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Abstract
Buried charges such as improvised explosive devices continue to be one of the most lethal and hidden threats service 
members face. On detonation, ground debris near the blast area is accelerated towards service members as secondary 
fragmentation, consisting of sand, gravel and rocks. In order to mitigate injury, protective equipment can be worn, yet it 
is difficult to gather accurate data for engineering decisions when the standard test uses a fragment simulating projectile 
made from metal. It is difficult to test secondary fragmentation from ground debris due to the natural heterogeneity and 
variance of the material. A methodical and reproducible method of testing fragmentation damage from ground debris 
was developed to study and improve protective equipment against natural secondary fragmentation. We present herein 
the novel process of 3D-printing ballistic projectiles from silica sand, followed by launching with an air canon. Outlined 
within are the successes, challenges and proposed implementations of the technology. The 3D-printed sand projectiles 
achieved speeds over 170 m/s, resulting in measurable damage to single Kevlar sheets. Other flight parameters such as 
yaw and rotation were captured, resulting in observations about design and shape of the projectiles. It was found that 
one design performed better in terms of velocity, rotation and impact. The technology has the potential to disrupt the 
protective equipment sector by providing a controlled means of assessing natural fragmentation damage.

1 Introduction

Fragmentation damage is a serious concern in combat and peacekeeping missions as it has grown in popularity in mod-
ern combat [1]. In conflict, buried charges such as Improvised Explosive Devices (IEDs) are a hidden and lethal threat 
that can be crafted from household items. To design personal protective equipment (PPE) or armour systems against 
buried charges, Fragment Simulating Projectiles (FSPs) are fabricated from metal and launched at high speeds to simu-
late fragmentation damage in a laboratory setting. The US military specifies that cold-rolled, annealed steel shall be 
used to manufacture FSPs with specific diameters to represent 0.22 Caliber (5.6 mm), 0.33 Caliber (8.4 mm), 0.5 Caliber 
(12.7 mm), and 20 mm projectiles [2]. Although attempts have been made to standardize fragmentation testing by 
defining standard alloys and diameters, almost all FSPs are made from metal [3–6]. These metallic FSPs do not replicate 
the fragmentation that is accelerated from a buried IED. When an IED is buried, the ground material and strata directly 
above the device is accelerated due to the blast wave and directed at active service members. Since there is no current 
projectile fabricated from ground material, there is a severe mismatch between laboratory testing and active duty in 
terms of fragmentation damage. Thus, engineering decisions toward protective equipment worn by service members 
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cannot be made accurately. The uncertainty results in comfort and fit being sacrificed for extra protection. However, 
discomfort and reduced mobility can pose an even greater danger to service members. When uncomfortable or cum-
bersome, service members either neglect the equipment or are hampered by extra weight in service [7]. A widely-used 
method to characterize the damage from natural fragmentation is an arena type experiment, where ground material is 
loaded into a canister and detonated. PPE is lined in a circle around the explosion in an attempt to “catch” any fragmen-
tation. However, the damage caused is variable [8]. There is no agreed upon standard test, as any proposal has inherent 
problems with repeatability due to the natural heterogeneity of ground material in terms of shape, intensity of damage, 
as well as mechanical and flight trajectory [8–11].

In order to address the issue of an inaccurate projectile for natural fragmentation testing, additive manufacturing (AM) 
or 3D-printing (3DP) has been shown to be probable solution. More specifically, binder jetting AM was used to combine 
silica sand and a polymer binder to successfully fabricate 3D-printed rock that challenges traditional thinking about 
synthetic rock. Binder jetting AM is a form of 3DP that utilizes a print head to jet a liquid binder onto a bed of powder, 
layer by layer, until the part is completed. The mechanical [12–16] and hydraulic [17, 18] properties of 3D-printed rock 
have been quantified and compared to natural sandstone. The strongest critique of 3D-printed rock was that the uncon-
fined compressive strength was not comparable to the strength of natural rock. However, a pre-treatment method has 
been developed involving silane coupling agents to increase the bond strength between particles, which increases the 
overall strength of 3D-printed rock [19]. More recently, the mean effects that individual printing parameters have on the 
strength and density of 3D-printed rock has been explored. For example, it has been shown that the volume fraction of 
binder has a significant effect on the overall compressive strength and density of 3D-printed rock [13, 16]. Additionally, a 
recent paper that was submitted shows that the amount of heat and travel speed of the hopper during printing changes 
the density of 3D-printed specimens.

There is a critical scientific knowledge gap between ballistic testing, FSPs and body armour, which after decades of 
testing remains unsolved. Since there is no projectile that is fabricated from ground material in a repeatable, reproduc-
ible fashion, natural fragmentation damage testing between a laboratory and active duty is ignored or accepted. Herein 
we have successfully fabricated samples from ground material such as silica sand that can be fabricated into any shape 
via 3D-printing. The 3D-printed sand projectiles within challenge traditional thinking of natural fragmentation damage 
testing.

2  Experimental procedure

2.1  3D printing of samples

An M-Flex Sand Printer (ExOne, PA, USA) was used to fabricate the model sandstone in this study. The whole grain silica 
sand, binder and activator used in the fabrication of the samples was purchased from ExOne. The sand media used was 
purchased from the manufacturer of the 3D printer (ExOne) and consists of a narrow distribution of particles with a  D50 
of 175 µm, which was obtained via sieving. For printing, 3.5 kg of silica sand (ExOne, PA, USA) was added to a stand mixer 
(KitchenAid, ON, Canada) followed by the addition of 5 mL of p-toluene sulphonic acid (activator) while mixing the sand 
at low speed for two minutes to coat the sand particles. The acid-coated sand was then added to a hopper at the top 
of the M-Flex printer. The hopper deposited the sand into a vibrating spreader (Recoater) where upon it was tamped as 
it moved along the axis parallel to the job box, providing a layer of silica sand approximately 350 µm thick for printing 
(the job box is a steel container with a platen free to move along the axis normal to the sand layer). The platen drops 
a specified distance after each layer, allowing a new layer of sand to be deposited by the Recoater. In addition to sand 
spreading, the print head jets furfuryl alcohol (binder) onto the sand layer while moving along the X and Y-axis, following 
the pattern of the digital file pre-loaded onto the M-Flex computer. A polymer condensation reaction takes place when 
the binder comes into contact with the activator on the sand, creating polymer necks between sand grains and solidify-
ing the sand in place. Once the parts were printed, the job box was removed without disturbing the samples and placed 
into a large oven set to 80 °C where they were left for 24 h. The increased temperature accelerates the curing process 
and helps reduce moisture in the parts from the condensation reaction during polymerization, which is detrimental to 
strength [20, 21]. Afterwards, the samples were removed and cleaned with a wire brush to remove any loose sand. An 
illustration of the printing process can be found below in Fig. 1.

The 3D-printed projectiles were fabricated with set printing parameters, such as layer thickness, travel speed of the 
Recoater and binder volume fraction. Binder volume fraction is the most important 3D printing parameter as it governs 
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Fig. 1  Illustration of the binder jet additive manufacturing process showing the main steps including modelling, preparation of sand media, 
layering and binder jetting [13]. Reused with permission, Springer © 2018
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the mechanical strength of 3D-printed specimens [13, 14]. Although not tested directly in this study, the specimens were 
fabricated with the same printing parameters that resulted in a unconfined compress strength of ~ 20 MPa and a Young’s 
modulus of ~ 1.8 GPa [16, 22]. The NATO STANdardised AGreement (STANAG) 2920 [23] defines the shapes and masses that 
should be used for FSPs and is where the basis of our designs began. Four different geometries were fabricated ranging 
from simple, cylindrical specimens to more complex designs (Fig. 2). Design A is based off the traditional FSP [23], while 
Designs B, C and D allowed for a significant reduction in mass (~ 50%) compared to Design A. Designs C and D include 
features for flight stabilization, with Design D incorporating a spiral for the most complex design. The geometries were 
designed in Rhinoceros 5 followed by exporting to a.STL format that could be communicated to the 3D printer.

2.2  Launching systems

Two pneumatic cannons were used as the launching systems for this study: one for initial observation (low-pressure) 
and one for terminal ballistic testing (high-pressure). The low-pressure cannon was fabricated with a 10 L pressure ves-
sel customized to fit a 1925 mm barrel having a diameter of 50 mm, including a custom electronic launching circuit 
and high-speed valve (Fig. 3). The system was capable of reaching a maximum pressure of 0.4 MPa (58 PSI). The second, 
high-pressure launcher was upgraded to achieve pressures of 7 MPa (1015 PSI) by upgrading the 10 L pressure vessel to 
20 L, which allowed for more realistic tests. The same barrel length and diameter was used.

To facilitate launch of the 3D-printed projectiles and reduce air leakage, high density foam obturators were used dur-
ing launching. In addition, 3D-printed obturators made from ABS (acrylonitrile butadiene styrene) plastic were used to 
accelerate the samples and provide a seal against pressure loss (Fig. 4). The 3D-printed obturators were designed to fit 
snugly into the 50 mm diameter barrel and were fabricated on a Fortus 250mc 3D Printer (Stratasys, Israel). A slot was 
designed into the obturator to allow for an O-ring to be installed to lower air leakage during launch. The last option of 
reducing air leakage during launch included coating the bottom diameter of the samples in an elastomer coating (Plasti-
Dip International, Blaine, MD). Due to the tackiness of the elastomer, oil was applied to the inside of the barrel to allow 
for a smoother travel down the barrel at launch.

Fig. 2  Top: 3D renderings 
of ballistic designs to be 
printed for the Royal Military 
Academy in Belgium, bottom: 
3D-printed ballistic samples of 
various geometries. Samples 
consist of silica sand bound 
together with a polymer 
binder. The designs were cho-
sen to observe the changes in 
mass and stability

Fig. 3  The low-pressure 
launcher originally used for 
the first few tests located at 
the Royal Military Academy in 
Belgium. The launcher was a 
pneumatic assembly capable 
of reaching 0.4 MPa (145 PSI) 
and included a 1925 mm long 
and 50 mm diameter barrel
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2.3  Projectile testing

All projectiles were captured exiting the launcher using a single high-speed camera system (Photron, SA-2). All 
velocities and pitch rates were estimated using single frames of the trajectories at discrete intervals. The projectiles 
were caught via a container lined with soft cloth. Although internal damage to the projectiles from launching was 
not confirmed, the launching and catching system showed no outward appearance of any significant changes in 
structure of the 3D-printed projectiles.

For terminal ballistic testing, a single sheet of plain weave Kevlar XP-S102 was attached to a rigid stand. The Kevlar 
sheet was situated over a box of plasticine (Weible, Germany) to allow for measurements of indentations after testing 
and provide support against the impact of the projectile. The plasticine was pre-conditioned for a minimum duration 
of 24 h at 30 °C. The target was placed approximately 1.5 m from the end of the cannon.

3  Results and discussion

The first observation made was regarding the diameter of the projectiles after 3D printing. The actual diameter 
(caliber) of the projectiles was slightly over the 50 mm diameter stipulated by the digital model, which can be attrib-
uted to binder bleeding effects that occur during 3D printing [13]. Binder bleeding is caused by the liquid binder 
involved in the 3D printing process being drawn into the sand bed through capillary action. The phenomenon 
causes the two-dimensional layer that is printed on top of the porous sand bed to alter marginally before curing [13]. 
Although the consequences are minor for most 3D-printed parts, ballistics must maintain accurate dimensions to 
ensure proper sealing in the barrel. 3D printing provides a fabrication method of producing projectiles with reproduc-
ible and accurate diameters, which can be observed through the minimal distribution of both mass and diameter for 
the as-printed specimens (Fig. 5). A standard rotating grinding wheel was used to manually reduce the diameter to 
50 mm to ensure a proper fit in the launcher. The trimmed mass and diameters are compared to the original values 
in Fig. 5, showing that there was minimal change to both mass and diameter. For all samples, the average mass loss 

Fig. 4  A 3D-printed obturator 
fabricated from ABS. A slot 
for an O-ring was included to 
increase the sealing capability 
of the obturator since ABS is a 
rigid plastic
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from grinding was 3.9 ± 1.0% (N = 20), while the average diameter loss was 3.8 ± 0.7% (N = 20). By design, projectiles 
B, C and D had a lower mass than projectile A (50%, 54% and 58%, respectively).

Projectile A was launched at a reduced pressure of 0.3 MPa (44 PSI) in order to assess any premature degradation of the 
projectiles. However, there was significant destabilization during flight and a low velocity of the projectile was observed. 
It is suggested that the low velocity and destabilization of projectile A was due to a large amount of air leakage, since a 
significant pressure drop occurred directly after launch. The high mass/caliber of the projectile also requires significant 
pressure to achieve viable velocities for fragmentation testing. The sealing issue was addressed by adding high density 
foam obturators. The maximum pressure for the low-pressure system of 0.4 MPa (58 PSI) was able to launch a single pro-
jectile with designs B, C and D for initial observation. When combined with the foam obturators, the velocity of projectile 
B was increased to 90 m/s. The launch pressures, velocities and pitch rates of the preliminary tests are provided in Table 1. 
Significant air leaks still accompanied projectiles C and D, which accounts for their lower velocities. Several factors may 
contribute to reduced velocity such as absence of symmetry (diameters not perfectly round) and high porosity. Due to 
the sand media and liquid binder used to fabricate the projectiles, the projectiles are rough in texture and perfect axial 
symmetry is difficult to achieve. The absence of perfect symmetry may account for the significant amount of pitch from 
all projectiles in Table 1. Additionally, the 3D-printed sand projectiles contain a significant amount of porosity at ~ 43% 
[16]. The high porosity may allow air to pass around the outer diameter of the projectile, especially if it is out of tolerance. 
However, the stability of projectile D was improved due to the spiral pattern imposing angular momentum. High-speed 
photographs of each projectile for the initial testing are shown in Fig. 6. To improve the axial symmetry, future projectiles 

Fig. 5  The changes in A mass and B diameter of the 3D-printed sand ballistics after diameter adjustment via a grinding wheel. Binder bleed-
ing during 3D printing causes the projectiles to have a slightly larger diameter than specified, so the diameter (caliber) must be trimmed for 
successful launching

Table 1  The four initial tests of 
projectile A, B, C and D

Projectile A was launched at a lower pressure to assess any premature degradation, but since the speci-
men remained intact the remaining three geometries were launched at the maximum pressure of the low-
pressure system

Projectile Pressure (MPa/PSI) Velocity (m/s) Pitch Rate (o/s)

A 0.3/44 N/A N/A
B 0.4/58 90 199
C 0.4/58 57 440
D 0.4/58 58 55
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should be printed with a reduced layer thickness and binder volume fraction, which has been shown to allow greater 
dimensional control in 3D-printed model sandstone [13, 24].

3.1  High speed and terminal ballistic testing

After preliminary testing, the launching system was upgraded to a 20 L pressure vessel. However, it was observed after 
a few tests that as the pressure increased the velocity did not and in some cases even decreased. It was discovered that 
the foam obturators underwent extreme deformation during the launches at increased pressure. The foam obturators 
rotating in the barrel (along with the porous, non-axial symmetric projectiles) would warrant a sufficient pressure drop 
and increased friction, resulting in the lower velocities observed. The deformed obturator may also have resulted in 
unstable flight and high pitch angles, which was observed during the initial launches (Fig. 7).

To achieve smoother accelerations and higher velocities, different obturators were tested. The foam obturators were 
replaced by 3D-printed obturators made from ABS, which showed no evidence of deformation after launching. The 
3D-printed obturators allowed for O-rings to be placed at the top and bottom, allowing for a better seal to be achieved 
(Fig. 4). However, the drawback of a stiff, dense sealer is the increased energy required to accelerate the obturator. 
Additionally, the kinetic energy on impact with the sample resulted in damage to several projectiles. The 3D-printed 
obturators trailed the projectile in-flight and did not separate after leaving the barrel. Hence, on impact with the target 
the obturator impacted the sample from behind leading to fracture. Other times, the obturator fractured the projectile 
mid-flight (Fig. 8).

The foam and 3D-printed plastic obturators were both problematic, so a decision to coat the projectiles directly with 
an elastomer was made. By coating the bottom diameter of the projectiles with an elastomeric coating, the projectile was 
able to maintain a much better seal and achieve a significant velocity gain over the other obturators. The increased veloc-
ity resulted in a much more stable flight (Fig. 9). The increase in velocity may be attributed to the reduction of porosity 
around the trailing edge of the sample. One drawback of this sealing option is that the elastomer coating tends to retain 

Fig. 6  A collage of high-
speed photographs, showing 
in-flight performance of the 
3D-printed sand projectiles 
at low pressure. All projectiles 
showed instability at low pres-
sures, most likely due to the 
low velocity

Fig. 7  A 3D-printed sand 
ballistic projectile with a 
high pitch angle (shooting 
direction right to left). It is 
suggested that the deformed 
foam obturator influenced the 
unstable flight trajectory
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the structure of the 3D-printed sand projectile after impact, which may be undesirable to the initial test conditions of 
fragmentation. Additionally, due to the induced friction of the elastomer coating, a small amount of oil had to be applied 
to the inside of the barrel to achieve a smoother launch. Only Samples B and D were selected for coating application and 
terminal testing due to their speed and pitch rates from previous testing. The changes in mass provided by the coating 
was minimal at 0.19 ± 0.2% (N = 4). By applying an elastomer coating to the bottom diameter of the 3D-printed sand 
projectiles, lower pressures were needed to achieve higher velocities than the projectiles launched with a 3D-printed 
obturator, signifying a more efficient test. The pressures and velocities of all successful launches are provided in Fig. 10.

In addition to observing flight, terminal ballistic testing was completed to view the impact behaviour of 
3D-printed sand projectiles. Projectiles B and D were chosen due to the geometries providing the most stable 
flights. Projectile A was not used due to the significant mass difference and Projectile C was not used due to the 
similarity to Projectile D. Both the elastomeric coating and the 3D-printed obturators (to mitigate the effects of the 
elastomer coating holding the sample together) were used for terminal ballistic testing and the results are shown in 
Fig. 11. Since the 3D-printed sand ballistics are meant to simulate secondary fragmentation, the ideal target material 
was an aramid textile. Kevlar XP-S102 was chosen due to its convenient handling and relatively high resistance to 
Behind Armor Blunt Trauma (BABT) compared to other plain weave textiles. For tests using the ABS obturators, the 
3D-printed projectile and obturator traveled as a single body and increased the mass on impact. This introduces 
error as the obturator is not part of the projectile being tested. Kinetic energy has a significant effect on damage 
causation in accelerated projectiles [4, 25]. However, the elastomer coating allowed for a projectile that terminated 
on a sheet of Kevlar as a single object (Fig. 12), where the fracture of the projectile exhibited a brittle response. The 

Fig. 8  A photograph showing 
that the sealer used to launch 
the 3D-printed projectile was 
too heavy and stiff, caus-
ing fracture of the projectile 
before reaching the intended 
target

Fig. 9  A 3D-printed specimen 
being launched from the high 
pressure canon using a new 
sealing approach, where an 
elastomer is attached to the 
bottom of the sample allow-
ing for higher velocities to 
be reached and more stable 
flight
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debris caused shortly after fracture is in contrast to the plastic deformation and/or perforation normally witnessed 
with traditional metal FSPs and more closely resembles an accelerated fragmented threat. Yet, due to the caliber 
and mass of the projectiles, the indentations left in the plasticine were immense. According to NIJ 0101.66 [26], 
an indentation depth of 44 mm is the upper limit for survivability and all indentations measured within the plas-
ticine were more than twice this amount (example shown by Fig. 13). This damage can be attributed to the size of 
the projectiles, which would be equivalent to a large rock. Although most of the projectiles penetrated the Kevlar 
sheet (6 out of 8 launches), due to the limited number of samples any correlations should be taken as qualitative 
only. Regardless, the large caliber of the projectiles still surpassed the 150 m/s mark as suggested by Freitas [27] for 
acceptable secondary fragmentation testing, proving that the 3D-printed projectiles show promise at combining 
natural material into a single projectile that can be launched successfully.

Fig. 10  The velocity of differ-
ent projectiles (B/D = geomet-
ric design, E = elastomer and 
O = 3D-printed obturator). As 
the air pressure is increased to 
1 MPa, the projectiles increase 
in speed. Past 1 MPa, the pro-
jectiles decrease in velocity, 
which can be attributed to air 
leakages at higher pressures

Fig. 11  The indentation of dif-
ferent projectiles with respect 
to their velocity (B/D = geo-
metric design, E = elastomer 
and O = 3D-printed obtura-
tor). There is no correlation 
between the different types 
of sealing mechanisms, but 
as the velocity is increased 
(increased air pressure) the 
indentation remains the same, 
suggesting that an air leak is 
occurring
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4  Conclusions and future work

3D-printed projectiles were fabricated from silica sand and shown to survive launching at speeds required for second-
ary fragmentation testing. Although significant work needs to be completed on stabilizing the flight of the projectiles, 
3D-printed sand ballistics have been shown to be a promising test material for secondary fragmentation damage. It is 
expected that the velocity may be increased by reducing the caliber and mass of the projectile. Current efforts have 
reduced the diameter significantly to less than 10 mm, which provide a more accurate assessment of a natural frag-
ment. The axial symmetry can be improved through adjustments to the printing process, which is currently underway.

Moreover, any desired degree of fragmentation could be achieved by implementing cavities and cut-off planes in 
the internal geometry of the projectiles prior to printing via the digital design, as well as altering the volume frac-
tion of binder within the sample. A higher volume fraction of binder would lead to a stronger projectile, resulting in 
cracking on impact. A lower binder volume fraction would result in a more friable sample, creating more of a debris 
of smaller pieces after launch and/or impact. Therefore, the projectiles could possibly be fragmented with the use 

Fig. 12  A collage of high 
speed photographs showing 
the terminal impact test of 
3D-printed sand projectile D. 
Fracturing of the projectile 
happened after impact, while 
the rear of the projectile was 
held together by the elasto-
mer coating
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of an external sharp geometry before hitting the target with minimal loss of kinetic energy. The technology may be 
extended to vehicle testing or mixtures of ground media specific to a single combat theater, which would open up a 
new frontier of testing. The promise of 3D-printed sand projectiles for secondary fragmentation testing is a ground 
breaking technology that warrants further investigation.
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