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Abstract
A wide range of critical infrastructures are connected via wide area networks as well as the Internet-of-Thing (IoT). Apart 
from natural disasters, these infrastructures, providing services such as electricity, water, gas, and Internet, are vulnerable 
to terrorist attacks. Clearly, damages to these infrastructures can have dire consequences on economics, health services, 
security and safety, and various business sectors. An infrastructure network can be represented as a directed graph in 
which nodes and edges denote operation entities and dependencies between entities, respectively. A knowledgeable 
attacker who plans to harm the system would aim to use the minimum amount of effort, cost, or resources to yield the 
maximum amount of damage. Their best strategy would be to attack the most critical nodes of the infrastructure. From 
the defender’s side, the strategy would be to minimize the potential damage by investing resources in bolstering the 
security of the critical nodes. Thus, in the struggle between the attacker and defender, it becomes important for both 
the attacker and defender to identify which nodes are most critically significant to the system. Identifying critical nodes 
is a complex optimization problem. In this paper, we first present the problem model and then propose a solution for 
computing the optimal cost attack while considering the failure propagation. The proposed model represents one or 
multiple interconnected infrastructures. While considering the attack cost of each node, the proposed method computes 
the optimal attack that a rational attacker would make. Our problem model simulates one of two goals: maximizing the 
damage for a given attack budget or minimizing the cost for a given amount of damage. Our technique obtains solutions 
to optimize the objective functions by utilizing integer-linear programming while observing the constraints for each of 
the specified goals. The paper reports an extensive set of experiments using various graphs. The results show the efficacy 
of our technique in terms of its ability to obtain solutions with fast turnaround times.

Keywords Security · Critical Infrastructures · Optimization · Graph Analysis

1 Introduction

The safety and security of IoT-enabled infrastructure encompass more than cyber-attacks. Real dangers can arise from 
natural calamities and terrorist attacks, causing not just functional damage but also physical damage [23, 25, 27, 30]. 
Large-scale IoT utility infrastructures are made up of individual entities that are often connected via various IoT and 
other networks. Often, multiple IoT networks, such as electricity, gas, water, and Internet services are interdependent 
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[26]. An entity within one infrastructure may have a subset of critical entities for continued operation and also other 
entities that may depend on it. Thus, when a single entity fails, its failure may propagate along the network causing a 
portion of the system, or the entire system, to be disrupted. Due to the dependence on other entities and the physical 
characteristics of each entity, certain nodes may be more important to the system than others. For instance, in an 
electric power grid, the fuel store is a critical entity. Other entities that may critically depend on the electric power 
grid may be within other infrastructures such as water and gas  [22, 25, 27, 30, 31]. Due to the interconnection and 
interdependency of these infrastructures, the failure of some entities in one system may even shut down a subset of 
entities in another system. There have been numerous examples of damage propagation including several massive 
blackouts worldwide. One of the prime examples is the electrical blackout that occurred in a large portion of Italy 
in 2003 [1]. The catastrophe was of enormous proportions. The disabled power stations triggered the shutdown of 
service points in the internet communication network [22, 25, 27]. This caused the damage to spread to control-
lers of other entities that relied on the internet, which caused more power stations to shut down. Another notable 
episode is the vast blackout of July 2012, which affected more than 600 million people in India [2]. Because of the 
propagated damage and avalanche effect infrastructures are more vulnerable to attack and sabotage. An informed 
adversary that plans to attack the infrastructure system likely aims to cause the maximum amount of damage with 
the least effort possible. Therefore, the most rational strategy would be to attack the most critical entities in order 
to cause the most damage. In contrast, a system operator could work to minimize damage by protecting the most 
critical entities of the system [21, 24, 29, 31].

An infrastructure network can be represented as a directed graph in which nodes and edges denote operation 
entities and dependencies between entities, respectively. Critical nodes are the set of nodes that a rational attacker is 
likely to attack because they maximize the damage to the system. Damage is defined as the number of nodes in the 
system that are disabled. Thus, it is important for both the defender and attacker to identify the most critical nodes 
of the network. Identifying the critical nodes in a graph is a complex problem because out of all possible attacks, the 
one that is optimal must be found.

The cost of a node is the weight representing the number of resources, such as money, ammunition, or another 
metric relevant to the specific problem, that would be required to disable that node. The graph of an infrastructure 
network must be augmented with an attack cost for each node. Next, one can define the budget of the attack, 
which is the total amount of resources that the attacker can use to disable nodes. Given this maximum budget for 
an attack, the optimal attack would aim to yield the most damage. A simplistic approach would be to compute all 
possible attacks, filtering those that disable the entire network, and then selecting the one that costs the minimum. 
The runtime complexity of such an approach is exponential in terms of the number of nodes. Critical infrastructures 
typically have nodes ranging from hundreds to hundreds of thousands, making this simplistic approach infeasible. 
Therefore, it is important to design techniques that yield solutions in a fast turnaround time. A special case of this 
problem is when there are no cycles in the network, implying the graph is a Directed Acyclic Graph (DAG). When an 
attacker aims to disable the entire network, one can simply determine the nodes with zero in-degree, that is, the 
sources in the network. Attacking the sources directly is the only way to disable them. Once all sources are disabled, 
their failure propagates to the dependent nodes, which, in turn, will disable all the nodes with in-degree edges 
from the sources. Hence, attacking the sources is the minimum cost attack for a DAG. This approach is also very fast 
because only the nodes with zero in-degree need to be identified. However, general real-world networks may not 
be represented as DAGs since most networks contain redundant links to enhance fault tolerance and robustness.

This paper presents a method of computing the optimal cost attack on an infrastructure network that considers 
failure propagation. Given a graph that represents one or multiple infrastructure networks and the cost to attack each 
node, the proposed method computes the optimal attack that a rational attacker is likely to make. Our technique 
uses integer-linear programming to obtain the solution, given the objective functions and set of constraints for each 
of the specified goals. That is, maximizing the damage for a given attack budget or minimizing the cost for a given 
amount of damage. Our problem formulation is simple and intuitive, making it easy to understand and apply to some 
real-world environments. Most importantly, as demonstrated in the experimental results, the proposed solution is 
very fast regarding runtime complexity.

The rest of this paper is organized as follows: The next section discusses related work, including graph theory and 
other defense and attack models for networks. Section 3 presents the problem formulation. Section 4 describes the 
experimental setup and results. Section 5 provides some conclusions and the discussion on future work.
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2  Related work

Various researchers have addressed the attacker-defender problem in various contexts and angles. Here, we address the 
physical attacks and not cyber-attacks. For the latter, see various kinds of attacks and their comparison in [3]. The work 
reported in [4] defines the resilience of large infrastructures in terms of the operation of each individual component that 
makes up the system. It suggests that quantitative models can facilitate infrastructure operators with three significant 
features: First, to analyze the overall resilience of an entire infrastructure system. Second, to identify critical vulnerabili-
ties that may threaten the system’s operation in times of stress. Third, to provide policymakers of the infrastructure with 
suggestions for allocating new resources best to improve the system’s resilience.

Many researchers have long used graph theory for effectively modeling real-world networking problems. In 1847, 
Kirchhoff, one of the pioneers of graph theory, applied it to solve electrical circuits [5]. Graphs can capture the important 
details of complex networking systems, reducing them to elegant and simple graph theoretical equivalents without los-
ing critical information. One example of recent work is [4], which demonstrates the efficacy of using graphical models to 
improve the resiliency of critical infrastructures. Several additional examples of modeling failure propagation in graphs 
are [6–10]. However, most of these research works assume factors that may reduce problem complexity, which loses some 
of the realistic aspects of the system. The work in [6] compares its model with the uniform model reported in [7] and the 
small clusters model reported in [10]. The results indicate that the uniform model is too simplistic to apply to all systems 
due to the underlying assumptions it makes. In order to solve these problems, the authors propose the so-called HINT 
model, another failure propagation formulation for interdependent power and communication networks. The research 
work reported in [11] expands upon this model, again focusing on interconnected and interdependent networks. The 
heterogeneity of the different networks is considered in failure propagation, unlike in many generic models where all 
nodes are considered to be the same. Additionally, feature selection is used to identify the most important features 
categorizing the critical nodes of the networks.

The work reported in [9] considers smart grids for evaluating their robustness in the presence of propagating dam-
age. The proposed technique employs the percolation theory to simulate cascading failures. It does so by guessing the 
set of nodes that remain functional after the process is complete. The paper reports an important observation that in 
smart grid networks, there exists a certain threshold for the proportion of faulty nodes with respect to that of the work-
ing nodes in the system, beyond which the whole system is guaranteed to go dysfunctional. The paper also provides a 
relationship between the level of robustness that the operator of the network can ensure and the costs they are likely 
to incur in order to control and monitor their system. The work in [7] presents a framework for modeling robustness in 
interdependent networks that are subject to cascading failures. It also proposes a scheme to solve the problem of iden-
tifying critical nodes in interacting networks. The critical fraction of nodes, when removed, leads to a failure propagation 
situation, causing a complete fragmentation of the two interdependent networks. The work also compared the proposed 
models for interdependent networks against isolated single networks, showing that interdependent networks are more 
vulnerable to random failures as the degree distribution gets broader.

The paper [12] proposes a game theoretical defense model, called the defender-attacker-defender (DAD) model. 
Effectively, it is a three-stage sequential game model and consists of two players. The first is a defender who starts by 
making budget-limited improvements and takes other necessary measures to maximize the resilience of an infrastruc-
ture system and minimize the damage that an attack could cause. The second is an attacker, which observes the prior 
actions of the defender and makes an intelligent attack on the system that maximizes damage. [13] devises a strategy 
to mitigate the propagation of failures in a generic network. Again, specific nodes are selected for protection. However, 
there is very little knowledge required of the network as a whole in order for the algorithm presented in [13] to protect 
local portions of the network from cascading failure.

Much of the above work relies solely on graph theory to analyze the presented techniques [21, 25, 28, 29, 31, 32]. Con-
versely, [14] uses both graph theory and simulation to analyze critical nodes in power grids. Other work in [15] analyzes 
network graphs to determine the best way to repair a network post-disaster. The allocation of limited network resources 
is modeled as a non-linear programming optimization problem. The graph theory here is similar to other works listed 
above, but the purpose of network repair and continued emphasis on critical nodes for the best network coverage are 
important considerations for infrastructure analysis.

Most of the above-mentioned models are specific to a single system and are designed to capture the dependencies 
between different networks, often the power and communication networks. In contrast, our model is designed to be 
generic and applicable to a wider range of networks and allows each node to be a real-world entity. The producers and 
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consumers of all resources can be included in the graph as nodes without losing generality. This model is therefore 
applicable to more problems and scenarios than the previous models.

3  Problem formulation

Given a graph G = (V, E) and the attribute w(u), the attack cost of each node u, we have to compute the optimal attack; 
that is, the attack that achieves Damage Maximization. The graph is constructed such that the infrastructure entities 
are represented as nodes and the dependencies between entities are arcs between the nodes as suggested by the k-n 
dependency model [9]. If there is an edge from node u to node v, (u, v), this means node v is dependent on node u. Node 
u has an attack cost of w(u) which is determined by the threat potential and arranged security. This is different for each 
node. The total attack cost of an attack is the sum of the attack cost of all nodes that were targeted. Damage to the system 
is defined by the total number of disabled nodes in the network. Table 1 lists the notation used in this paper.

An adversary planning an attack on a single real-world entity has two options for their strategy–they can either attack 
the entity directly or prevent access to all of the entity’s supplying nodes, such as fuel in the case of the power grid exam-
ple. To model these two options, we say that node u is disabled if it is attacked directly or if all of the nodes on which u 
depends are disabled in any way. This recursive definition of node failure allows damage to propagate throughout the 
graph to simulate failure propagation. We formulate the problem as a Mixed Integer Linear Programming Problem (MILP).

3.1  Damage maximization

Each node is assigned its cost property during the generation of the graph. For our example graphs, costs are assigned 
randomly using uniform, normal, or exponential distributions. These cost properties represent how difficult or expensive 
it would be to attack a particular node. These weights are assigned before the attacker has done anything. Figure 1a 
shows an example graph with nodes, edges, and node costs.

If the attacker has a fixed budget, then their goal is Damage Maximization; that is, to cause the maximum amount of 
damage to the network without exceeding their budget. Figure 1b shows this example where the attacker has a budget 
of B = 1. The cost of this attack is C =

∑

w(u) × �u , i.e., the sum of the weights of the attacked nodes. By attacking nodes 
1 and 3, we have a total cost of C = 0.65 + 0.19 = 0.84 ≤ 1 . Node 0 is disabled via failure propagation since it is depended 
upon node 1 and no other nodes. Nodes 2 and 4 remain functional as their attack costs are too high to fit within the 
specified budget.

If the attackers instead have a desired amount of damage, or degradation, they will want to minimize the cost of the 
attack while still achieving the desired damage. Figure 1c shows this scenario with a desired degradation of D = 1, that 
is, the entire network is disabled. The cost of this attack is C =

∑

w(u) × �u . In this case, it is C = 0.92 + 0.19 = 1.11. This 
is the minimum cost to disable the entire network, which is a degradation of D = 1. Nodes 3 and 4 are attacked and the 
failure propagates to all other nodes.

Table 1  Notation used Symbol Meaning

V Set of nodes
E Set of edges

Vin
u

Set of nodes that node u is dependent upon

degin(u) The cardinality of Vin
u

w(u) Cost to attack node u
�u Binary variable: 1 if node u is attacked and 0 otherwise
�u Binary variable: 1 if node u is functional and 0 otherwise
yu Binary variable: 1 if any node in Vin

u
 is enabled and 0 otherwise

B Attack budget
D Desired degradation between 0 and 1
C The total cost of the attack
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In the case of damage maximization, the attacker plans to attack the system with the constraint of a fixed budget B. The 
total attack cost, i.e., the sum of attack costs of all targeted nodes, cannot exceed B. The attack that achieves maximum 
damage measured in disabled nodes without surpassing this constraint is selected as the result.

The case where the attack budget B is excessively large is not of much interest. If the budget is larger than the cost of 
attacking every node in the network, the attacker can simply do just that. Realistically, the attack budget B will be lower 
than the cost of attacking every node in the infrastructure system. In this case, we must determine the set of nodes that 
maximize the damage while utilizing up to, but not exceeding, the entire attack budget.

For example, when an attacker uses explosives to damage the power grid, they do not need an intelligent algorithm 
if they have enough explosives to attack every entity in the system. In this case, the system operators would simply have 
to defend every node. Such an algorithm is only needed if the attackers have a limited supply of explosives and need to 
utilize their fixed resources to cause maximum damage.

3.2  Cost minimization

The other possibility is that the attacker planning to harm the system might have a motive to cause a desired degree of 
damage to the system. In our formulation, we refer to this desired degree of damage as desired degradation and denote 
it with D. The desired degradation D is a fraction between 0 and 1 that specifies the desired proportion of disabled 
nodes to the total nodes in the network after the attack has been executed. An attacker with such a motive is looking 
for a smart way to utilize their resources such that they minimize their spending in order to bring the system down to 
the desired degradation.

Consider an attacker who aims to bring down every generator in a power grid. Since there is an attack cost associated 
with each node in the system, for such a motive, the attacker would like to minimize the total attack cost or the sum of 
the costs of attacked nodes to achieve this desired degree of damage. In most cases, we expect the attacker to go for 
D = 1.0, i.e. disabling the whole network but in theory, D can be any number between 0 and 1 and our solution accom-
modates for that.

Fig. 1  An illustrative example 
showing a graph (a) before 
an attack and (b) after an 
attack that maximizes the 
damage with a fixed budget. 
Gray nodes are the nodes that 
were attacked. Red nodes 
are ones disabled by failure 
propagation. Green nodes 
are still functional. (c) shows 
the graph after an attack that 
minimizes the cost with fixed 
damage output
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Tables 2, 3 show the mathematical equations that comprise our implementation of the Integer Programming solution. 
Table 2 contains the objective functions and Table 3 contains the list of constraints.

The objective is described as follows:

a) This function is used if the goal is to maximize damage. The maximization function in this objective is the sum of 
the inverse of all the functionality variables β of all the nodes in the graph or the set V. The function evaluates the 
number of disabled nodes. This objective sets the goal of the formulation to maximization of the count of disabled 
nodes in the system once the attack has been executed.

b) This function is used if the goal is to minimize cost. The minimization function in this objective is the weighted sum 
of all the attack variables αu for all nodes where the weights w(u) are the attack costs of the individual nodes. The 
expression evaluates the total attack cost of the attack. This objective sets the goal of the formulation to minimization 
of the total attack cost of the attack.

  Table 3 describes the detailed explanation for each of the constraints.

1.1) If degin(u) = 0, i.e., there are no edges coming into u, then u is not dependent on any node. In this case, βu should 
be exactly equal to 1–αu.

  The equation states that βu = 0 if αu = 1 and βu = 1 if αu = 0, meaning if node u is attacked it is not functional 
and if it is not attacked, it is functional. Since u is not dependent on any set of nodes, the only way to disable is 
to attack it directly.

1.2) If degin(u) > 0, i.e., the set of nodes which u is dependent on is not empty, then βu is less than or equal to 1–αu. 
The equation states that if αu = 1 then βu = 0 but if αu = 0 then βu can take up a value of either 0 or 1 which means 
if u is attacked then it is definitely disabled but if it is not attacked then it can either be functional or disabled 
depending on if any node that u is dependent upon is functional.

2) If degin(u) > 0, i.e., the set of nodes which u is dependent on is not empty, then βu is less than or equal to  yu. The equa-
tion states that if  yu = 0 then βu = 0 but if  yu = 1 then βu can take up a value of either 0 or 1 which means if all the nodes 
that u is dependent on are disabled then u is definitely disabled but if that is not the case i.e. there is some node still 
functional that u is dependent upon, then u can either be functional or disabled depending on if it is directly attacked.

3) If degin(u) > 0 i.e. the set of nodes which u is dependent on is not empty, then βu is greater than or equal to yu–αu. The 
equation states that if yu = 1 and αu = 0 then βu = 1 otherwise βu can take up a value of either 0 or 1 which means if u 
is not attacked and there is at least one functional node in the set of nodes that u is dependent on then u is definitely 
functional; otherwise it can either be functional or disabled depending on the values of the variables yu and αu. The 
constraint makes sure that βu is not free.

Table 2  The Objectivce 
Functions of Damage 
Maximization

Equation Explanation

a) max
∑

u�v 1 − �u Maximize the number of disabled 
nodes for a certain B

b) min
∑

u�v w(u) × �u Minimize the attack cost for a certain D

Table 3  The Objective 
Function Subject to these 
Constraints

Equation Case

1.1) �u = 1 − �u if degin(u) = 0

1.2) �u ≤ 1 − �u if degin(u) > 0

2) �u ≤ yu if degin(u) > 0

3) �u ≥ yu − �u if degin(u) > 0

4) degin(u)yu −
∑

v�Vin
u
�v ≥ 0 if degin(u) > 0

5) degin(u)yu −
∑

v�Vin
u
�v ≤ degin(u) − 1 if degin(u) > 0

6.a)
∑

u�V w(u) × �u ≤ B if degin(u) > 0

6.b)
∑

u�V (1−�u)

�V �
≥ D if degin(u) > 0
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4–5) Since yu is 1 if any node in Vin
u

 i.e. the set of nodes that u is dependent upon is functional and 0 otherwise, there-
fore the value of yu is equal to the logical and of the functionality variables β of all the nodes in Vin

u
.

  yu =
⋂

v�Vin
u
�v

  Constraints 4 and 5 are combined from the arithmetic equivalence of the logical and operation. A convex optimi-
zation formulation requires arithmetic definitions, not logical ones, so constraints 4 and 5 are used instead.

6. a) This function is used if the goal is to maximize damage. The left-hand side in this constraint is the weighted sum 
of all the attack variables αu for all nodes where the weights w(u) are the attack costs of the individual nodes. The 
expression evaluates the total attack cost of the attack. The constraint ensures that this total attack cost does not 
exceed the attack budget B.

6. b) This function is used if the goal is to minimize the cost. The left side of this equation is a fraction where the 
numerator is the sum of the inverse of functionality variables β for all the nodes. Thus, it evaluates the number 
of disabled nodes. The denominator of this fraction is the cardinality of the set of all nodes V, and hence is the 
total number of nodes. The fraction as a whole represents the ratio of the disabled nodes to the total number of 
nodes in the graph. The constraint ensures that the requirement of the desired degradation is met and the ratio 
on the left-hand side is greater than or equal to the desired degradation.

Figure 2 illustrates some graphical examples for an optimal attack to disable a whole system. These examples are for 
a system of 10 nodes. The average node degree ranges from 2 to 10.

In Fig. 2, the graph on the left shows the state of the network before the attack is executed while the whole network 
is operational. The green color in the figure on the left represents the functional nodes in the network. The graph on the 
right shows the state after the attack is executed. The yellow color represents the attacked nodes and red color represents 
the nodes disabled due to failure propagation. The sum of the attack costs of the yellow nodes represents the total attack 
cost. Out of all possible attacks, the solution shows the attack with the minimum total attack cost.

Figure 3 illustrates comparatively larger graphs with the same color coding, but generated using Erdős–Rényi random 
graph generation model.

4  Experimental setup and results

In this section, we discuss the performance and results of our algorithm. We used Python’s igraph package [16] to gener-
ate and draw graphs. We implement our formulation in GAMS, which is able to interface with many different optimization 
problem solvers. Currently, we use CPLEX [17] as the backend solver for our algorithm. Our GAMS implementation was 
run on all generated graphs to evaluate the solution of each graph.

4.1  Data generation

The graph generators take the following inputs: number of nodes, average node degree, node weights, and budget. Of these 
inputs, the number of nodes and average node degree are varied deterministically to generate different-sized scale-free 

Fig. 2  Example graphs (left) 
and solution attack (right) for 
Barabási–Albert scale-free 
graphs using uniform distribu-
tions for weights
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random graphs using Barabási–Albert model [18]. Scale-free networks are ones in which the degree follows the power 
law P(k) ~ ck-γ, due to which they have highly connected hubs. Scale-free graphs can model several real-world networks 
that have been observed to have this property, such as social and infrastructure networks [19, 20]. Scale-free graphs were 
chosen along with random graphs as they can be important to analyze due to their real-world applications.

The node weights are randomly assigned to each node at graph generation. They are set as a number between 0 and 
1. The budget of the attack is fixed at 1.0 throughout each experiment. Using the above parameters, we generated 25 
random graphs with the number of nodes ranging from 60 to 300. For each different number of nodes, five separate 
graphs are generated with varying average node degree, ranging from 20 to 100% of the total number of nodes. For 
each test graph, the algorithm was run to determine which nodes should be attacked in order to either maximize the 
damage with a fixed budget or minimize cost while disabling the entire network. Table 4 lists the input parameters used 
for graph generation and how they were varied to generate multiple graphs for experimentation.

4.2  Experimental results

Tables 5, 6 include the results obtained from our runs on the generated graphs described above. We do not list the set 
of nodes attacked in each run, but only the number of nodes in that attacked set. For these experiments, the weights of 
nodes were randomly generated using the uniform distribution.

Tables 5, 6 display the results of experiments performed on Barabási–Albert scale free graphs. It can be noted that 
the number of attacked nodes decreases as the number of edges per nodes increases. This is because scale-free graphs 
contain highly connected hub nodes; as the number of edges increases, so do the connections to those hubs. When 
the graph is highly connected, attacking a single hub can propagate failure through the entire network. It can also be 
observed that the execution time for discovering the optimal attack increases with the number of edges in the graph.

Tables 7, 8 are the results for the Erdős–Rényi random graphs. Because they do not contain the hubs of scale-free 
graphs, the number of attacked nodes does not necessarily decrease as the network becomes more connected. The 
execution time also does not increase in the same way as it does for analyzing scale-free graphs. It can also be noted 
that for damage maximization, the number of attacked nodes is often smaller than for cost minimization. In many of the 

Fig. 3  Example graphs (left) 
and solution attack (right) for 
Erdős–Rényi graphs using uni-
form distributions for weights

Table 4  System Input 
Parameters

Parameters Variation

Number of Nodes 60 to 300 with steps of 60
Average Node Degree 20% to 100% of the total 

number of nodes with 
steps of 20%

Node Weights A uniformly random 
number between 0 and 
1, both inclusive

Budget Fixed at 1.0
Desired Degradation Fixed at 1.0



Vol.:(0123456789)

Discover Internet of Things             (2024) 4:2  | https://doi.org/10.1007/s43926-023-00054-1 Research

cases for damage maximization, the budget prevents the attacker from disabling the entire network and they are only 
able to attack enough nodes to damage part of it.

As shown in Fig. 4, as the average node degree increases for scale-free graphs, the number of nodes in an optimal 
attack to disable the entire network decreases. When the incoming edges to a node increase, that means the node has 
more supporting nodes, so more nodes will have to be disabled to propagate failure to this particular node. However, 
when outgoing edges in a node increase, this means that many nodes are dependent on this node. If a node with many 
outgoing edges is attacked, it is likely to affect many nodes. Further, these Barabási–Albert scale-free networks are gen-
erated with a linear preferential attachment [18]. In our context, this means that if a node has many dependencies, then 
a new node is more likely to also be dependent on this node. This results in densely connected hub nodes as we move 
towards the center of the graph. Thus, the decrease in attacked nodes could be due to the higher probability of new 
edges being added as outgoing edges rather than incoming edges.

Figures 4, 5, 6, 7, present the results of the damage maximization objective within a fixed budget. For each generated 
graph referenced in these figures, the attack cost of each node was randomly generated, and the budget was fixed at 1.

Because the node weights are randomly generated, the function is sometimes able to attack only a few nodes without 
exceeding the budget. This is why there are fluctuations ate the beginnings of the graphs. With fewer edges, the attacker 
may not be disabling the entire network and is using as much of the budget as possible for maximum damage. When 
the node degree is sufficiently high, the attacker can disable the entire network with fewer attacked nodes (1 in each of 
these cases) due to the scale-free property of these graphs.

In Fig. 5, the time for maximizing damage increases as the average node degree increases since this increases the 
total number of equations that must be solved for. Specifically, dependencies (4) and (5) increase with the number 
of edges. As the average edges per node increase, so do the number of equations that must be solved and therefore 
the execution time.

Table 5  Experimental Results 
for Cost Minimzation based on 
fixed Degradation performed 
on Barabási–Albert scale 
free graphs using uniform 
distribution for weights

Number of Nodes Number of edges per node Number of attacked nodes Execution 
time (s)

60 12 20 0.003
60 24 15 0.006
60 36 11 0.004
60 48 6 0.011
60 60 1 0.008
120 24 44 0.010
120 48 25 0.011
120 72 21 0.016
120 96 10 0.023
120 120 1 0.015
180 36 65 0.014
180 72 48 0.020
180 108 25 0.030
180 144 17 0.027
180 180 1 0.030
240 48 75 0.032
240 96 59 0.053
240 144 39 0.069
240 192 22 0.050
240 240 1 0.053
300 60 95 0.031
300 120 68 0.052
300 180 48 0.090
300 240 22 0.077
300 300 1 0.127
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Figure 7 shows the execution time of the damage maximization function on Erdős–Rényi graphs. It can be noted 
that the values are more random than the scale-free graphs and that the execution time is not necessarily increasing 
for higher average node degree.

Figures 8, 9, 10, 11 present the results of the objective of minimizing the cost of an attack that causes a desired 
amount of damage. For each generated graph referenced in these figures, the attack cost of each node was randomly 
generated, and the degradation was fixed at 1.

As shown in Fig. 8, the number of nodes needed to be attacked to disable the entire network decreases linearly 
with an increase in the average node degree. When incoming edges in a node increase, it means the node now has 
more supporting nodes, that is, more nodes have to be disabled to propagate failure to this node. In contrast, when 
outgoing edges in a node increase, this means that more nodes are now dependent on this node and if this node 
goes down, it is likely to affect more nodes than before. Further, the graph generation model that we are using, the 
Barabási model, generates scale-free networks with a linear preferential attachment [18]. In our context, it means 
that if a node has a lot of dependencies, a new node is more likely to be dependent on this node. As a result, there 
are more densely connected hubs as we move towards the center of the graph. So, the reason of this linear decrease 
could be the higher probability of new edges being added as an outgoing edge as compared to an incoming edge.

Figure 9 indicates that as the graph gets denser, the execution time increases. This increase is the result of the 
increase in the number of equations with an increase in the number of edges. As the number of edges increases, the 
dependencies between the nodes increase and hence the equations capturing these dependencies (Eq. 4–5) increase.

As Fig. 10 illustrates, the attacked nodes do not follow a regular pattern. This is because Erdős–Rényi graphs are not 
scale-free like Barabási–Albert. So, a higher number of nodes does not necessarily mean more dependency on a single 
node. Figure 11 shows the execution time plots for Erdős–Rényi graphs.

Table 6  Experimental Results 
for damage maximization 
based on a fixed budget 
performed on Barabási–Albert 
scale free graphs using 
uniform distribution for 
weights

Number of nodes Number of edges per node Number of attacked nodes Execution 
time (s)

60 12 23 0.097
60 24 18 0.102
60 36 10 0.053
60 48 13 0.076
60 60 1 0.072
120 24 18 0.080
120 48 23 0.082
120 72 21 0.083
120 96 19 0.114
120 120 1 0.163
180 36 18 0.101
180 72 24 0.118
180 108 23 0.126
180 144 28 0.121
180 180 1 0.337
240 48 26 0.127
240 96 28 0.152
240 144 31 0.156
240 192 27 0.173
240 240 1 0.614
300 60 33 0.152
300 120 33 0.182
300 180 26 0.216
300 240 29 0.245
300 300 1 0.867
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5  Conclusions and future work

This paper addressed the problem of identifying critical nodes in an IoT network that make up an optimal cost attack 
on that network. It provided an effective and minimalistic integer linear programming solution to the problem. The 
experimental results show that our scheme is fast and scalable for large-scale infrastructure systems. It achieves one of 
two problem objectives: maximizing damage caused to the network within a fixed budget or minimizing the cost of an 
attack that causes a desired amount of damage. Both methods are tested on random graphs and scale-free graphs. There 
are several extensions of the proposed work. Currently, the proposed model is minimalistic and as simple as possible to 
ensure efficient solutions. The goal was to propose an efficient scheme that is easy to extend for specific use cases and 
accommodates for the needs of specific infrastructures. One possibility is to include the demand and supply parameters 
for each node. In our formulation, we made the assumption that a single node is sufficient to keep its dependent nodes 
alive. But, in the real world, not every node is able to keep its dependent nodes running all by itself. In fact, it depends 
on the demand of the dependent nodes and the supply that this node has. Having a demand and a supply parameter 
for each node solves that problem. This way we can model this real-world limitation in our formulation making a more 
accurate representation of the real-world IoT systems.

Additional work on including various aspects of the network requirements (e.g., specific security requirements, perfor-
mance requirements, usability requirements, and cost calculation) will be worth exploring as it will add more real-world 
factors.

Table 7  Experimental 
Results for cost minimization 
based on fixed degradation 
performed on Erdős–Rényi 
graphs using uniform 
distribution for weights

Number of nodes Number of edges per node Number of attacked nodes Execution 
time (s)

60 12 10 0.003
60 24 6 0.003
60 36 5 0.002
60 48 12 0.004
60 60 2 0.004
120 24 10 0.007
120 48 18 0.005
120 72 11 0.006
120 96 13 0.006
120 120 20 0.006
180 36 24 0.008
180 72 25 0.004
180 108 29 0.008
180 144 25 0.003
180 180 29 0.009
240 48 30 0.005
240 96 30 0.006
240 144 32 0.013
240 192 27 0.010
240 240 21 0.005
300 60 41 0.015
300 120 41 0.010
300 180 40 0.006
300 240 44 0.006
300 300 52 0.012
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Another extension is to incorporate the heterogeneity of the dependencies that each node has. A real-world 
entity usually does not run on a single kind of resources. Instead, there are several different resources that a single 
entity in the system requires in order to perform its operations. In our current formulation we do not consider that, 
but we can model each node to have a demand for different kinds of resources. So, adding this extension allows us 
to capture this real-world behavior of these infrastructure systems.

The current work assumes that the channels in the system have infinite flow capacity but that is not really accurate. 
But we can add a capacity parameter for each edge to put a limit on its capacity and to make the model more practical 
and closer to reality. The current formulation, moreover, puts all nodes on equal footing in terms of importance to 
the system, that is, no node is more important than its peers other than the fact that it might have more dependent 
nodes to provide. But in the real world, some power grids, for example, may be supplying power to more sensitive or 
critical systems as compared to others which makes them more crucial to the system. Therefore, the system should 
allocate more resources to defend the nodes of more importance. We can simulate this behavior of these systems 
by incorporating an importance parameter.

Table 8  Experimental Results 
for damage maximization 
based on a fixed budget 
performed on Erdős–Rényi 
graphs using uniform 
distribution for weights

Number of nodes Number of edges per node Number of attacked nodes Execution 
time (s)

60 12 7 0.097
60 24 7 0.032
60 36 9 0.071
60 48 6 0.025
60 60 9 0.033
120 24 6 0.061
120 48 9 0.062
120 72 9 0.051
120 96 13 0.133
120 120 11 0.068
180 36 9 0.087
180 72 17 0.114
180 108 12 0.095
180 144 9 0.114
180 180 21 0.098
240 48 15 0.102
240 96 21 0.113
240 144 17 0.115
240 192 17 0.134
240 240 17 0.123
300 60 17 0.158
300 120 14 0.171
300 180 19 0.137
300 240 24 0.141
300 300 18 0.172
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Fig. 4  Change in the number of nodes attacked w.r.t. average node degree for Barabási–Albert scale free graphs using uniform distribution 
for weights. Solved for maximum damage based on a fixed budget
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Fig. 5  Change in the execution time w.r.t. average node degree for Barabási–Albert scale free graphs using uniform distribution for weights. 
Solved for maximum damage based on a fixed budget
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Fig. 6  Change in the number of nodes attacked w.r.t. average node degree for Erdős–Rényi graphs using uniform distribution for weights. 
Solved for maximum damage based on a fixed budget
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Fig. 7  Change in the execution time w.r.t. average node degree for Erdős–Rényi graphs using uniform distribution for weights. Solved for 
maximum damage based on a fixed budget
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Fig. 8  Change in the number of nodes attacked w.r.t. average node degree for Barabási–Albert scale free graphs using uniform distribution 
for weights. Solved for minimum cost based on a fixed degradation
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Fig. 9  Change in the execution time w.r.t. average node degree for Barabási–Albert scale free graphs using uniform distribution for weights. 
Solved for minimum cost based on a fixed degradation
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Fig. 10  Change in the number of nodes attacked w.r.t. average node degree for Erdős–Rényi graphs using uniform distribution for weights. 
Solved for minimum cost based on a fixed degradation
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