognizing objects.

Once the algorithms are trained, they should be able to generalise and provide correct answers for new examples of 
a similar nature. In such an optimization process, it is important to balance the fit to the training data: overfitting and the 
model will make correct mappings only to the training examples; underfitting and the model will miss even previously seen 
examples. For sensor networks, for example, overfitting produces a very low error in the training set because the model 
encompasses both the noise and the real signal. This often results in a system that generalizes poorly, as the noise is random. 
Therefore, a compromise is required that involves using several different training sets [26] and, most importantly, regulariza-
tion techniques [25].

2.4  The flow path towards data‐based scientific discovery in materials science

Figure 2 illustrates the standard flow path from data production to the outcome of ML. The first step concerns methods to 
produce sufficient data to feed computational learning methods. Such data must initially be analysed by a domain expert, 
who will classify, label, validate, or reject the results of an experiment or simulation. The preprocessing step can be quite 
laborious and critical in that, if not taken rigorously, it might invalidate the remainder of the process or compromise its results. 
Once the data are ready, it is necessary to iterate it over an ML method; such methods require a stage of learning (or training) 
in which the computer learns from the known results provided by the domain expert. During the training step, knowledge 
is transferred from the training data to the computer in the form of algorithmic settings that are specific to each method. A 
model is then learned, i.e., a mathematical abstraction that, if computationally executed, can be applied to new, unseen data 
and produce accurate classifications/regressions and correct inferences as final outcomes of the process.

Fig. 2   The standard flow path of ML, from data production to classification or inference. Elaborated by the authors of this paper
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3  Materials discovery

Using computational tools to discover new materials and evaluate material properties is an old endeavour. For 
instance, DENDRAL, the first documented project on computer-assisted organic synthesis, dates back to 1965 [27]. 
According to Szymkuc et al. [28]. The early enthusiasm observed in the initial attempts waned with successive fail-
ures to obtain reasonable predictive power that could be used to plan organic synthesis, so much so that teaching a 
computer to perform this task was at some point considered a “mission impossible” [28]. However, renewed interest 
has emerged with the enhanced capability afforded by big data and novel ML approaches, particularly since one 
may envisage–for the first time–the possibility of exploring a considerable amount of the space of possible solutions 
defined by the elements in the periodic table and the laws of reactivity. In doing so, the number of possible material 
structures is estimated to be  10100, which is larger than the number of particles in the universe [29]. In this vastness, 
the discovery of new materials must face resource and time constraints [30, 31]. Expensive experiments must be well 
planned, ideally targeting lead structures with a high potential of generating new materials with useful properties. 
The power of ML in materials science offers the greatest potential in this scenario. Of course, this comes at a cost; 
these complex spaces must be mathematically modelled, and a significant number of the representative patterns 
must be available as examples for the ML system to learn from. ML classifiers can then be trained to predict material 
properties, as demonstrated for magnetic materials without requiring first-principles calculations [32].

Predicting material properties from basic physicochemical properties involves exploring quantitative structure-
property relationships (QSPRs), analogous versions of QSAR for nonbiological applications [33–35]. There are many 
examples of ML applied in this domain. For example, the reaction outcomes from the crystallization of templated 
vanadium selenites were predicted with a support vector machine (SVM)-based model where the training set included 
a “dark” portion of unsuccessful reactions compiled from laboratory notebooks [36]. Briefly, SVM refers to a discrimina-
tive classifier formally defined by a separating hyperplane, a widely used technique in ML [8]. The prediction of the 
target compound was attained with a success rate of 89 %, higher than that obtained with human intuition (78 %) 
[36]. For inorganic solid-state materials, atom-scale calculations have been a major tool to help understand material 
behaviour and accelerate material discovery [37]. Some of the relevant properties, however, are only obtained at 
a very high computational cost, which has stimulated the use of data-based discovery. In addition to highlighting 
major recent advances, Ward and Wolverton [37] comment upon current limitations in the field, such as the limited 
availability of appropriate software targeted at the computation of material properties.

In the choice of an outline to describe contributions found in the chemistry literature related to materials discovery, 
we selected a subset of topics that exemplify the many uses of ML.

3.1  Large databases and initiatives

Materials genome initiatives and multi-institutional international efforts seeking to establish a generic platform for 
collaboration [38, 39, 40] set a hallmark for the importance of big data and ML in chemistry and materials sciences. 
A major goal is perhaps to move beyond the trial-and-error empirical approaches prevailing in the past [35]. For 
example, the US Materials Genome Initiative (MGI) (https:// www. mgi. gov/) established the following issues as major 
challenges [41]:

• Lead a culture shift in materials research to encourage and facilitate an integrated team approach;
• Integrate experiment, computation, and theory and equip the materials community with advanced tools and 

techniques;
• Make digital data accessible; and.
• Create a world-class materials workforce that is trained for careers in academia or industry.

To encourage a cultural change in materials research, ongoing efforts intend to generate data that can serve both 
to validate existing models and to create new, more sophisticated models with enhanced predictive capabilities. This 
has been achieved with a virtual high-throughput experimentation facility involving a national network of labs for 
synthesis and characterization [41] and partnerships between academia and industry for tackling specific applica-
tions. For example, the Center for Hierarchical Materials Design is developing databases for materials properties and 

https://www.mgi.gov/
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materials simulation software [41], and alliances have been established to tackle topics such as Materials in Extreme 
Dynamic Environments and Multiscale Modeling of Electronic Materials [41]. There are also studies of composite materi-
als to improve aircraft fuel efficiency and of metal processing to produce lighter weight products and vehicles [41]. 
Regarding the integration of experiment, theory, and computer simulation, perhaps the most illustrative example is 
an automated system designed to create a material, test it and evaluate the results, after which the best next experi-
ment is chosen in an iterative procedure. The whole process was conducted without human intervention. The system 
is already in use to speed up the development process of high-performance carbon nanotubes for use in aircraft [41]. 
Another large-scale program at the University of California, Berkeley, used high-performance computing and state-
of-the-art theoretical tools to produce a publicly available database of the properties of 66,000 new and predicted 
crystalline compounds and 500,000 nanoporous materials [41].

There are cases that require combining different levels of theory and modelling with experimental results, particularly 
for more complex materials. In the Nanoporous Materials Genome Center, microporous and mesoporous metal-organic 
frameworks and zeolites are studied for energy-relevant processes, catalysis, carbon capture, gas storage, and gas- and 
solution-phase separation. The theoretical and computational approaches range from electronic structure calculations 
combined with Monte Carlo sampling methods to graph theoretical analysis, which are assembled into a hierarchical 
screening workflow [41].

An important feature of MGI is the provision of infrastructure for researchers to report their data in a way that it can 
be curated. Programs such as the Materials Data Repository (MDR) and Materials Resource Registry are being developed to 
allow for worldwide discovery, in some cases based on successful resources from other communities, such as the Virtual 
Astronomical Observatory’s registry [41]. This component of the “Make digital data accessible” goal of MGI has already 
provided extensive datasets, e.g., for compounds (~ 1,500 compounds) to be used in electrodes for ion-lithium batter-
ies and over 21,000 organic molecules for liquid electrolytes. These programs ensure immediate access by the industry 
to data that may help to accelerate material development in applications such as hydrogen fuel cells, pulp, and paper 
industry and solid-state lighting [41]. Additionally, the QM database contains the ground-state electronic structures for 
3 million molecules and 10 low-lying excited states for more than 3.5 million molecules (e.g., “water”, “ethanol”, “ethyl 
alcohol”) in the “PubChemQC” project (http:// pubch emqc. riken. jp/) [42]. For this database, the ground state structures 
were calculated with density-functional theory (DFT) at the B3LYP/6-31G* level, while the time-dependent DFT with the 
B3LYP functional and 6–31 + G* basis set was used for the excited states. The project also employs ML (SVMs and regres-
sion) for predicting DFT results related to the electronic structure of molecules.

3.2  Identification of compounds with genetic algorithms

In bioinspired computation, computer scientists define procedures that mimic mechanisms observed in natural settings. 
This is the case for the genetic algorithms [43] inspired by Charles Darwin’s ideas of evolution, which mimic the “survival 
of the fittest” principle to set up an optimization procedure. In these algorithms, known functional compounds are 
crossed over along with a mutation factor to produce novel compounds; the mutation factor introduces new properties 
into the mutations. Novel compounds with no useful properties are disregarded, while those displaying useful proper-
ties (high fitness) are selected to produce new combinations. After a certain number of generations (or iterations), new 
functional compounds emerge with some properties inherited from their ancestors, supplemented with other properties 
acquired along their mutation pathway. Of course, this is an oversimplified description of the process, which depends 
on accurate modelling of the compounds, a proper definition of the mutation procedure, and a robust evaluation of the 
fitness property. The latter may arrive by means of calculations, as in the case of conductivity or hardness, reducing the 
need for expensive experimentation.

In genetic algorithms, each compositional or structural characteristic of a compound is interpreted as a gene. Exam-
ples of chemical genes include the fraction of individual components in a given material, polymer block sizes, monomer 
compositions, and processing temperature. The genome refers to the set of all the genes in a compound, while the 
resulting properties of a genome are named a phenotype. The task of a genetic algorithm is to scan the search space of 
the gene domains to identify the most suitable phenotypes, as measured by a fitness function. The relationship between 
the genome and the phenotype gives rise to the fitness landscape (see Tibbetts et al. [2] for a detailed background). Fig-
ure 3 illustrates a fitness landscape for two hypothetical genes, say, block size and processing temperature of a polymer 
synthesis process whose aim is to achieve high rates of hardness. Note that when exploring a search space, the fitness 
landscape is not known in advance and rarely only bidimensional; instead, it is implicit in the problem model defined 
by the genes’ domains and in the definition of the fitness function. The modelling of the problem is correct if the genes 

http://pubchemqc.riken.jp/
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permit gainful movement over the fitness landscape, while the fitness function correlates with interesting physical 
properties. In the example in Fig. 3, the genetic algorithm moves along the landscape by producing new compounds 
while avoiding compounds that will not improve the fitness. The mechanism of the genetic algorithm, therefore, grants 
it a higher probability of moving towards phenotypes with the desired properties. For a comprehensive review focused 
on materials science, please refer to the work of Paszkowicz [44].

The identification of more effective catalysts has also benefited from genetic algorithms, as in the work by Wolf et al. 
[45] where a set of oxides  (B2O3,  Fe2O3, GaO,  La2O3, MgO,  MnO2,  MoO3, and  V2O5) was taken as the initial population of 
an evolutionary process. Aimed at finding the catalysts that would optimize the conversion of propane into propene 
through dehydrogenation, the elements of the initial set were iteratively combined to produce four generations of 
catalysts. In total, the experiment produced 224 new catalysts with an increase of 9 % in conversion (T = 500 °C,  C3H8/O2, 
p(C3H8) = 30 Pa). A thorough review of evolutionary methods in searching for more efficient catalysts was given by Le 
et al. [29]. Bulut et al. [46] explored the use of polyimide solvent-resistant nanofiltration membranes (phase inversion) to 
produce membrane-like materials. The aim was to optimize the composition space given by two volatile solvents (tetrahy-
drofuran and dichloromethane) and four nonsolvent additives (water, 2-propanol, acetone, and 1-hexanol). This system 
was modeled as a genome with eight variables corresponding to a search space of 9 ×  1021 possible combinations, which 
could not be exhaustively scanned regardless of the screening method. The solution was to employ a genetic algorithm 
driven by a fitness function defined by the membrane retention and permeance. Throughout four generations and 192 
polymeric solutions, the fitness function indicated an asymptotic increase in the membrane performance.

3.3  Synthesis prediction using ML

The synthesis of new compounds is a challenging task, especially in organic chemistry. The search for machine-based 
methods to predict which molecules will be produced from a given set of reactants and reagents started in 1969, with 
Corey and Wipke [47], who demonstrated that synthesis (and retrosynthesis) predictions could be carried out by a 
computing machine. Their approach was based on templates produced by expert chemists that defined how atom 
connectivity would rearrange, given a set of conditions–see Fig. 4. Despite demonstrating the concept, their approach 
suffered from limited template sets, which prevented their method from encompassing a wide range of conditions and 
that would fail in the face of even the smallest alterations.

The use of templates (or rules) to transfer knowledge from human experts to computers, as seen in the work of Corey 
and Wipke, corresponds to an old computer science paradigm broadly referred to as “expert systems” [49]. This approach 
has attained limited success in the past due to the burden of producing sufficiently comprehensive sets of rules capable 
of yielding results over a broad range of conditions, coupled with the difficulty of anticipating exceptional situations. 
Nevertheless, it has gained renewed interest recently, as ML methods may contribute to automatic rule generation tak-
ing advantage of large datasets, as it is being explored, for instance, in medicine [50].

In association with big data, ML became an alternative to extracting knowledge not only from experts but also from 
datasets. Coley et al. [51], for example, used a 15,000-patent dataset to train a neural network to identify the sequence of 
templates that would most likely produce a given organic compound during retrosynthesis. Segler and Waller [52] used 
8.2 million binary reactions (including 14.4 million molecules) acquired from the Reaxys web-based chemistry database 
(https:// www. reaxys. com) to build a knowledge graph, a bipartite directed graph G=(M,R,E), made of two sets of nodes, 
where M stands for the set of molecules and R for the set of reactions, plus one set E of labelled edges, each representing 

Fig. 3  A fitness landscape 
considering two hypothetical 
genes as, for example, block 
size and processing tem-
perature of polymer synthesis. 
Fitness could be hardness, for 
instance. The landscape con-
tains local maxima, a global 
maximum, and a global mini-
mum. The path of a genetic 
algorithm along 11 iterations 
is shown in red. Elaborated by 
the authors of this paper

https://www.reaxys.com
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a role t ∈ {reactant, reagent, catalyst, solvent, product}. A schema of the approach is depicted in Fig. 5. A link prediction ML 
algorithm was employed, which predicts new edges from the characteristics of existing paths within the graph struc-
ture given by edges of type reactant. In the example depicted in Fig. 5b, the reactant path between molecules 1 and 4 
indicates a missing reaction node between them, i.e.,. node D in Fig. 5c. The experiments confirmed a high accuracy in 
predicting the products of binary reactions and in detecting reactions that are unlikely to occur.

Owing to the limitations of ad hoc procedures relying on templates, Szymkuc et al. [28] advocated that for chemical 
syntheses, the chemical rules from stereo- and regiochemistry may be coded with elements of quantum mechanics to 
allow ML methods to explore pathways of known reactions from a large database. This tends to increase the data space 
to be searched. From recent literature, not restricted to the chemical field, DL appears to be the most promising approach 
for successfully exploring large search spaces [53, 54] and for reaching an autonomous molecular design [55]. Schwaller 
et al. [56] used DL methods to predict outcomes of chemical reactions and found the approach suitable to assimilate 
latent patterns for generalizing out of a pool of examples, even though no explicit rules were produced. Assuming that 
organic chemistry reactions sustain properties similar to those studied in linguistic theories [57], they explored state-of-
the-art neural networks to translate reactants into products similarly to how translation is performed from one language 
into another. In their work, a DNN was trained over Lowe’s dataset of US patents, which contains patents applied between 
1976 and 2016 [58], including 1,808,938 reactions described using the SMILES [59] chemical language, which defines a 
notation system to represent molecular structures as graphs and strings amenable to computational processing. Jin’s 
dataset [48], a cleaned version of Lowe’s dataset after removing duplicates and erroneous reactions, with 479,035 reac-
tions, was also used. They achieved an accuracy of 65.4 % for single-product reactions over the entire Lowe’s dataset 
and an accuracy of 80.3 % over Jin’s dataset. Bombarelli et al. [60] also combined the SMILES notation and a DNN to map 
discrete molecules into a continuous multidimensional space in which the molecules are represented as vectors. In such 
a continuous space, it is possible to predict the properties of the existing vectors and predict new vectors with certain 
properties. Gradients are computed to indicate where to look for vectors whose properties vary in the desired way, 
and optimization techniques can be employed to search for the best candidate molecules. After finding new vectors, a 
second neural network converts the continuous vector representation into a SMILES string that reveals a potential lead 
compound. DNNs were also employed to predict reactions with 97 % accuracy on a validation set of 1 million reactions, 
clearly showing superior performance to previous rule-based expert systems [61].

With respect to inorganic chemistry, Ward et al. [62] survey the models to predict the melting points of binary inorganic 
compounds; the formation enthalpy of crystalline compounds; the crystal structures that are likely to form at certain 
compositions; band-gap energies of specific classes of crystals; and the properties of metal alloys regarding mechanical 
features. Nevertheless, according to Ward et al., there are no widely used machine learning models for band-gap energy or 
glass-forming ability, even though large-scale databases with the corresponding properties have been available for years.

Fig. 4  Example of a reaction and its corresponding reaction template. The reaction is centered in the green-highlighted areas (27,28), (7,27), 
and (8,27). The corresponding template includes the reaction center and nearby functional groups. Reproduced with permission from the 
work of Jin et al. [48]
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3.4  Quantum chemistry

The high computational cost of quantum chemistry has been a limiting factor in exploring the virtual space of all possible 
molecules from a quantum perspective. This is the reason why researchers are increasingly resorting to ML approaches 
[63, 64]. Indeed, ML has been used to replace or supplement quantum mechanical calculations for predicting parameters 
such as the input for semiempirical QM calculations [65], modeling electronic quantum transport [66], or establishing a 
correlation between molecular entropy and electron correlation [63]. ML can be employed to overcome or minimize the 
limitations of ab initio methods [67] such as DFT, which are useful to determine chemical reactions and quantum interac-
tions between atoms and molecular and material properties but are not suitable to treat large or complex systems [68].

The coupling of ANNs and ab initio methods is exemplified in the PROPhet project [68] (PROPerty Prophet) for estab-
lishing nonlinear mappings between a set of virtually any system property (including scalar, vector, and/or grid-based 
quantities) and any other property. PROPhet provides, among its functionalities, the ability to learn analytical potentials, 
nonlinear density functions, and other structure-property or property-property relationships, reducing the computa-
tional cost of determining material properties, in addition to assisting in the design and optimization of materials [68]. 
Quantum chemistry-oriented ML approaches have also been used to predict the sites of metabolism for cytochrome 
P450 with a descriptor scheme where a potential reaction site was identified by determining the steric and electronic 
environment of an atom and its location in the molecular structure [69].

ML algorithms can accelerate the determination of molecular structures via DFT, as described by Pereira et al. [70], 
who estimated HOMO and LUMO orbital energies using molecular descriptors based only on connectivity. Another aim 
was to develop new molecular descriptors, for which a database containing > 111,000 structures was employed in con-
nection with various ML models. With random forest models, the mean absolute error (MAE) was smaller than 0.15 and 

Fig. 5  Graph representation of reactions. a Four molecules, 1, 2, 3, and 4, and three reactions, A, B, and C. b The graph representation in 
which the circles represent the molecule nodes, and the diamonds represent the reaction nodes; edges describe the role, reactant, rea-
gent, catalyst, solvent, or product of each molecule in a given reaction. Notice the path, depicted in orange color, made of reactant edges 
between molecules 1 and 4. c The missing reaction node D that was indicated by the reactant path found between 1 and 4. Reproduced 
with permission from the work of Segler and Waller [52]
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0.16 eV for the HOMO and LUMO orbitals, respectively [70]. The quality of estimations was considerably improved when 
the orbital energy calculated by the semiempirical PM7 method was included as an additional descriptor.

The prediction of crystal structures is among the most important applications of high-throughput experiments [71], 
which rely on ab initio calculations. DFT has been combined with ML to exploit interatomic potentials for searching and 
predicting carbon allotropes [72]. In this latter method, the input structural information comes from liquid and amor-
phous carbon only, with no prior information on crystalline phases. The method can be associated with any algorithm 
for structure prediction, and the results obtained using ANNs were orders of magnitude faster than with DFT [72].

With a high-throughput strategy, time-dependent DFT was employed to predict the electronic spectra of 20,000 
small organic molecules, but the quality of these predictions was poor [73]. Significant improvement was attained with 
a specific ML method named Ansatz, which was employed to determine low-lying singlet-singlet vertical electronic 
spectra, with excitation reproduced within ± 0.1 eV for a training set of 10,000 molecules. Significantly, the prediction 
error decreased monotonically with the size of the training set [73]; this experiment opened the prospect for addressing 
the considerably more difficult problem of determining transition intensities. As a proof-of-principle exercise, accurate 
potential energy surfaces and vibrational levels for methyl chloride were obtained in which ab initio energies were 
required for some nuclear configurations in a predefined grid [74]. ML using a self-correcting approach based on kernel 
ridge regression was employed to obtain the remaining energies, reducing the computational cost of the rovibrational 
spectra calculation by up to 90 % since tens of thousands of nuclear configurations could be determined within seconds 
[74]. ANNs were trained to determine spin-state bond lengths and ordering in transition metal complexes, starting with 
descriptors obtained with empirical inputs for the relevant parameters [75]. Spin-state splittings of single-site transition 
metal complexes could be obtained within 3 kcal  mol− 1, an accuracy comparable to that of DFT calculations. In addition 
to predicting structures validated with ab initio calculations, the approach is promising for screening transition metal 
complexes with properties tailored for specific applications.

The performance of ML methods for the given applications in quantum chemistry has been assessed via contests, as 
often done in computer science. An example is the Critical Assessment of Small Molecule Identification (CASMI) Contest 
(www. casmi- conte st. org) [76], in which ML and chemistry-based approaches were found to be complementary. Improve-
ments in fragmentation methods to identify small molecules are considerable and should be further improved in the 
coming years with the integration of further high-quality experimental training data [76].

According to Goh et al. [35], DNNs have been used in quantum chemistry so far to a more limited extent than they 
have in computational structural biology and computer-aided drug design, possibly because the extensive amounts of 
training data they require may not yet be available. Nevertheless, Goh et al. state that such methods will eventually be 
applied massively for quantum chemistry, owing to their observed superiority in comparison to traditional ML approaches 
– an opinion we entirely support. For example, DNNs applied to massive amounts of data could be combined with QM 
approaches to yield accurate QM results for a considerably larger number of compounds than is feasible today [63].

Though the use of DNNs in quantum chemistry may still be at an embryonic stage, it is possible to identify significant 
contributions. Tests have been made mainly with the calculation of atomization energies and other properties of organic 
molecules [35] using a portion of 7,000 compounds from a library of  109 compounds, where the energies in the training 
set were obtained with the PBE0 (Perdew–Burke-Ernzerhof (PBE) exchange energy and Hartree-Fock exchange energy) 
hybrid function [77]. DNN models yielded superior performance compared to other ML approaches since a DNN could 
successfully predict static polarizabilities, ionization potentials and electron affinity, in addition to atomization energies 
of the organic molecules [78]. Significantly, the accuracy was similar to the error of the corresponding theory employed 
in QM calculations to obtain the training set. Applying DNNs to the dataset of the Harvard Clean Energy Project to dis-
cover organic photovoltaic materials, Aspuru-Guzik et al. [79] predicted HOMO and LUMO energies and power conver-
sion efficiency for 200,000 compounds, with errors below 0.15 eV for the HOMO and LUMO energies. DL methods have 
also been exploited in predicting ground- and excited state properties for thousands of organic molecules, where the 
accuracy for small molecules can be even superior to QM ab initio methods [78]. Recent advances in the use of machine 
learning and computational chemistry methods to study organic photovoltaics are discussed in other works [80, 81, 82].

3.5  Computer‐aided drug design

Drug design has relied heavily on computational methods in a number of ways, from computer calculations of quantum 
chemistry properties with ab initio approaches, as previously discussed, to screening processes in high-throughput 
analysis of families of potential drug candidates. Huge amounts of data have been gathered over the last few decades 
with a range of experimental techniques, which may contain additional information on the material properties. This is 

http://www.casmi-contest.org
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the case for mass spectrometry datasets that may contain valuable hidden information on antibiotics and other drugs. 
In the October 2016 issue of Nature Chemical Biology [83], the use of big data concepts was highlighted in the discovery 
of bioactive peptidic natural products via a method referred to as DEREPLICATOR. This tool works with statistical analysis 
via Markov chain-Monte Carlo to evaluate the match between spectra in the database of Global Natural Products Social 
infrastructure (containing over one hundred million mass spectra) with those from known antibiotics. Crucial for the 
design of new drugs are their absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, on which 
the pharmacokinetic profile depends [84]. Determining ADMET properties is not feasible when such a large number of 
drug candidates are to be screened; therefore, computational approaches are the only viable option. For example, predic-
tion results generated from various QSAR models can be compared to experimentally measured ADMET properties from 
databases [85–91]. These models are limited in that they may not be suitable to explore novel drugs, which motivates 
an increasing interest in ML methods, which can be trained to generate predictive models that may discover implicit 
patterns from new data used to determine more accurate models [84]. Indeed, ML predictive models have been used 
to identify potential anti-SARS-CoV-2 drugs, particularly viral proteins as targets [92], and to evaluate drug toxicity [93].

Pires and Blundell developed the approach named pkCSM (http:// struc ture. bioc. cam. ac. uk/ pkcsm), in which the 
ADMET properties of new drugs can be predicted with graph-based structural signatures [84]. In pkCSM, the graphs 
are constructed by representing atoms as nodes, while the edges are given by their covalent bonds. Additionally, the 
labels used to decorate the nodes and edges with physicochemical properties are essential, similar to the approach 
used in embedded networks [5]. The concept of structural signatures is associated with establishing a signature vec-
tor that represents the distance patterns extracted from the graphs [84]. The workflow for pkCSM is depicted in Fig. 6, 
which involves two sets of descriptors for input molecules: general molecule properties and the distance-based graph 
signature. The molecular properties include lipophilicity, molecular weight, surface area, toxicophore fingerprint, and 
the number of rotatable bonds.

QSAR [94–97, 98] as in computer-aided drug design that predicts the biological activity of a molecule, is ubiquitous 
in some of these applications. The inputs are typically the physicochemical properties of the molecule. The use of DL for 
QSAR is relatively recent, as typified in the Merck challenge [99], wherein the activity of 15 drug targets was predicted in 
comparison to a test set. In later work, this QSAR experiment was repeated with a dataset curated from PubChem con-
taining over 100,000 data points, for which 3,764 molecular descriptors per molecule were used as DNN input features 
[100]. DNN models applied to the Tox21 challenge provided the highest performance [101], with 99 % of neurons in the 
first hidden layer displaying significant association with toxicophore features. Therefore, DNNs may be used to discover 
chemical knowledge by inspecting the hidden layers [101]. Virtual screening is also relevant to complement docking 
methods for drug design, as exemplified with DNNs to predict the activity of molecules in protein binding pockets [102]. 
In another example, Xu et al. [103] employed a dataset with 475 drug descriptions to train a DNN to predict whether 

Fig. 6  The workflow of pkCSM 
is represented by the two 
main sources of informa-
tion, namely, the calculated 
molecular properties and 
shortest paths, for an input 
molecule. With these pieces 
of information, the ML system 
is trained to predict ADMET 
properties. Reproduced with 
permission from the work of 
Pires et al. [84]

http://structure.bioc.cam.ac.uk/pkcsm
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a given drug may induce liver injury. They used their trained predictor over a second dataset with 198 drugs, of which 
172 were accurately classified with respect to their liver toxicity. This type of predictor affords significant time and cost 
savings by rendering many experiments unnecessary. This practice in the QSAR domain is potentially useful for the 
nonbiological quantitative structure-property relationship (QSPR) [34], in which the goal is to predict physical proper-
ties departing from simpler physicochemical properties. Despite the existence of interesting works on the topic [75, 79], 
there is room for further research.

A highly relevant issue that can strongly benefit from novel procedures standing on big data and classical ML methods 
is drug discovery for neglected diseases. Cheminformatics tools have been assembled into a web-based platform in the 
project More Medicines for Tuberculosis (MM4TB), funded by the European Union [104]. The project relies on classical ML 
methods (Bayesian modelling, SVMs, random forest, and bootstrapping), collaboratively working on data acquired from 
the screening of natural products and synthetic compounds against the microorganism Mycobacterium tuberculosis.

Self-organizing maps (SOMs) are a particular type of ANN that has been proven useful in a rational drug discovery 
process, where they assist in predicting the activity of bioactive molecules and their binding to macromolecular targets 
[105]. Antimicrobial peptide (AmP) activity was predicted using an adaptive neural network model with the amino acid 
sequence as input data [106]. The algorithm iterated to optimize the network structure, in which the number of neurons 
in a layer and their connectivity were free variables. High charge density and low aggregation in solution were found to 
yield higher antimicrobial activity. In another example of antimicrobial activity prediction, ML was employed to determine 
the activity of 78 sequences of antimicrobial peptides generated through a linguistic model. In this, the model treats 
the amino acid sequences of natural AmPs as a formal language described by means of a regular grammar [107]. The 
system was not efficient in predicting the 38 shuffled sequences of the peptides, a failure attributed to their low specific-
ity. The authors [107] concluded that complementary methods with high specificity are required to improve prediction 
performance. An overview of the use of ANNs for drug discovery, including DL methods, is given by Gawehn et al. [108].

To a lesser extent than for drug design, ML is also being employed for modelling drug-vehicle relationships, which are 
essential to minimize toxicity [109]. Authors employed ML on data from the National Institute of Health’s (NIH) Develop-
mental Therapeutics Program to build classification models and predict toxicity profiles for a drug. That is, they employed 
the random forest classifier to determine which drug carriers led to the least toxicity with a prediction accuracy of 80 %. 
Since this method is generic and may be applied to wider contexts, we see great potential in its use in the near future 
owing to the increasing possibilities introduced by nanotech-based strategies for drug delivery. To realize such potential, 
important knowledge gaps related to nanomaterials, immune responses and immunotherapy will need to be filled [110].

As in many other application areas, beyond materials science or pharmaceutical research, the performance of distinct 
ML methods has been evaluated according to their performance in solving a common problem. It now seems that DL 
may perform better than other ML methods [111], especially in cases where large datasets have been compiled over the 
years. Ekins [111] listed a number of applications of DNNs in the pharmaceutical field, including prediction of aqueous 
solubility of drugs, drug-induced liver injury, ADME and target activity, and cancer diagnosis. In a more recent work, 
Korotcov and collaborators [112] showed that DL yielded superior results compared to SVMs and other ML approaches 
in the prediction ability for drug discovery and ADME/Tox data sets. The results are presented for Chagas disease, tuber-
culosis, malaria, and bubonic plague.

DL has also succeeded in the problem of protein contact prediction [113]. In 2012, Lena et al. [114] superseded the 
previously impassable mark of 30 % accuracy for the problem. They used a recursive neural network trained over a 
2,356-element dataset from the ASTRAL database [115], a big data compendium of protein sequences and relation-
ships. Then, they tested their network over 364 protein folds, achieving the first-time-ever mark of 36 % accuracy, which 
brought new hope to this complex field.

4  Sensor‐based data production for computational intelligence

The term Internet of Things (IoT) was coined at the end of the 20th century to mean that any type of device could be con-
nected to the Internet, thus enabling tasks and services to be executed remotely [116]. In other words, the functioning of 
a device, appliance, etc. could be monitored and/or controlled via the Internet. If (almost) any object can be connected, 
three immediate consequences can be identified: (i) sensing must be ubiquitous; (ii) huge volumes of data will be gen-
erated; (iii) systems will be required to process the data and make use of the network of connected “things” for specific 
purposes. There is a virtually endless list of possible services, ranging across traffic control, health monitoring, surveil-
lance, precision agriculture, control of manufacturing processes, and weather monitoring. In an example of sensors and 



Vol:.(1234567890)

Review Discover Materials            (2021) 1:12  | https://doi.org/10.1007/s43939-021-00012-0

1 3

sensing networks for monitoring health and the environment with wearable electronics, Wang et al. [117] emphasized 
the need to develop new materials for meeting the stringent requirements to develop IoT-related applications.

A comprehensive review on chemical sensing (or IoT) is certainly beyond the scope of this paper, and we shall, there-
fore, restrict ourselves to providing some illustrative examples on how chemical sensors are producing big data to 
make the point that sensors and biosensors are key to providing the data needed to solve problems by means of ML. 
Indeed, methods akin to big data and ML have been employed for analysing data from sensors and biosensors through 
computer-assisted diagnosis for the medical area and other areas where diagnosis relies on sensing devices, such as in 
fault prediction in industrial settings.

4.1  ML in sensor applications

Materials Science is essential for IoT sensing and biosensing, as well as in intelligent systems, for a variety of reasons, 
including the development of new materials for building innovative chemical (and electrochemical) sensing technologies 
(see, for instance, the review paper by Oliveira Jr et al. [118]). In recent decades, increasingly complex chemical sensing 
has produced data volumes from a wide range of analytical techniques. There has been a tradition in chemistry – probably 
best represented by contributions in chemometrics – to employ statistics and computational methods to treat not only 
sensing data but also other types of analytical data. Electronic noses (e-noses) are an illustrative example of the use of 
ML methods in sensing and biosensing [119, 120]. Ucar et al. [121] built an android nose to recognize the odor of six fruits 
by means of sensing units made of metal-oxide semiconductors whose output was classified using the Kernel Extreme 
Learning Machines (KELMs) method. In another work [122], the authors introduced a framework for multiple e-noses with 
cross-domain discriminative subspace learning, a more robust architecture for a wider odor spectrum. Robust e-sensing 
is also present in the work of Tomazzoli et al. [123], who employed multiple classification techniques, such as partial least 
squares-discriminant analysis (PLS-DA), k-nearest neighbors (kNN), and decision trees, to distinguish between 73 samples 
of propolis collected over different seasons based on the UV-Vis spectra of hydroalcoholic extracts. The relevance of this 
study lies in establishing standards for the properties of propolis, a biomass produced by bees and widely employed as 
an antioxidant and antibiotic due to its amino acids, vitamins, and bioflavonoids. As with many natural products, propolis 
displays immense variability, including dependence on the season when it is collected, so that excellent quality control 
must be ensured for reliable practical use in medicine. Automated classification approaches represent, perhaps, the 
only possible way to attain low-cost quality control for natural products that are candidate materials for cosmetics and 
medicines. The quantification of extracellular vesicles and proteins, as biomarkers for various diseases, was achieved with 
a combination of impedance spectroscopy measurements and machine learning [124].

Disease monitoring and control are essential for agriculture, as is the case for orange plantations, particularly when 
diseases and deficiencies may yield similar visual patterns. Marcassa and coworkers [125] took images obtained from 
fluorescence spectra and employed SVMs and ANNs to distinguish between samples affected by Huanglongbing (HLB) 
disease and those with zinc deficiency stress. The ability to process large amounts of data and identify patterns allows 
one to integrate sensing and classifying tasks into portable devices such as smartphones. Mutlu et al. [126], for instance, 
used colored-strip images corresponding to distinct pH values to train a least-squares-SVM classifier. The results indicated 
that the pH values were determined with high accuracy.

The visualization of bio(sensing) data to gain insight, support decisions or, simply, acquire a deeper understanding of 
the underlying chemical reactions has been exploited extensively by several research groups, as reviewed in the papers 
by Paulovich et al. [127] and Oliveira et al. [128]. Previous results achieved by applying data visualization techniques to 
different types of problems point to potentially valuable traits when chemical data are inspected from a graphical per-
spective. Possible advantages of this approach include:

 (i) The whole range of features describing a given dataset of sensing experiments can be used as the input to mul-
tidimensional projection techniques without discarding information at an early stage that might otherwise be 
relevant for a future classification For example, in electrochemical sensors, rather than using information about 
oxidation/reduction peaks, entire voltammograms may be considered; in impedance spectroscopy, instead of 
taking the impedance value at a given frequency, the whole spectrum can be processed to obtain a visualization.

 (ii) Other multidimensional visualization techniques, such as parallel coordinates [129], allow identification of the 
features that contribute most significantly to the distinguishing ability of the bio(sensor).
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 (iii) Various multidimensional projection techniques are available, including nonlinear models, which in some cases 
have been proven to be efficient for handling biosensing data [127]. Such usage is exemplified with an example in 
which impedance-based immunosensors were employed to detect the pancreatic cancer biomarker CA19-9 [130].

The feature selection mechanism used by Thapa et al. [130] performed via manual visual inspection and combined 
with the silhouette coefficient (a measure of cluster quality), was demonstrated to enhance the immunosensor per-
formance. However, more sophisticated approaches can be employed, as in the work by Moraes et al. [131], in which 
a genetic algorithm was applied to inspect the real and imaginary parts of the electric impedance measured by two 
sensing units. The method was capable of distinguishing triglycerides and glucose by means of well-characterized visual 
patterns. Using predictive modelling with decision trees, Aileni [132] introduced a system named VitalMon, designed 
to identify correlations between parameters from biomedical sensors and health conditions. An important tenet of the 
design was data fusion from different sources, e.g., a wireless network, and sensed data related to distinct parameters, 
such as breath, moisture, temperature, and pulse. Within this same approach, data visualization was combined with ML 
methods [133]] for the diagnosis of ovarian cancer using input data from mass spectrometry.

This type of analytical approach is key for electronic tongues (e-tongues) and e-noses, as these devices take the form 
of arrays of sensing units and generate multivariate data [134]. For example, data visualization and feature selection 
were combined to process data from a microfluidic e-tongue to distinguish between gluten-free and gluten-containing 
foodstuffs [135]. ML methods can also be employed to teach an e-tongue whether a taste is good or not, according to 
human perception. This has been done for the capacitance data of an e-tongue applied to Brazilian coffee samples, as 
explained by Ferreira et al. [136]. In that paper, the technique yielding the highest performance was referred to as an 
ensemble feature selection process based on the random subspace method (RSM). The suitability of this method for pre-
dicting coffee quality scores from the impedance data obtained with an e-tongue was supported by the high correlation 
between the predicted scores and those assigned by a panel of human experts.

4.2  Providing data for big data and ML applications with chem/biosensor networks

As discussed, sensors and biosensors are crucial to provide information at the core of big data and ML. Large-scale deploy-
ments of essentially self-sustaining wireless sensor networks (WSNs) for personal health and environment monitoring, 
whose data can be mined to offer a comprehensive overview of a person’s or ecosystem’s status, were anticipated long 
ago [137]. In this vision, large numbers of distributed sensors continuously collect data that are further aggregated, 
analysed, and correlated to report upon real-time changes in the quality of our environment or an individual’s health. At 
present, deployments of chemical WSNs are limited in scale, and most of the sensors employed rely on the modulation 
of physical properties, such as temperature, pressure, conductivity, salinity, light illumination, moisture, or movement/
vibration, rather than chemical measurements. In environmental monitoring, there are examples of relatively large-scale 
deployments that encompass forest surveillance (e.g., GreenOrbs WSN with approximately 5,000 sensors connected to 
the same base station [138]), vineyard monitoring [139–142], volcanic activity monitoring [143], greenhouse monitor-
ing [144, 145], soil moisture monitoring [146], water status monitoring [147], animal migration [148, 149] and marine 
environment monitoring [150, 151], among others [152]. In the wireless body sensor network (WBSN) arena, with over 
two-thirds of the world´s population already connected by mobile devices [153], the potential impact of WSNs and IoT on 
human performance, health and lifestyle is enormous. While numerous wearable technologies specific to fitness, physical 
activity and diet are available, studies indicate that devices that monitor and provide feedback on physical activity may 
not offer any advantage over standard approaches [154]. These studies suggest that ML approaches may be required 
to generate a meaningful and effective improvement in an individual’s lifestyle. However, physical sensors offer only a 
limited perspective of the environmental status or individual’s condition. A much fuller picture requires more specific 
molecular information, an arena where WSNs based on chemical and biochemical sensors are essential to bringing the 
IoT to the next level of impact. In contrast to physical transducers such as thermistors, photodetectors, and movement 
sensors, chemical and biochemical sensors rely on intimate contact with the sample (e.g., blood, sweat or tears in the 
case of WBSN or water or soil in the case of environment-based sensors). These classical chemical sensors and biosen-
sors follow a generic measurement scheme, in which a prefunctionalized surface presents receptor sites that selectively 
bind a species of interest in a sample.

Since the early breakthroughs in the 1960 and 1970 s, which led to the development of a plethora of electrochemical 
and optochemical diagnostic devices, the vision of reliable and affordable sensors capable of functioning autonomously 
over extensive periods (years) to provide access to continuous streams of real-time data remains unrealized. This is 
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despite significant investment in research and the many thousands of papers published in the literature. For example, 
it has been over 40 years since the concept of an artificial pancreas was proposed by combining the glucose electrode 
with an insulin pump [155]. Even now, there is no chemical sensor/biosensor that can function reliably inside the body 
for longer than a few days. The root problem remains the impact of biofouling and other processes that rapidly change 
the response characteristics of the sensor, leading to drift and sensitivity loss. Accordingly, in the past decade, scientists 
have begun to target more accessible media via less invasive means. This is in alignment with the exponential growth 
of the wearables market, which increasingly seeks to expand the current physical parameters to bring reliable chemical 
sensing to the wrists of over 3 billion wearers by 2025 [156].

Likewise, a number of low-cost devices to access molecular information via the analysis of sweat, saliva, interstitial, and 
ocular fluid have been proposed. At their core, these bodily fluids contain relatively high concentrations of electrolytes, 
such as sodium, potassium and ammonium salts, in addition to biologically relevant small molecules, such as glucose, 
lactate, and pyruvate. While the relative concentrations of these compounds in alternative bodily fluids deviate from 
those found in blood, they offer an accessible means to a wide range of clinically relevant data, which can be collated 
and analysed to offer wearer-specific models. Several groups have made significant progress towards the realisation of 
practical platforms for the quantification of electrolytes in sweat in recent years. Integrating ion-selective electrodes with 
a wearable system capable of harvesting and transporting sweat, watch-type devices have shown impressive ability to 
harvest sweat and track specific electrolytes in real time [157], as illustrated in Fig. 7. Similarly, a wearable electrochemi-
cal sensor array was developed by Javey et al. [158]. The resulting fully integrated system, capable of real-time detection 
of sodium, potassium, glucose, and lactate, is worn as a band on the forehead or arm, transmitting the data to a remote 
base station.

Contact lenses provide another means to access a wide range of molecular analytes in a noninvasive manner through 
information-rich ocular fluid. Pioneered by Badugu et al. [159] nearly 20 years ago, a smart contact lens could monitor 
ocular glucose through fluorescence changes. The initial design was further developed to encompass ions such as cal-
cium, sodium, magnesium, and potassium [160]. While the capability of such a device is self-evident, such a restrictive 
sensing mode may ultimately hamper its application. It took several years for significant inroads into flexible electronics 
and wireless power transfer to enable a marriage of electrochemical sensing with a conformable contact lens. Demon-
strated by Park et al. [161] for real-time quantification of glucose in ocular fluid, this platform indicates the potential of 
combining a reliable, accurate chemical sensing method with integrated power and electronics in a noninvasive approach 
to access important clinical data.

Although considerably more invasive than sweat or ocular fluid sensing, accurate determination of biomarkers in 
interstitial fluids has a proven track record. Indeed, the first FDA-approved means for noninvasive glucose monitoring, 
namely, Glucowatch [162], relied on interstitial fluid sampling extracted using reverse iontophoresis with subsequent 
electrochemical detection. This pioneering development from 2001 offered multiple measurements per hour and pro-
vided its wearer with an easy-to-use watch-like interface. Although ultimately hampered by skin irritation and calibration 
issues, it nonetheless signified a milestone in minimally invasive glucose measurements. Continuing with this approach, 

Fig. 7  SwEatch: watch-
sensing platform for sodium 
analysis in sweat. 1: sweat har-
vesting device in 3d-printed 
platform base, 2: fluidic 
sensing chip, 3: electronic 
data logger and battery, and 
4: 3d-printed upper casing. 
Reproduced with permission 
from the work of Glennon 
et al.157
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in 2017, the FDA approved device Abbott Freestyle Libre, which enables the wireless monitoring of blood sugar via 
analysis of the interstitial fluid. On application, the device punctures the skin and places a 0.5 cm fibre wick through the 
outer skin barrier so that interstitial fluid can be sampled and monitored for glucose in real time for up to two weeks, at 
which point it is replaced. Data are accessed using a wireless mobile phone-like base station.

In addition to delivering acceptable analytical performance in the relevant sample media, there are a number of 
challenges for on-body sensors related to size, rigidity, power, communication, data acquisition, processing, and 
security [163], which must be overcome before they can realize their full potential and play a pivotal role in applica-
tions of the IoT in healthcare services.

A similar scenario is faced in the environmental arena, in that (bio)chemical sensing is inherently more expensive 
and complex than monitoring physical parameters such as temperature, light, depth, or movement. This is strik-
ingly illustrated in the Argo Project, which currently has ca. A total of 3,000–4,000 sensorized ‘floats’ are distributed 
globally in the oceans, all of which track location, depth, temperature, and salinity. These were originally devised 
to monitor several core parameters (temperature, pressure, and salinity) and share the data from this global sensor 
network via satellite communications links to provide an accurate in situ picture of the ocean status in real or near 
real time. Temperature and pressure data are accurate to ± 0.002 °C, and uncorrected salinity is accurate to ± 0.1 psu 
(can be improved by relatively complex and time-consuming postacquisition processing). Interestingly, an increasing 
number of floats now include ‘Biogeochemical’ sensors (308, ca. 10 %, April 2018) for nitrate (121), chlorophyll (186), 
oxygen (302) and pH (97); see http:// www. argo. ucsd. edu and the maps in Fig. 8. Of these, nitrate is measured by direct 
UV absorbance, and chlorophyll is measured by absorbance/fluorescence at spectral regions characteristic of algal 
chlorophyll. These are optical measurements rather than conventional chemical sensor measurements. Moreover, it 
is likely that most, if not all, of the pH measurements are performed using optically responsive dyes rather than the 
well-known glass electrode. This strikingly demonstrates that chemical sensors are avoided when long-term, reliable 
and accurate measurements are required from remote locations and hostile environments. It is also striking that more 
complex chemical and biological measurements (i.e. ; that require analysers incorporating reagents, microfluidics, 
etc.) are not included in the Argo project. These autonomous analyzer platforms for tracking key parameters such as 
nutrients, concentration of dissolved oxygen (COD), pH, heavy metals, and organics typically cost €15 K or more per 
unit to buy, not including service and consumable charges. For example, the Seabird Electronics dissolved oxygen 
sensors used in the Argo project cost $60 K each [164], and Microlab autonomous environmental phosphate analys-
ers cost ca. €20K per unit; i.e. they are far too expensive to use as basic building blocks of larger-scale deployments 
for IoT applications.

Progress towards realizing disruptive improvements is encouraged by competitions organised by environmental 
agencies such as the Alliance for Coastal Technologies (http:// www. act- us. info/ nutri ents- chall enge/ index. php), who 
launched the ‘Global Nutrient Sensor Challenge’ in 2015. The purpose was to stimulate innovation in the sector, as 
participants had to deliver nutrient analysers capable of 3 months of independent in situ operation at a maximum 

Fig. 8  Distribution of sensorised floats monitoring the status of a variety of ocean parameters that encompass core parameters (tempera-
ture, velocity/pressure, salinity) and biogeochemical sensing (e.g., oxygen, nitrate, chlorophyll, pH). Reproduced with permission from the 
Argo documentation [165]

http://www.argo.ucsd.edu
http://www.act-us.info/nutrients-challenge/index.php
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unit cost of $5,000. The ACT estimated that the global market for these devices is currently ca. 30,000 units in the 
USA, and ca. 100,000 units globally (i.e. ca. $500 million per year). This is set to expand further as new applications 
related to nutrient recovery grow in importance (e.g., from biodigester units and wastewater treatment plants), driven 
by the need to meet regulatory targets and business opportunities linked to the rapidly increasing cost of nutrients.

4.3  Prospects for scalable applications of chemical sensors and biosensors

From the discussion so far, it is clear that there are substantial markets in personal health and environmental monitor-
ing and other sectors for reliable chemical sensors and biosensors that are fit for purpose with an affordable use model. 
While progress has been painfully slow over the past 30–40 years, since the excitement of early promising breakthroughs 
[166], the beginnings of larger-scale use and a tentative move from single-use or centralised facilities towards real-time 
continuous measurements at point of need are now apparent. As this trend develops, the range and volume of data 
collected will rise exponentially, and new types of services will emerge, most likely borrowing ideas and models from 
existing applications, such as the myriad of products for personal exercise tracking, merged with new tools designed to 
deal with the more complex behaviour of molecular sensors.

In the health sector, this will support an expansion in the rollout of remote services due to the increasing availability of 
wearable/implantable diagnostic and autonomous drug delivery platforms that operate in a closed-loop control mode 
with real-time tracking of key biomarkers [167]. Of course, these services will be linked to an overarching personalized 
health informatics framework that enables healthcare professionals to monitor individual status remotely and triggers 
escalations in response if thresholds are breached or a future issue is predicted from data trends. Machine learning has 
already played a role in the diagnosis of SARS-CoV-2 responsible for the COVID-19 pandemic [168].

Likewise, in the environmental sector, unit costs for autonomous chemical analysers for water monitoring remain 
stubbornly high, constituting a significant barrier to scale up, particularly when coupled with a high cost of ownership 
due to frequent service intervals. This is a frustrating situation, as the tremendous benefits of long-term autonomous 
sensing of key status indicators in the health and water sectors are clear. For example, low-cost, reliable water quality 
analysers would revolutionise the way drinking, waste, and natural waters are monitored. Combining in situ, real-time 
water sensing with satellite/flyover remote sensing represents an immensely powerful development due to the tremen-
dous enhancement of the integrated information content when the global scale of satellite sensing is coupled with the 
detailed molecular information generated by in situ deployed sensors and analyzers [169]. The scale of data generation 
from satellite remote sensing is already staggering, already reaching 21.1 PBs (petabytes) by 2015 and continuing to 
grow exponentially [170]. As Kathryn Sullivan, NOAA1 Administrator and Under Secretary of Commerce for Oceans and 
Atmosphere, and former NASA astronaut commented recently, “NOAA observations alone provide some 20 terabytes every 
day—twice the data of the Library of Congress’ entire print collection”. She also commented on the importance of devel-
oping new tools and collaborations to realise the value of the encoded information: “Just 20 years ago, we were piecing 
together data points by hand. Five years ago, 90 % of today’s data had yet to be generated. Now we’re innovating in the cloud, 
experiencing Earth with a wider lens and in fresh new ways. NOAA (National Oceanic and Atmospheric Administration) is part-
nering with Amazon, Microsoft, IBM, Google, and the Open Commons Consortium to tap that potential.” The global coverage 
acquired with an increasingly fine spatial resolution, multiple spectral band sensors, and increasing numbers of satellites 
is driving this tremendous increase in the scale of data production. However, the benefits are already being realized, for 
example, through studies that couple highly localised data with large-scale coverage. For example, ecological models 
have been tested and used to visualize stratification dynamics in 2,368 lakes [171] and daily temperature profiles for 
almost 11,000 lakes [172]. In the latter case, the models have also been used to predict future water temperatures. In the 
near future, we are certain to see larger-scale in situ sensing networks, as new technologies emerge that combine lower 
unit cost with much longer service intervals. New data analysis and visualization tools will be required to enable these 
highly complementary information sources to be combined to maximize the effect.

Similarly, real-time tracking of disease markers could be coupled with smart drug delivery platforms. However, sig-
nificant fundamental barriers still exist and must be surmounted if this revolution in sensing is to be realised. The most 
formidable is how to maintain and validate system performance during extended use (typically a minimum of 3 months 
for water monitoring and at least several years, preferably 10 years or more for implantables) [173]. In situ performance 

1 https:// learn. arcgis. com/ en/ arcgis- image ry- book/ chapt er8/# ‘Learn-More’.
 Available from the Environmental Systems Research Institute (ESRI).

https://learn.arcgis.com/en/arcgis-imagery-book/chapter8/#
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validation involves calibration, requiring fluidics and storage of standards/reagents. All components and solutions must 
function reliably for the service interval. Progress in water monitoring systems is easier as the interval is shorted and 
systems are more accessible, with a larger footprint. For implantables, however, the challenges are daunting, and in 
recent years, researchers have therefore focused on noninvasive/minimally invasive on-body use models as described 
above [158].

If devices capable of meeting the challenge of long-term reliable chemical/biological sensing could be realised, it 
will represent a keystone breakthrough upon which multiple applications with revolutionary impact on society could 
be built. It will require informatics systems and tools to process, filter, recognise patterns and events, and communicate 
with related data from personal, group and, ultimately, to societal levels, from a single location to global scale. Perhaps 
when this happens, we will witness at last the emergence of true internet-scale sensing and control via chemical sensors 
and biosensors, effectively creating a continuum between the molecular and digital worlds [174].

5  Concluding remarks: limitations and future prospects

Throughout this review, we adopted an optimistic tone regarding the recent advances and prospects for the use of big 
data and ML in materials science and related applications. We believe such optimism is justified by the proliferation of 
projects – in academia and industry–dedicated to developing artificial intelligence applications in several fields, including 
materials science. We take the view that, with massive investment and with so much at stake in the economy of corpora-
tions and countries, this ongoing AI-based revolution is unlikely to stop, with many positive prospects for the near future 
focused on materials science. Before discussing them, let us concentrate on the limitations and challenges to be faced 
by chemists and their collaborators in the short- and long-term futures of this revolution.

5.1  The state of the art

In describing the potential and effective use of big data and ML in Sect. 3, we did not conduct a critical analysis of the 
examples from the literature. Apart from a few exceptions, we restricted ourselves to highlighting the potential useful-
ness of these methodologies for several areas of materials science, with emphasis on materials discovery. We considered 
that identifying limitations (or even deficiencies) in the approaches adopted in specific cases has limited value in view of 
the underlying conceptual difficulties to be faced in paving the way for more expressive advances in materials science 
supported by big data and ML.

In particular, in the Introduction to this paper, when considering the two types of goals in applying ML, we emphasized 
that one of them is much harder to reach. According to Wallach [6], the two categories of goals are related to “predic-
tion” and “explanation”. In the prediction category, observed data are employed to reason about unseen data or missing 
information. For the explanation category, the aim is to find plausible explanations for observed data, addressing “why” 
and “how” questions. As Wallach puts it, “models for prediction are often intended to replace human interpretation or reason-
ing, whereas models for explanation are intended to inform or guide human reasoning”. Regardless of all the recent results 
attained with ML, as we may recapitulate from Sect. 3, the examples found in chemistry are not necessarily useful to guide 
human reasoning. Despite the quality and usefulness of the results obtained in various studies conducted for “predic-
tion” purposes, the application of ML to generalize and bring entirely new knowledge to materials science is still to be 
realized, as confirmed from a quick inspection of the examples discussed in this paper and in a recent review paper [175].

Furthermore, even in the state of the art of AI and ML, there are no clear hints as to whether and how uses will be 
possible within the “explanation” category, not only for materials science but also for other areas. These limitations have 
been discussed in a proposal to employ AI and uncertainty quantification to obtain correctable models [176] and in iden-
tifying domains where ML is applicable more efficiently [177]. One may speculate that the answer may result from the 
convergence of the two big movements mentioned in the Introduction – big data and natural language processing–but 
the specifics of the solutions are far from established. It is likely, for instance, that a theoretical framework is required to 
guide experimental design for data collection and to provide conceptual knowledge and effective predictive models 
[132]. On the other hand, current limitations mean that the full potential of ML in materials science has yet to be realized.
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5.2  Pitfalls

Critical issues also stem from the combination of ML with big data. That is, to what extent having much data to learn from 
is an actual benefit? The overall principle common to big data and ML is that of abandoning physical-chemical simulations 
that might be infeasible due to the demands of a molecule-to-molecule relationship computation. The workaround is 
to use formulations and/or high-level material properties to feed ML techniques and teach them to identify patterns; in 
summary, a trained ML algorithm will work by mapping known physical properties into unknown physical properties. 
From this perspective, ML may be taken as a curve fitting technique capable of exploring search spaces way larger than 
those that could be handled by noncomputational approaches. This course of action has actual potential in predicting 
useful chemical compounds, but some ML techniques, notably DL methods, are not readily interpretable with respect 
to their mechanism of action. This fact raises two concerns. First, a chemist learns little or nothing about what caused a 
given set of outputs, which does not contribute to advancing the field as a principled science. Second, unlike computer 
vision or speech recognition problems, in which the outputs are directly verifiable, the outputs of ML in materials sci-
ence may be biased by a limited training set or even totally distorted by an ill-defined model. Nevertheless, the chemist 
might take them for granted or, otherwise, take a long time before actually identifying the flaws. Again, such problems 
are not exclusive to the interplay between materials science and ML; in fact, they raise growing concerns and motivate 
ongoing investigations on how to enhance the interpretability of the representations created by these algorithms [178].

Other limitations stem from practical issues in connection with big data. Such methodologies do not apply to a 
variety of problems in materials science, where the need to collect and curate high-quality data and the computational 
infrastructure required may pose major challenges. Critical problems have been mentioned in the discussion of sensors 
and biosensors in Sect. 4. To work efficiently, most learning algorithms require a reasonably large set of known exam-
ples. While the cost of collecting, e.g., thousands of images and/and millions of comments in a social network, is nearly 
negligible, experiments in Materials Science might demand reagents, enzymes, compounds, combined with significant 
protocolled labour, and time to observe and annotate the results. As a possible consequence, computational techniques 
may lack the minimum amount of data necessary to produce trustful models. Rather than saving time and resources, the 
reverse may happen, leading to increased costs due to unwittingly applied erroneous procedures.

5.3  Challenges and prospects

In an additional challenge, many societal issues must be addressed to ensure the proper use of big data, including impor-
tant ethical and privacy preservation questions. Take, for instance, the case of computer-assisted clinical diagnosis, which 
relies heavily on data from sensors and biosensors. As pointed out by Rodrigues-Jr et al. [50], an important obstacle to the 
thorough integration of databases is not related to the lack of technology but, rather, to commitments from individuals 
and institutions to work together in establishing acceptable procedures for data curation and privacy preservation and 
to avoid abusive or inadequate usage of medical data. The same holds in Materials Science.

In contrast to our approach regarding the uses of big data and ML in materials science, in reviewing the importance 
of sensors and biosensors to developing IoT and similar applications, we provided a critical analysis of the advances and 
limitations in the field. The prospects for the future depend on behavioral issues as well as scientific challenges. We hope 
that the acquired popularity of big data and ML may raise the awareness of researchers and developers on the importance 
of how they treat, preserve and analyze their data. We advocate that ML and other computational tools should already 
be in routine use not only by those working on sensors and biosensors but also in topics not traditionally considered 
sensing. The latter include various types of spectroscopy and imaging– which generate massive amounts of data. We 
believe there is a gap between the wide range of techniques available for data management and analysis and their actual 
use in the daily practice of many research and development facilities. This may be due to a combination of factors, such 
as a slow pace of dissemination of novel techniques, lack of a theoretical framework to guide the choice of techniques, 
and limited availability of accessible and usable implementations. Regardless of the reasons, increased awareness of this 
issue and more informed use of existing methodologies is an important step to reinforce progress.

As for the prospects for big data and ML for Materials Science in the next few years, it is self-evident that considerable 
advances can be attained by extending research efforts on predicting material properties, database-supported material 
design, identification of suitable compounds with genetic algorithms, synthesis prediction using DL, computer-aided 
drug design, and the determination of density-functional properties using alternative machine learning algorithms 
instead of calculations. One may, for instance, envisage searching for drugs and drug targets by harnessing the whole 
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body of medical literature as a complement to applying those almost entirely chemistry-oriented approaches. An exam-
ple of such a system is already being tested with a version of the Watson supercomputer [179], which deals with text in 
scientific papers and patents, in addition to considering pharmacological, chemical, and genomics data. The rationale 
behind the Watson approach is to establish connections in millions of text pages in a huge database of molecular proper-
ties. A similar approach was used to process toxicity data to predict the activity of chemical compounds [180]. Cases of 
enhanced prediction with clinical chemistry data were illustrated by Richardson et al. [9], who employ ML methods with 
large datasets for diseases such as hepatitis B and C. Nonetheless, the major goal of reaching truly intelligent systems to 
solve problems in chemistry beyond those of classification types will require the convergence of big data and ML within 
schemes that allow one to interpret and explain the results. This is a major challenge not only for materials science but 
also for any area of science and technology.
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