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Abstract
Morphogenesis of the silica based cell walls of diatoms, a large group of microalgae, is a paradigm for the self-assembly 
of complex 3D nano- and microscale patterned inorganic materials. In recent years, loss-of-function studies using genetic 
manipulation were successfully applied for the identification of genes that guide silica morphogenesis in diatoms. These 
studies revealed that the loss of one gene can affect multiple morphological parameters, and the morphological changes 
can be rather subtle being blurred by natural variations in morphology even within the same clone. Both factors severely 
hamper the identification of morphological mutants using subjective by-eye inspection of electron micrographs. Here 
we have developed automated image analysis for objectively quantifying the morphology of ridge networks and pore 
densities from numerous electron micrographs of diatom biosilica. This study demonstrated differences in ridge network 
morphology and pore density in diatoms growing on ammonium rather than nitrate as the sole nitrogen source. Fur-
thermore, it revealed shortcomings in previous by-eye evaluation of the biosilica phenotype of the silicanin-1 knockout 
mutant. We anticipate that the computational methods established in the present work will be invaluable for unraveling 
genotype–phenotype correlations in diatom biosilica morphogenesis.

1  Introduction

Diatoms represent a large group of unicellular, eukaryotic microalgae that biosynthesize silica based cell walls. The 3D 
nano- to microscale architecture of the biosilica is a species specific trait indicating that its morphology is genetically 
controlled [1]. The intricate and highly regular, hierarchical porous patterns of diatom biosilica are regarded as paradigms 
for the bottom-up synthesis of mineral based materials under environmentally benign conditions [2–4]. Furthermore, 
diatom biosilica microparticles have interesting materials properties that can be exploited for a wide range of applications 
in photonics, chemical sensing, catalysis and drug delivery [5–8]. The diatom cell wall consists of two halves of identical 
structures that are arranged in a petri-dish like arrangement. The slightly larger half (epitheca) overlaps the other half 
(hypotheca). Each theca is composed of a plate- or dome-shaped valve, exhibiting a species specific silica pattern, and 
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several ring-shaped girdle bands. The biosilica is perforated with numerous, usually regularly arranged pores enabling 
a light-weight yet mechanically robust architecture and the exchange of ions and molecules with the environment [9, 
10]. The formation of valves and girdle bands takes place inside diatom cells in specialized compartments called silica 
deposition vesicles (SDVs) [11]. Apart from amorphous SiO2 as the main component, biosilica contains proteins, long-
chain polyamines (LCPA), and polysaccharides [12–14].

In recent years, genetic manipulation studies have identified genes involved in biosilica morphogenesis in the radial 
centric model diatom Thalassiosira pseudonana. Individual knockdowns of each of the genes sap1, sap2 and sap3 resulted 
in various aberrations in biosilica morphology [15]. Knockdown of the gene Thaps3_21880 caused a reduction of the 
pore density while increasing the mean area of the same [16]. Knockout of the silicanin-1 gene (sin1) had affected valve 
morphology and caused substantially reduced strength and stiffness of the cell wall [17]. Besides such targeted genetic 
modifications, the effect of many external parameters on biosilica morphology was investigated. These include, drug-
based inhibition of cytoskeleton function [18–22] and of a V-type H+-ATPase [23], as well as controlled changes in (i) 
salinity and pH of the growth medium [24, 25], (ii) growth temperature [26], and (iii) light wavelength as well as intensity 
[27, 28] (iv) the insertion of metals such as titanium into the biosilica [29, 30]. In most of these studies a multitude of 
structural changes was observed upon alteration of only one gene or one environmental parameter. Furthermore, some 
of the morphological changes were rather subtle and somewhat heterogeneous among individual cells even from the 
same clone. As a consequence, biosilica morphology changes were prone to biased interpretation or might even have 
been overlooked. To eliminate such problems, unbiased, automated, and quantitative computational analysis tools are 
required that enable thorough and impartial evaluation of the effects on biosilica structure by gene disruptions and 
external perturbations.

Previous work applied supervised learning for the analysis of scanning electron microscopy (SEM) images of the 
biosilica ridge pattern of the valves of T. pseudonana [26]. This led to the identification of a phenotype switch from a 
mesh-like to a tree-like ridge pattern in cells that were depleted of silicic acid, the precursor for silica [26]. Artificial neural 
networks (NNs) were used to identify in SEM images slight structural differences between the valves from T. pseudonana 
wild type and the Thaps3_21880 gene knockdown mutant [16]. However, although NNs can be used to determine if any 
morphological differences exist between multiple groups of images, they do not reveal what the specific morphological 
differences are. As a consequence, NNs offer little aid in reaching a mechanistic understanding of biosilica morphogenesis. 
Therefore, it is desirable to develop computational methods that not only enable rapid and unbiased in-depth analysis 
of diatom biosilica phenotypes, but also point to an understanding of the mechanisms that create them.

A key goal of diatom based materials synthesis is the development of cell lines that produce biosilica with structures 
and properties tailored for specific applications. Recently, a genetic engineering based method called live diatom silica 
incorporation (LiDSI) was established that allows for generating diatom strains, which contain desired fluorescent pro-
teins, receptor proteins, or enzymes in the biosilica [31]. While biosilica functionalization using LiDSI is well developed 
and even enables regioselective incorporation of proteins [32], the genetic engineering of biosilica structure is still in its 
infancy. Only quite recently, the first genetically induced morphological mutants were generated in diatoms through 
knockdown and knockout of specific genes [15, 17]. One of the mutants (Sin1KO), which was generated by knocking out 
the sin1 gene in T. pseudonana, exhibited a pleiotropic phenotype. Tedious manual inspection of transmission electron 
microscopy (TEM) and atomic force microscopy images revealed differences in the height and number of cross-connec-
tions between the ridges in the valves [17]. The analysis of other structural parameters was not pursued.

Here we describe the development of two complementary computational approaches for impartial and quantitative 
in-depth image analysis of valve biosilica morphology. These tools were then applied to quantify and compare the influ-
ence of growth conditions and sin1 gene knockout on biosilica morphology of T. pseudonana.

2 � Results

As test cases for developing computational tools for the analysis biosilica phenotypes we chose wild type cells and three 
previously described sin1 knockout mutants of T. pseudonana (KO1, KO2, KO3), which exhibited subtle changes in biosilica 
morphology [17]. The four strains were cultivated under two growth conditions, in which nitrate (nit) or ammonium (am) 
served as the sole nitrogen source. The reason for varying the nitrogen source is the fact that the nitrate reductase pro-
moter/terminator cassette, Pnr/Tnr, is the only well-established inducible promoter in diatoms [33]. When an introduced 
gene is placed under control of Pnr/Tnr, it is repressed when the cells are grown in medium containing ammonium as the 
sole nitrogen source [34]. Expression of the transgene is induced when the cells are transferred into nitrate containing 
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medium that lacks ammonium [34]. The type of nitrogen source exerts large scale effects on metabolism [35], yet it is 
unknown whether this has an effect on silica morphogenesis. We envision that use of the inducible Pnr/Tnr cassette may 
become useful for evaluating the effect of candidate genes suspected to be involved in silica morphogenesis. Therefore, 
it needs to be clarified whether or not biosilica morphology is influenced by the metabolic changes that are elicited 
solely through changing the nitrogen source in the growth medium.

2.1 � Imaging of valves

Morphological analyses in the present work were entirely focused on the valve part of the biosilica, which is the structur-
ally most elaborate part of a diatom cell wall. To prepare valves of wild type (WT) cells and sin1 knockout strains for trans-
mission electron microscopy (TEM), cell walls were isolated, valves were severed from the cell walls by mild ultrasound 
treatment, and the samples air dried on a TEM grid. The valves remained largely intact during the preparation procedure 
but frequently contained small cracks. T. pseudonana valves exhibit five main structural features: fultoportulae, costae, 
cross-connections, areola pores, and cribrum pores. A fultoportula is a tubular structure surrounded by three or four 
satellite pores. Fultoportulae are regularly spaced near the valve rim (Fig. 1a, yellow circles), and in about ~ 50% of the 
valves one or two fultoportulae are present slightly off the valve center (Fig. 1a, yellow circle). The valve surface contains 
numerous silica ridges that radiate from the valve center and branch multiple times forming a highly interconnected 
meshwork (Fig. 1). A radially oriented ridge is called a costa (Fig. 1a, green) and an azimuthally oriented one is called a 
cross-connection (Fig. 1a, orange). A region bounded by adjacent cross-connections and costa segments is called an 
areola pore, which typically exposes a trapezoid shape (Fig. 1a, cyan). Inside each areola pore are several circular open-
ings termed cribrum pores (Fig. 1a). Visual inspection of transmission electron microscopy (TEM) images revealed that 
the sin1 knockout mutants exhibited a reduced number of cross-connections compared to the valve of wild type cells, 

Fig. 1   TEM images of valve 
biosilica from T. pseudo-
nana wild type (WT) and a 
representative sin1 knockout 
mutant (KO1) grown in media 
containing different nitro-
gen sources. Representative 
images of individual valves 
are shown for the indicated 
strains (see top right corner). 
The indices nit (for nitrate) 
or am (for ammonium) refer 
to the sole nitrogen source 
in the growth medium. a WT 
grown in nitrate. Character-
istic structural features of 
the biosilica are highlighted: 
green = costa, orange = cross-
connection, cyan = areola 
pore, yellow = fultoportula. b 
WT grown in ammonium, c 
KO1 grown in nitrate, d KO1 
grown in ammonium. Scale 
bars: 1 µm
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as expected (Fig. 1 and Additional file 1: Fig. S1). The reduction in cross-connections was apparent for valves from both 
nitrate and ammonium grown cells (Fig. 1c, b and Additional file 1: Fig. S1). When comparing WT valves from cells grown 
on different nitrogen sources, the cross-connections seem to be less pronounced in the valves from ammonium growing 
cells (Fig. 1a, b). In sin1 knockout strains, the cribrum pore densities seemed to be lower in valves from ammonium grown 
cells compared to valves from nitrate grown cells (Fig. 1c, d and Additional file 1: Fig. S1). However, the differences in the 
expression of cross-connections and in cribrum pore densities are not equally obvious from each individual valve. As 
these features are difficult to assess manually, we aimed to develop computational methods for their automated quan-
titative analysis. The number of valves from each strain included in the analysis is shown in Additional file 1: Table S1.

2.2 � Automated analysis of the ridge morphology of valves

To quantify valve morphology, we focused on the pattern of silica ridges (costae and cross-connections), which are 
thickenings of the cell wall that appear as a network of dark lines in TEM images (Fig. 1). We aimed to extract the 
ridge network as a pixel-thin skeleton image representation. However, extraction of the skeleton is challenging as 
the contrast of the ridge network varies widely between images, indicating differences in the thickness of the ridges 
in the valves from different strains (Fig. 1). Indeed, it was previously demonstrated that Sin1KO strains had reduced 
silica content and less elevated costae [17]. To deal with the challenging contrast issue, we developed two different 
approaches to extract ridge networks. In the first approach, we implemented an adaptive thresholding method, 
which uses local contrast differences to extract a binary image from the TEM data. This method mainly detects ridges 
with high local contrast, which is likely indicative of high silicification. In the following, we refer to the skeletons 
generated with this method as “type 1 skeletons” (Fig. 2b). Type 1 skeletons extracted from low-contrast images are 
typically fragmented. However, it is known that during valve formation, the ridges develop as a continuous branched 
network, with cross-connections between branches appearing at later stages of development [36, 37]. To recover 
this continuous branching structure, we developed a second approach, designed to extract a connected (i.e. non-
fragmented) skeleton even from low-contrast images (Fig. 2c). This approach relies on a so-called “ridge detection 
image filter”, which can identify dark lines of a chosen thickness by estimating the “main principal curvature” at each 
point in the image. If the pixel values (gray levels) represented elevation in the landscape, the ridge detection filter 
would measure the largest vertical curvature at each point, and could thus identify geographical ridges of the chosen 
broadness, regardless of gradual changes in elevation along the ridgelines. In contrast, thresholding would identify 

Fig. 2   Analysis pipelines for 
the characterization of the 
ridge pattern of a valve. a The 
region of interest is identi-
fied as a circle that is interior 
to the circular pattern of the 
fultoportulae at the rim. The 
ridge pattern is extracted as b 
type 1 skeleton (maintaining 
high-contrast features) and c 
type 2 skeleton (maintaining 
connectedness). d Cross-
connections are identified 
based on their orientation and 
length in both skeletons
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places of high elevation. We refer to the skeletons it generates as “type 2 skeletons”. The two skeleton extraction 
approaches produce similar results from high-contrast images, but differ when used for low-contrast images (Fig. 3).

Once the ridge network is extracted, several of its features can be measured. In earlier work, valve morphology 
was quantified by manually counting the number of cross-connections per valve [17]. Therefore, the first feature 
we analyzed in the extracted skeletons was the number of “geometric cross-connections”, defined as valve ridges 
oriented in an azimuthal direction (Fig. 2d). We developed an algorithm to classify parts of the network as belong-
ing to costae or cross-connections. Each segment of the ridge network was classified based on a geometric crite-
rion: the angle it forms with a line connecting it to the valve’s centerpoint. Segments oriented at an angle smaller 
than a threshold (here: 45°) were considered to be parts of costae, while those forming an angle greater than the 
threshold were classified as cross-connections. Additionally, azimuthal segments shorter than 70 nm were discarded. 
This length was chosen by comparing the azimuthal segments for a range of lengths and choosing a value around 
which the cross-connection count varied the least. Geometric cross-connections per unit area (i.e. cross-connections 
densities) were determined in both, type 1 skeletons (representing highly silicified features) and type 2 skeletons 
(representing the fully connected ridge network) (Fig. 4). Using densities instead of total counts is justified because 
the cross-connection density of individual valves does not correlate with their area (Additional file 1: Fig. S3). The 
cross-connection densities in type 1 skeletons of the valves from wild type cells (WT) grown on the two different 
nitrogen sources were very similar (Fig. 4a). However, it was higher in the valves from nitrate grown sin1 knockout 
strains (KO1-3) compared to the valves from the same strains grown in ammonium (Fig. 4a). These data suggested that 
in the absence of the sin1 gene, the cross-connection density is highly dependent on the nitrogen source. To further 
investigate this unexpected result, the geometric cross-connection density was analyzed in the type 2 skeletons. 

Fig. 3   Comparison of type 
1 and type 2 ridge skeletons 
generated from TEM images 
with high and low contrast 
ridges. Type 1 and type 2 
skeletons are indicated with 
a red overlay. Additionally, 
geometric cross-connections 
are highlighted in blue in the 
type 1 skeletons

Fig. 4   Geometric cross-con-
nection counts per unit area. a 
Type-1 skeletons representing 
high-contrast features, and b 
type-2 skeletons representing 
a connected ridge network
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Here, the densities of cross-connections between the valves from cells grown in nitrate and ammonium were very 
similar for all strains irrespective of the nitrogen source (Fig. 4b).

The discrepancy between the cross-connection densities in the two types of skeletons was caused by the fact that the 
two methods for skeletonization have different capabilities for identifying cross-connections. The method for extract-
ing type 2 skeletons is geared towards identifying costae and cross-connections also in low contrast regions, where the 
extraction method for type 1 skeletons yielded fragmented networks and thus a lower number of cross-connections. 
The ridge networks in valves from ammonium grown cells exhibited consistently lower contrast of the ridge network in 
TEM images compared to valves from nitrate gown cells (Additional file 1: Fig. S2). Therefore, the discrepancy between 
the cross-connection counts by the two skeletonization methods is more drastic in valves from ammonium grown cells 
(Fig. 4).

2.3 � Automated analysis of the density of cribrum pores

A characteristic feature of T. pseudonana are the ~ 20 nm sized cribrum pores, which are seemingly randomly distributed 
in the areas between the costae. Each areola usually contains two or more cribrum pores (Fig. 5a). The center of each 
pore was located in the TEM images by first accentuating pores using the “difference of Gaussians” method followed by 
identification for tall local maxima. For all strains, the cribrum pore density was consistently higher in valves from nitrate 
grown cells than in valve from cells grown in ammonia (Fig. 5b). Furthermore, in nitrate medium the sin1 knockout mutant 
strains exhibited higher cribrum pore densities than the wild type (Fig. 5b). The same trend applied for the ammonium 
grown strains, except for the KO3 strain, which had the same cribrum pore density as the wild type (Fig. 5b).

3 � Discussion

In the present work we have developed automated image analysis for evaluating the ridge patterns and pore densities 
from large numbers of TEM images of diatom biosilica. The new methods for morphological analysis replaced previously 
used manual methods [17], enabling significantly faster evaluation of much larger data sets. To analyze valve morpholo-
gies, we established two different approaches for extracting the characteristic networks of ridges (costae and cross-
connections), which we termed type 1 and type 2 skeletons. Both approaches are suitable for determining the number 
of cross-connections from images in which the gray-level contrast between the ridge network and the surrounding areas 
is high. However, when the contrast is low only the method extracting type 2 skeletons is able to identify the connected 
ridge network, because it is based on a “ridge detection image filter” which identifies continuous lines comparable to 
geographic ridgelines.

It is reasonable to assume that gray-level contrast in TEM images of biosilica reflects differences in silica content. 
Diatom biosilica is composed of ~ 90% hydrated silica and ~ 10% organic material, and thus electron contrast in TEM 

Fig. 5   Analysis of cribrum 
pore density. a Pores are 
highlighted in red in part of 
an image of a valve. b Box 
plots of the distribution of the 
number of pores per unit area 
for each dataset
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images of biosilica is dominated by silicon, which is the element with by far the highest electron density in this material. 
Consistent with this assumption is the observation that the TEM contrast between the ridges and the surrounding areas 
is lower in valves of sin1 knockout mutants (see Fig. 1a, c), which have a ~ 40% reduced z-height of costae compared to 
wild type [17]. For reasons described above, skeletonization method 1 is more susceptible than method 2 to differences 
in TEM contrast. Therefore, strongly reduced silicification of a cross-connection ridge is often interpreted as a missing 
cross-connection in type 1 skeletons (see Fig. 3). This is consistent with the interpretation gained from by-eye inspec-
tion of TEM micrographs (see Fig. 1 and Ref. [17]). In contrast, skeletonization method 2 is capable of detecting weakly 
silicified cross-connections (i.e. low TEM contrast), and thus revealed that the ridge network of T. pseudonana wild type 
is still fully intact in the sin1 knockout mutants (see Fig. 4b). The previous interpretation of missing cross-connection 
in the sin1 knockout mutants [17], was thus a misinterpretation of a phenotype that exhibits weakly silicified cross-
connections. This result demonstrated that by applying both skeletonization methods, a more realistic description of 
the valve phenotypes could be obtained.

Another unexpected result of this study was the observation that the type of nitrogen source had an effect on the 
density of cribrum pores and the cross-connection density of the ridge network in type 1 skeletons. The effect on cross-
connection density was very mild in wild type cells but much more pronounced in the sin1 knockout mutants, with 
valves from cells grown on ammonium exhibiting lower cross-connection densities than valves from nitrate grown 
cells (see Fig. 4a). Analysis of the type 2 skeletons demonstrated for each strain that the cross-connection densities 
were independent of the nitrogen source (see Fig. 4a), thus indicating that reduced silicification is responsible for the 
diminished cross-connection densities in the type 1 skeletons from ammonium grown cells. This finding raises a new 
question: How can the nitrogen source influence silica morphogenesis in diatoms? We believe that part of the answer 
lies in the observation that the nitrogen source effect on silicification is stronger in the sin1 knockout mutants than in 
wild type. There is circumstantial evidence that the Sin1 protein enhances the silica forming activity of long-chain poly-
amines (LCPA) [38], which are general components of the biosilica forming machinery in diatoms [12]. We hypothesize 
that LCPA biosynthesis might be downregulated in diatoms grown on ammonium medium compared to nitrate grown 
diatoms, which would be expected to lead to reduced silica formation. In sin1 knockout mutants, the silica formation 
capability may be further reduced due to the lack of the Sin1 protein. Despite these shortcomings, there is still sufficient 
silica forming activity present to biosynthesize a complete valve including the ride network. However, the thickening of 
the ridges (called z-expansion), which is the final stage of silica biosynthesis [36] may be hampered by reduced levels 
of LCPA and the lack of Sin1. Reduced silicification of the ridge network compromises the mechanical performance of 
the valves [17], which is problematic as the cell wall needs to counteract the turgor pressure exerted by the protoplast. 
One countermeasure of the cell for increasing the stability of valves with reduced silica content could be to change the 
pattern of cribrum pores. Whether a reduction of cribrum pore density, as we observed here (see Fig. 5), generally leads 
to an increase in mechanical performance of the valve, remains to be determined.

The results from the present study clearly demonstrate that automated computational analysis is highly useful for 
unraveling the influences of external and internal factors on diatom biosilica morphology. We anticipate that the com-
putational geometric methods established here will be instrumental in future work for characterizing the function of 
biomineralization proteins in silica morphogenesis in T. pseudonana and possibly many other diatoms species.

4 � Methods

4.1 � Culture conditions

T. pseudonana (clone CCMP 1335) was grown at 18 °C with a 16 h light/8 h dark cycle at 5000–10,000 lx, in artificial sea-
water (ASW) [37] lacking the nitrogen source. Sterile filtered NH4Cl or KNO3 was added to a final concentration of 550 µM.

4.2 � Preparation of biosilica for electron microscopy

For biosilica isolation 100 mL of a cell culture (∼ 106 cells mL−1) were harvested by centrifugation (3220×g, 10 min). The 
pellet was resuspended in 15 mL extraction buffer (2% SDS, 100 mM EDTA pH 8, and 1 mM PMSF), and continuously 
shaken at 55 °C for 30 min to solubilize intracellular material. The biosilica was pelleted (3220×g, 2 min) and washed 
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twice in 15 mL 10 mM EDTA pH 8, and 1 mM PMSF. Extraction and washing were repeated until the biosilica was colorless. 
The colorless biosilica was washed with 1 mL acetone, two times with 15 mL H2O, and finally resuspended in 1 mL H2O.

To detach girdle bands from valves, 500 µL of isolated biosilica was transferred in a 1.5-mL tube and sonicated with 
an MS72 sonotrode tip (Bandelin) applying a total of 0.12 kJ over 5 s. For transmission electron microscopy (TEM) 10 µL 
of sonicated biosilica was transferred onto Formvar-coated gold-coated finder grids (G200F2-Au from EMS) that were 
strengthened with evaporated carbon. The majority of the liquid was removed by blotting with a piece of filter paper, 
washed two times with 50 µL H2O and samples were air-dried over-night before imaging. TEM images were taken using 
a Jeol JEM-1400 TEM instrument at an acceleration voltage of 80 kV.

4.3 � Segmenting the high‑contrast valve ridges (type 1 skeleton)

Each grayscale TEM image was converted into a binary image by applying adaptive thresholding to differentiate the 
network structure from the background. From the network structure, a single-pixel thick skeleton was extracted using 
the Ridge Detection Plugin of ImageJ [39]. Examples of skeletons are shown in Figs. 2b and 3.

4.4 � Segmenting the connected valve ridge network (type 2 skeleton)

First, we corrected any uneven brightness in the electron micrograph: The local brightness was estimated by removing 
(inpainting) the pores, removing the valve ridges using a closing filter, and finally applying Gaussian blur. The brightness 
field obtained this way was subtracted from the image. Then the location of valve ridges (costae and cross-connections) 
was identified with a ridge detection image filter that computes the main principal curvature at each point using Gauss-
ian derivates [40]. The scale parameter of the ridge detection filter was set at � = 29 nm , in accordance with the typical 
costa width, and converted to pixels according to each image’s resolution. Finally, the result was thresholded (choosing 
the threshold using Otsu’s cluster variance maximization method [41]) and skeletonized to create a binary one-pixel 
thin representation of the ridge network (see Fig. 2c). The extraction of the ridge network requires care, so that we may 
obtain a network with a large connected component while making sure that the parts separating neighboring pores 
can be reliably distinguished from true ridges, even in low-contrast images. We manually fine-tuned the ridge detector’s 
scale parameter to obtain good results across all image datasets. Examples of final skeletons are shown in Figs. 2c and 3. 
These examples have one level of open branches pruned away to aid comparison with the original image. We note that 
such pruning has no effect on the topological ridge network analysis.

4.5 � Classifying cross‑connections using geometric criteria

We designed an algorithm to identify geometric cross-connections from the electron micrograph of a diatom valve 
based on their orientation (Additional file 1: Fig. S4). Since T. pseudonana is a centric diatom with radial symmetry for 
the valves, we manually marked the centerpoint of each valve. Cross-connections would appear nearly perpendicular 
to radial lines (i.e. azimuthally oriented), while costae are approximately parallel to radial lines. In a first step, each pixel 
of the skeleton network was classified based on the angle the line segment it is part of forms with the radial line of the 
pixel: A pixel is considered to be part of a cross-connection if it has fewer than five neighboring pixels (within a seven-
pixel radius) forming an angle less than a threshold (which we choose as 45°); and as part of a costa otherwise. Connected 
components of pixels filtered in this fashion were considered candidates for cross-connections. In a second step, such 
candidate segments shorter than a minimum length of 70 nm were discarded. The resulting pattern (see Fig. 2d) consists 
of only valid cross-connections, which we count by connected component labeling [42].

4.6 � Pore detection

The pores were located using the difference of Gaussians method. This method will accentuate features at a certain cho-
sen length scale in the image. The center of pores was detected by choosing the pore size as the length scale and looking 
for maxima of sufficient height in the image. In order to find an appropriate length scale for each image, an initial pore 
detection pass was run with an approximate, assumed pore size. The mean size of the initially detected pores was then 
measured, and used in subsequent passes to refine the result. This method usually converges in at most 2-3 iterations.
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