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Abstract
Surfactants represent a large group of industrial relevant substances and can be generated chemically, but also bio-
logically. Important microbial producers are several Pseudomonas species, mainly known for their ability to produce 
rhamnolipids. For safety reasons, recombinant Pseudomonas putida is preferred for heterologous production of rham-
nolipids as well as its precursor 3-(3-hydroxyalkanoyloxy) alkanoic acid (HAA), which is a promising platform substance. 
The surface-active properties of HAA combined with classical submerged aeration cause strong foam formation making 
biotechnological production in stirred tank bioreactors challenging. Therefore, a foam-free bioprocess for HAA produc-
tion was developed in this study. The combination of headspace aeration, overpressure up to 8 bar, and temperature 
reduction prevented oxygen limitation, shortened process time, and enhanced the maximum HAA concentration to 
1.71 g  l− 1 with a space-time yield of 0.08 g  l− 1  h− 1.
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1 Introduction

Biobased and biodegradable materials attracted strong interest in recent years since environmental pollution increases 
steadily and petrochemical resources are limited [1–3]. Biosurfactants represent a group of surface-active substances 
produced by microorganisms. Among them, rhamnolipids are one example of glycolipidic biosurfactants [4] and were 
firstly found in Pseudomonas aeruginosa (P. aeruginosa) [5, 6]. They usually consist of one or two rhamnose units connected 
via β-glycosidic bond to one or two β-hydroxy fatty acids of various lengths [6, 7]. The dimer of two activated β-hydroxy 
fatty acids, which originate from de novo fatty acid synthesis, linked by the acyltransferase RhlA is called 3-(3-hydroxyal-
kanoyloxy) alkanoic acid (HAA) [8, 9]. Typically, different congeners of HAA, varying in amount and length of fatty acids, 
are secreted by an organism [10]. Even without the hydrophilic rhamnose part, HAA shows surface-active properties 
due to their ester, carboxyl, and hydroxyl groups [8, 11]. Besides the potential application as biosurfactants [11], HAA 
presents a suitable platform substance for biofuels and biobased plastics production [12, 13].

Recently, Tiso et al. engineered the non-pathogenic Pseudomonas putida (P. putida) strain to produce HAA [11]. Since 
the production host is an obligate aerobic organism, the surface-active nature of the product promotes strong foam 
formation during submerged aeration [14, 15]. The foam can enter and block the exhaust gas filters leading to undesired 
pressure increases and the foam layer can delay the dosage of acid, base or feeding solutions into the culture broth. 
Moreover, space-time yield of the process is reduced, because biomass is transferred out of the culture broth by attach-
ing to the foam with the hydrophobic cell surface structures [16–18].

The conventional use of antifoaming agents has several drawbacks. Depending on the antifoaming agent, the oxy-
gen transfer can be negatively affected, downstream processing can become problematic, and process costs increase 
[19–21]. As the industrial application of such biosurfactants has become increasingly interesting, various strategies have 
been developed in recent years to address foaming and related problems more advantageously. From a biological point 
of view, cell surface modification was developed to avoid cell attachment to the foam [22], and switching to anaerobic 
mode was shown to realize a foam-free bioprocess [23]. Process engineering methods like the application of in situ 
liquid-liquid extraction reduced foaming by product removal into an organic phase [24]. In several studies, foam frac-
tionation strategies were applied with the additional benefit of an in situ product removal [22, 25–28]. On the technical 
side, membrane aerators facilitate bubble-free aeration [14, 29, 30]. Kuo and Lanser applied partial headspace aeration 
in P. putida bioprocess to avoid excessive foaming [31]. However, in comparison to the gas-liquid surface provided by air 
bubbles of submerged aeration, headspace aeration reduces the gas exchange area. Therefore, oxygen transfer to the 
liquid phase is tremendously reduced.

To overcome gas transfer limitations, overpressure can be applied to increase gas solubility [32, 33] and was used in 
several studies to enhance the oxygen supply [34–40]. The scalability of pressurized cultivations was discussed in detail 
by Knoll et al. and Kreyenschulte et al. [41, 42]. In this study, the combination of headspace aeration and overpressure 
was utilized to overcome the contrary bioprocess requirements originating from a strongly foaming product and a 
highly oxygen-demanding production host (Fig. 1). Additionally, cultivation temperature was reduced to slow down the 
microbial metabolic activity to prevent oxygen limitations. The developed bioprocess provides an alternative strategy 
for scalable production of HAA with little technical effort.

2  Methods and materials

2.1  Microbial strain

Recombinant Pseudomonas putida KT2440 KS3 (attTn7::Pffg-rhlA) [22] was used for heterologous HAA production. The 
cryogenic cultures were stored at − 80 °C.

2.2  Shaken precultures and medium composition

For the first preculture, a 500 ml unbaffled Erlenmeyer flask containing 50 ml Luria-Bertani (LB) medium was inoculated 
with 1 ml cryogenic culture. The preculture was incubated at 30 °C and 300 rpm with a 50 mm shaking diameter (ISF1-X, 
Adolf Kuhner AG, Birsfelden, Switzerland) until a minimal optical density at 600 nm  (OD600) of 2 was reached during the 
exponential growth phase. Yeast extract  SERVABACTER® and tryptone/peptone ex casein for LB medium were supplied 
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by SERVA Electrophoresis GmbH (Heidelberg, Germany) and Carl Roth GmbH & Co. KG (Karlsruhe, Germany). For the 
second preculture, a mineral salt medium (MSM) according to Hartmans et al. [43] with a modified phosphate buffer of 
Blesken et al. [22] was used and contained: 20 g  l− 1 glucose, 11.64 g  l− 1  K2HPO4, 4.89 g  l− 1  NaH2PO4, 2.00 g  l− 1  (NH4)2SO4, 
10 mg  l− 1 EDTA, 100 mg  l− 1  MgCl2 × 6  H2O, 2 mg  l− 1  ZnSO4 × 7  H2O, 1 mg  l− 1  CaCl2 × 2  H2O, 5 mg  l− 1  FeSO4 × 7  H2O, 0.2 mg  l− 1 
 Na2MoO4 × 2  H2O, 0.2 mg  l− 1  CuSO4 × 5  H2O, 0.4 mg  l− 1  CoCl2 × 6  H2O and 1 mg  l− 1  MnCl2 × 2  H2O. The second preculture 
was cultivated at pH 7.00 in 1 l unbaffled Erlenmeyer flasks with 50 ml MSM and inoculated to a start  OD600 of 0.1. Cultures 
were incubated at 300 rpm with a 50 mm shaking diameter (ISF1-X, Adolf Kuhner AG, Birsfelden, Switzerland) until a 
minimal  OD600 of 6 was reached. In difference to the first preculture, the incubation temperature was decreased to 28 °C 
to delay growth (Supplementary Information, Fig. S2) and temporally enable harvest in late exponential growth phase.

2.3  Cultivations and online measurements in stirred tank bioreactors

Cultivations in stirred tank bioreactors were conducted in batch mode using MSM with reduced phosphate buffer concen-
tration of 3.88 g  l− 1  K2HPO4 and 1.63 g  l− 1  NaH2PO4 according to Blesken et al. [22]. The pH was maintained at 7.00 ± 0.05 
with  NH4OH. The bioreactors were inoculated with an initial  OD600 of 0.2. For cultivations with an overpressure ≤ 0.9 bar, 
a 30 l baffled stainless steel bioreactor (BIOSTAT ® D-DCU, Sartorius AG, Goettingen, Germany) equipped with a pH-probe 
 (EasyFerm® Plus, Hamilton Bonaduz AG, Bonaduz, Switzerland), a dissolved oxygen (DO) probe  (OxyFerm® FDA, Hamil-
ton Bonaduz AG, Bonaduz, Switzerland) installed within the lower half of the culture broth and two six-bladed Rushton 
turbines was used. The filling volume was 15 l and aeration was realized only via headspace with 20 l  min− 1. The stirring 
rate was kept constant at 500 rpm. The cultivation temperature was set to 23 or 30 °C as stated in the result section. 
For pressurized mode, the cultivation was conducted in a 7.5 l baffled pressure stirred tank bioreactor (Proreact 3P, 
Heinrich Frings GmbH & Co. KG, Rheinbach, Germany) with a filling volume of 4.5 l. The bioreactor was equipped with 
probes for pH  (Polilyte® Plus H, Hamilton Bonaduz AG, Bonaduz, Switzerland), DO  (VisiFerm® mA, Hamilton Bonaduz 
AG, Bonaduz, Switzerland) and dissolved carbon dioxide  (CO2NTROL, Hamilton Bonaduz AG, Bonaduz, Switzerland), 
both installed within the lower third of the culture broth, as well as with two six-bladed Rushton turbines. The dissolved 
oxygen was manually controlled to > 0% by increasing the stirring rate (400–850 rpm), decreasing cultivation tempera-
ture (30−23 °C), and increasing the overpressure (7.5–8.0 bar). The headspace aeration was initially set to 4 l  min− 1 and 
adjusted to 12 l  min− 1 after 6.4 h to ensure functional pressure control. Continuous gas analyzers (Rosemount™ X-STREAM 
Enhanced XEGK Continuous Gas Analyzer, Emerson Electric Co., Saint Louis Missouri, USA or  BioPAT® Xgas, Sartorius 
AG, Goettingen, Germany) were connected to the exhaust gas line to monitor off-gas  CO2 and  O2. All cultivations were 
performed under turbulent flow conditions (Reynolds number > > 10,000). To ensure that no foaming occurred, it was 
visually monitored using the sight glasses of the reactors. In addition, foam probes (conductivity measurement) were 
installed in the headspace of all reactors.

2.4  Shake flask experiments

Cultivations were conducted in 250 ml unbaffled shake flasks with 4% filling volume. The cultures were inoculated to an 
initial  OD600 of 0.4 and incubated at 30 °C and 300 rpm with 50 mm shaking diameter (ISF1-X, Adolf Kuhner AG, Birsfelden, 

Fig. 1  Application of headspace aeration, overpressure, and temperature reduction for the foam-free production of HAA by Pseudomonas 
putida 
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Switzerland). The incubator was equipped with the Kuhner TOM system (Adolf Kuhner AG, Birsfelden, Switzerland) for 
online exhaust gas analysis and determination of oxygen transfer rate (OTR) and carbon dioxide transfer rate (CTR). The 
cultures were aerated with 20 ml  min−1 standard compressed air or a synthetic gas mixture (10%  CO2, 25%  O2, 65%  N2). 
One measuring cycle of 10 min included 3 min measuring time.

2.5  Offline analytics and data analysis

The  OD600 was measured by an UV/Vis spectrophotometer V-630 (Jasco Deutschland GmbH, Pfungstadt, Germany). 
For the determination of cell dry weight (CDW), 10 ml of sample was centrifuged for 15 min at 10,000 g and 4 °C (Sigma 
3–18 K Centrifuge, Sigma Laborzentrifugen GmbH, Osterode am Harz, Germany). The pellet was dried and weighted 
using a MA160 moisture analyzer (Sartorius AG, Goettingen, Germany). The glucose concentration was determined in 
the supernatant using a YSI 2950 Biochemistry Analyzer (YSI Inc., Yellow Springs, USA). The CTR was calculated accord-
ing to Peña-Ortiz et al. from exhaust gas data [44]. Calculation of yields was based on HAA maxima. HAA was quantified 
according to a method developed by Behrens et al. and Tiso et al. [45, 46]. For HAA analytics, the culture filtrate was 
diluted 1:2 with acetonitrile and centrifuged at 4 °C and 15,000×g for 10 min (Prism™ R Refrigerated MicroCentrifuge, 
Labnet International Inc., Edison, USA). HAA was analyzed by reversed-phase chromatography in a HPLC system (JASCO 
International Co., Ltd., Tokyo, Japan) equipped with a YMC-Pack Pro C18 column (150 × 4.6 mm, 3 μm, YMC Europe GmbH, 
Dinslaken, Germany) and an evaporative light scattering detector (ELSD) (evaporator 80 °C, nebulizer 30 °C, LED 50%, 
gas flow 1 slm). The mobile phase was formed with 0.2% formic acid in water (A) and acetonitrile (B). The flow was set to 
1 ml  min− 1 and the oven temperature was 35 °C. Initially, 70% B was held for 1 min, afterwards, B was increased to 80% 
until 8 min. From 9 to 10 min, B was linearly increased to 100% and from 15 to 18 min, B was reduced to 70% again. The 
injection volume was 20 µl.

3  Results and discussion

3.1  Impact of headspace aeration and temperature decrease on HAA formation

Foam formation, caused by HAA production, is a consequence of submerged aeration in conventional stirred tank reac-
tor cultivations. Switching to headspace aeration provides a simple technical solution but also reduces gas transfer area 
tremendously. Thus, the oxygen supply of P. putida as well as the removal of the generated  CO2 are limited. Therefore, 
the impact of headspace aeration on HAA formation was investigated (Fig. 2a, b). P. putida was oxygen-limited from 2 h 
until the end of the cultivation, indicated by a dissolved oxygen tension (DOT) value of 0% (Fig. 2a).

The maximum achieved gas transfer rates were limited to 7 mmol  l− 1  h− 1 (Supplementary Information, Fig. S1), 
which is approximately 20 times lower than the maximum gas transfer rates of this reactor system with submerged 
aeration. The process was ended after 32 h when cell dry weight and HAA concentration started to decrease (Fig. 2b). 
In accordance with the observations of Demling et al. biomass grew linearly during the oxygen-limited bioprocess 
[47] and the glucose concentration also showed a linear decrease. Interestingly, biomass growth stopped although 
5.5 g  l− 1 of glucose was still available. Similar behavior was observed for HAA formation. HAA concentration increased 
almost linearly and reached a maximum of 0.58 g  l− 1 between 25 and 29 h (Fig. 2b). When the biomass decreased, no 
further HAA formation could be observed, which suggests a growth-related HAA production. Besides the limited HAA 
formation, the product concentration decreased between 27 and 32 h, which is a critical issue. One explanation could 
be the uptake and cleavage of HAA by P. putida [48] and degradation of the 3-hydroxyalkanoates via β-oxidation to 
form acetyl-CoA. This can be metabolized via the tricarboxylic acid cycle for ATP generation since decreased intra-
cellular ATP levels were observed under oxygen starvation [47]. This degradation pathway was already found for 
intracellular polyhydroxyalkanoates (PHAs) [49] that share the same precursor substances as for HAA biosynthesis 
in P. aeruginosa [50].

The reduction of the cultivation temperature is a conventional measure to decelerate the metabolic activity and 
consequently provide the necessary oxygen transfer rate to avoid an oxygen limitation of the microbial system. To 
improve oxygen availability in the culture, the impact of a temperature reduction by 7 °C, from 30 to 23 °C, on HAA 
formation was investigated (Fig. 2c, d). The beginning of the CTR plateau (Fig. 2c), reflecting the metabolic activ-
ity, was delayed by approx. 7 h compared to the previous experiment shown in Fig. 2a. Besides the consequence 
of an extended process time by 4 h, only positive effects were observed from temperature reduction. The HAA 
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concentration was doubled and the entire glucose was converted before product degradation (Fig. 2d). The maximum 
HAA concentration of 1.28 g  l− 1 was achieved at 34 h. In comparison to the cultivation at 30 °C, the hypothesized 
ATP shortage by oxygen limitation should be reduced at 23 °C resulting in a higher conversion of glucose into HAA. 
Interestingly, the rates for glucose consumption, biomass formation and HAA formation were higher under oxygen-
limited conditions at 23 °C in comparison to 30 °C (Table 1). A possible explanation could be the elevated oxygen 
solubility at lower temperatures.

Another suitable process parameter that could result in similar effects as observed for the temperature could be the 
pH value. By lowering the pH to 6.0, Demling et al. observed a reduced growth rate during rhamnolipid production with 
P. putida [24]. For the presented bioprocess for HAA production, shifting pH would be an additional possibility to reduce 
the negative impact of an oxygen limitation and enhance HAA formation.

3.2  Effect of overpressure up to 8 bar on HAA formation

Since headspace aeration tremendously reduces the oxygen transfer rate, an increase of the headspace pressure is 
an option to overcome this limited oxygen supply. The elevated pressure increases gas solubility (oxygen and carbon 
dioxide) linearly. Therefore, it was aimed to apply overpressure to the HAA-producing bioprocess to demonstrate a 
positive effect of an improved oxygen supply on product formation. Furthermore, the impact of the  CO2 accumulated 
in the liquid phase on metabolic activity was observed.

The cultivation was conducted with an overpressure between 7.5 and 8.0 bar (Fig. 3a). Since the experiment aimed 
to increase the final HAA titre and to maximize the space-time yield (STY), the cultivation was started at 30 °C. The 
temperature was gradually reduced to 23 °C (Fig. 3a) after DO had fallen below 30% at 15 h (Fig. 3b) to reduce meta-
bolic activity and consequently oxygen demand.To ensure the functionality of the pressure control, the headspace 
aeration had to be increased from 4 to 12 l  min− 1 at 6.4 h after spontaneous pressure losses at 2 h, 4 h, and 6 h, indi-
cated by sharp drops in the DO signal (Fig. 3b).

Fig. 2    Batch culture of P. putida with headspace aeration in 30 l stirred tank reactor a and b—cultivation at 30 °C; c and d—cultivation at 
23 °C; a and c—online data for CTR and DOT; b and d—offline data of glucose concentration, CDW and HAA concentrations; Experimental 
conditions: 15 l filling volume; 500 rpm; 20 l  min− 1 gas flow rate via headspace; pH 7.00 ± 0.05 (25% (v/v)  NH4OH); 0.9 bar overpressure
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Under these conditions, an oxygen-unlimited process was realized until glucose was consumed at 20.9 h (Fig. 3c). 
With a final value of 1.71 g  l− 1 after 21 h (Fig. 3c), the highest HAA concentration was obtained within this study, which 
was 190% higher than in the unpressurized bioprocess at 30 °C and 120% higher compared with the unpressurized 
bioprocess at 23 °C (Table 1). Moreover, concerning STY and HAA-glucose yield, the pressurized process was the 
superior one with 0.08  gHAA  l− 1  h− 1 and 0.09  gHAA  gGlucose

−1 (Table 1). In literature, lower STY of 0.06  gHAA  l− 1  h− 1 [11] 
and 0.07 g  l− 1  h− 1 [22] with P. putida and 0.07  gHAA  l− 1  h− 1 with recombinant E. coli [51] were achieved on shake flask 
scale. Using foam fractionation with biomass recovery on bioreactor scale, a STY of 0.04  gHAA  l− 1  h− 1 was reported 
by Blesken et al. [28], which is comparable to the STY of the unpressurized process at 23 °C presented in this study. 
Advantageously, temperature reduction can be realized without any technical effort compared to foam fractiona-
tion technology.

Nevertheless, a combination of headspace aeration and elevated reactor pressure needs to be critically discussed 
since accumulated  CO2 often inhibits biomass formation [52, 53]. During the pressurized bioprocess,  CO2 accumu-
lated up to around 0.15 bar after 11.5 h in the culture broth and then further increased with the reduction of the 
cultivation temperature to its maximum value of 0.23 bar at 20.8 h (Fig. 3b). Although biomass formation was not 
exponential after 12 h, it still increased linearly in the presence of the high  CO2 partial pressure  (pCO2) (Fig. 3c) and 
did not show any declines in comparison to the unpressurized bioprocesses (0.9 bar, Fig. 2b and d). However, both 
unpressurized bioprocesses were oxygen-limited; therefore the microbes did not grow at the maximum growth rate. 
Hence, the comparable biomass concentrations could also result from the combination of the positive impact of 
oxygen availability and the negative effect of inhibiting  CO2 during pressurized conditions making a direct deduc-
tion between growth and enhanced  CO2 levels impossible. For P. putida, Follonier et al. found  pCO2 > 0.015 bar to be 
growth-inhibiting without influencing productivity [39] and Knoll et al. reported 40% growth reduction at 0.2 bar 
 pCO2 [41]. For Corynebacterium glutamicum, a constant growth rate was found until 0.26 bar  pCO2 on glucose, but dif-
ferent behavior was observed on lactate [54]. Also, strong resistance to  pCO2 of 0.6 bar and 0.8 bar of Corynebacterium 
glutamicum and Escherichia coli were found in pressurized carbon-limited fed-batch cultures [38]. From literature, one 
can conclude that the impact of dissolved  CO2 on growth and productivity depends not only on the microorganism 
but also on growth conditions like carbon source and the medium itself as well as other primary nutrient limitations 
whose growth-limiting effect could be much larger. Although P. putida can tolerate  pCO2 values up to 0.23 bar as 
demonstrated in the pressurized cultivation (Fig. 3c), the influence of the elevated  pCO2 needs to be investigated in 
detail. In the special case of HAA formation, a high  CO2 concentration might be even beneficial. In the first step of fatty 
acid de novo synthesis, catalyzed by the acetyl-CoA-carboxylase, which provides the precursors for HAA synthesis, 
 CO2 is a key reactant. Increasing the  pCO2 might thus shift the equilibrium towards the products, therefore, increasing 
the metabolic flow towards HAA. To elucidate a possible effect of an elevated  CO2 concentration on the metabolic 
activity, a shake flask cultivation was aerated with a synthetic gas mixture containing 10%  CO2, 25%  O2 and 65% 
 N2. In parallel, a reference cultivation was aerated with standard compressed air (0.045%  CO2, 20.95%  O2). For both 
growth conditions, nearly identical OTR trend lines (Fig. 4a) and similar cell dry weights and glucose concentrations 
(Fig. 4b) were measured. Without additional  CO2, a slightly higher maximum HAA concentration of 1.06 g  l− 1 was 
analyzed (0.88 g  l− 1 for elevated  CO2). This experiment proved that at least up to 10% there is no inhibitory effect of 
 CO2. Furthermore, no positive impact on the HAA formation could be observed by an increased  CO2 concentration.

3.3  Scalability

The consequence of headspace aeration is a reduced gas transfer between liquid and gaseous phases due to the 
limited surface area. To maintain this gas transfer at a constant level on different scales, the surface/filling volume 
ratio needs to be chosen as the scale-up criterion. This would result in low filling volumes in commercially relevant 
large-scale reactors making such bioprocesses uneconomical. A scalable game changer to realize headspace aeration 
on an industrial scale can be overpressure. The number of pressurizable large-scale bioreactor systems is increasing 
since it is an efficient technical solution to convert gaseous substrates into valuable products [55] and to increase the 
gas transfer in viscous microbial systems [56]. Pressure reactors can also be used for any unpressurized bioprocess, 
resulting in smaller space requirement compared to additional dedicated equipment such as foam fractionation 
columns. In contrast to in situ liquid-liquid extraction processes, the entire working volume can serve as reaction 
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space to build up actively producing biomass. The additional application of membrane modules for bubble-free aera-
tion would be an option to realize even higher gas transfer rates compared to the pressurized bioprocess. However, 
membrane modules as described in Bongartz et al. [30] are currently not available for all bioreactor scales. Finally, the 
reduction of temperature is an additional fully scalable and absolute simple approach to make headspace aeration 
applicable to handle foaming bioprocesses.

Fig. 3    Batch culture of P. 
putida with headspace aera-
tion in 7.5 l pressure reactor. a 
Online data of overpressure, 
temperature, and stirring rate; 
b Online data of  pCO2, CTR, 
and DOT; c Offline data of glu-
cose concentration, CDW, and 
HAA concentration; Experi-
mental conditions: 4.5 l filling 
volume; gas flow rate via 
headspace 4 l  min− 1 (0-6.4 h) 
; pH 7.00 ± 0.05 (12.5% (v/v) 
 NH4OH).
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4  Conclusion

In this study, an alternative strategy for the foam-free production of HAA based on headspace aeration was developed. 
However, it became obvious that sufficient oxygen supply is crucial for HAA production in P. putida, which is challeng-
ing under headspace-aerated conditions. To reduce the oxygen uptake rate of P. putida, the cultivation temperature 
was decreased by 7 °C, which prolonged the process time but doubled the final HAA concentration up to 1.28 g  l− 1. For 
further process intensification, the reactor system was pressurized up to 8 bar overpressure, ensuring oxygen-unlimited 
conditions over the total process time. Based on this process, it was demonstrated that the combination of headspace 

Table 1    Comparison of unpressurized (≤ 0.9 bar, 30 °C and 23 °C) and pressurized bioprocesses concerning the performance indicators: glu-
cose consumption rate  (rGlucose), growth rate (µ), HAA-glucose yield  (YHAA/Gluocse), maximum cell dry weight (CDW), maximum HAA concen-
tration and space-time yield (STY)

*Under oxygen-limited conditions

30 °C 23 °C Overpres-
sure + tempera-
ture shift

rGlucose [g  l− 1  h− 1] 0.49* 0.61* 0.88
µ  [h− 1] 0.14* 0.20* 0.30
YHAA/Glucose [-] 0.038 0.078 0.090
max. CDW [g  l− 1] 5.4 6.4 5.2
max. HAA [g  l− 1] 0.58 1.28 1.71
STY  [gHAA  l− 1  h− 1] 0.019 0.037 0.079

Fig. 4    Impact of an elevated  CO2 concentration on growth and HAA formation in P. putida. a Online data of OTR; b Offline data of glucose 
concentration, CDW, and HAA concentration; Experimental conditions: Kuhner TOM system; 250 ml unbaffled Erlenmeyer flasks, 30 °C, 10 ml 
filling volume; aeration rate 20 ml  min− 1, 300 rpm; gap between 5.5 and 6.0 h in a due to failure of data recording
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aeration, temperature reduction, and overpressure is a scalable strategy for foam-free production of bipolar substances 
with low technical effort.
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