
Vol.:(0123456789)

Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2

1 3

Discover Internet of Things

Case Study

Is iterative feature selection technique efficient enough? 
A comparative performance analysis of RFECV feature selection 
technique in ransomware classification using SHAP

Rawshan Ara Mowri1 · Madhuri Siddula1 · Kaushik Roy1

Received: 29 May 2023 / Accepted: 15 November 2023

© The Author(s) 2023  OPEN

Abstract
The realm of cybersecurity places significant importance on early ransomware detection. Feature selection is critical in 
this context, as it enhances detection accuracy, mitigates overfitting, and reduces training time by eliminating irrelevant 
and redundant data. However, iterative feature selection techniques tend to select the best-performing subset of features 
through an iterative process which leaves chance for a crucial feature not being selected and the number of selected 
features may not always be the optimal or the most suitable for a given problem. Hence, this study aims to conduct a 
performance comparison analysis of an iterative feature selection technique- Recursive Feature Elimination with Cross-
Validation (RFECV) with six supervised Machine Learning (ML) models to evaluate its efficiency in classifying ransomware 
utilizing the Application Programming Interface (API) call and network traffic features. The study employs an Explainable 
Artificial Intelligence (XAI) framework called SHapley Additive exPlanations (SHAP) to derive the crucial features when 
RFECV is not integrated with the ML models. These features are then compared with RFECV-selected features when it 
is integrated. Results show that without RFECV the ML models achieve better classification accuracies on two datasets. 
Again, RFECV falls short of selecting impactful features, leading to more false alarms. Moreover, it lacks the capability to 
rank the features based on their importance, reducing its efficiency in ransomware classification overall. Thus, this study 
underscores the importance of integrating explainability techniques to identify critical features, rather than solely relying 
on iterative feature selection methods, to enhance the resilience of ransomware detection systems.

Keywords Dynamic analysis · Feature engineering · Explainable artificial intelligence · Ransomware · Cyber security

Abbreviations
API  Application programming interface
AIS  Artificial immune system
CFG  Call flow graph
CF-NCF  Class frequency non-class frequency
DoS  Denial-of-Service
DGA  Domain generation algorithm
DNS  Domain name system
XAI  Explainable artificial intelligence

Madhuri Siddula and Kaushik Roy contributed equally to this work.

 * Rawshan Ara Mowri, rmowri@aggies.ncat.edu; Madhuri Siddula, msiddula@ncat.edu; Kaushik Roy, kroy@ncat.edu | 1Department 
of Computer Science, North Carolina A &T State University, Greensboro, NC 27411, USA.

http://crossmark.crossref.org/dialog/?doi=10.1007/s43926-023-00053-2&domain=pdf


Vol:.(1234567890)

Case Study Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2

1 3

EDA  Exploratory data analysis
FN  False negative
FNR  False negative rate
FPR  False positive rate
FP  False positives
KNN  K-nearest neighbor
LR  Logistic regression
LSTM  Long short-term memory
ML  Machine learning
MLP  Multilayer perceptron
NB  Naïve Bayes
OvO  One-vs-One
OvR  One-vs-Rest
PCAP  Packet capture
RF  Random forest
RFECV  Recursive feature elimination with cross-validation
SHAP  SHapley Additive exPlanations
SDN  Software defined networking
SGD  Stochastic gradient descent
SVM  Support vector machine
TCP  Transmission control protocol
TN  True negative
TP  True positives
VM  Virtual machine
PE  Windows portable executable

1 Introduction

Ransomware is a harmful software that applies symmetric and asymmetric cryptography to inscribe user information 
and poses a Denial-of-Service (DoS) attack on the intended user [1]. The unique functional process of ransomware 
attacks makes it more harmful than any malware attacks and causes irreversible losses. Crypto-viral Extortion’, which is 
the functional process of ransomware, includes three main steps [2] as depicted in Fig. 1. In the initial step, the attacker 
creates a key pair that incorporates a private key K1 and a public key K2, puts the public key K2 in the ransomware, then, 
at that point, launches the ransomware. After entering a computer, in the second step, the ransomware activates itself 
and produces an arbitrary symmetric session key K3 to encrypt the victim’s files or data. Next, the ransomware utilizes 
K2 to encrypt K3 and to create a small irregular ciphertext E1. Then, the ransomware zeroizes K3 and the plaintext from 
the person’s drive. A communication bundle P1 containing previously generated E1, a payment note M, and a medium to 
contact the attacker, is then created. After that, the ransomware informs the victim of the attack and demands payment 
via a transaction medium within a set amount of time in order to decrypt the files by displaying the payment note M. At 
the final step, as the payment is completed, the communication bundle P1 is adjusted to P2 containing just the deviated 
ciphertext E1 and steered back to the attacker. The attacker gets P2, decrypts E1 with K1, and gets K3 which is then sent 
back to the victim to decrypt the files. Finally, upon receiving K3, the victim decrypts the files. Usually, the victim pays 
the ransom using untraceable cryptocurrency [3]. However, paying the ransom doesn’t guarantee that the decryption 
key could secure the encrypted files, which could be the worst scenario of any type of ransomware attack [4].

Supported by a report by Symantec in 2015, there are two types of ransomware [5]-

• Locker ransomware: denies access to the system or device
• Crypto ransomware: denies access to the files or data

However, according to [6], based on the functionalities, ransomware is categorized into four groups-



Vol.:(0123456789)

Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2 Case Study

1 3

• Encrypting ransomware: encrypts and denies access to the victim’s files and data (i.e., AIDS Trojan, CryptoLocker, 
WannaCry, CryptoWall) [6]

• Non-encrypting ransomware: doesn’t do encryption but rather threatens to try if the ransom is not paid (i.e., WinLock, 
NotPetya) [6]

• Leak-ware: doesn’t do encryption instead claims to reveal stolen information from the victim’s system if the ransom 
is not paid [7]

• Mobile ransomware: targets the Android platform [8]

All these categories of ransomware are playing a vital role in the recent upsurge in the incidence of ransomware 
attacks. Due to the increasing number of ransomware variants and ransomware attacks, researchers have been earnestly 
involving themselves in looking for efficient ways to improve the scenarios. While some researchers are analyzing the 
distinctive behaviors of ransomware by executing it in a secure environment called Dynamic Analysis [1, 9–13], some 
researchers are analyzing the ransomware without any execution, referred to as Static Analysis [14–16]. However, a good 
number of researchers are combining these two approaches and adopting a Hybrid Analysis Approach [17–19]. Although 
the static analysis technique takes less analysis time and facilitates the researchers by not requiring the execution of 
malicious files, this technique struggles to trace new ransomware variants because of the ever-evolving code obfuscation 
technique. On the other hand, although a dynamic analysis approach might take a longer time to process and analyze 
the ransomware program, this approach can detect ransomware with higher accuracy as it executes the ransomware 
program in a secure virtual environment and does real-time behavioral analysis. The main idea is that despite the changes 
in the new ransomware variants, they will still show the same behavioral patterns. Therefore, for this study, we have 
opted for the dynamic analysis approach for its ability to detect and classify ransomware families based on behavioral 
patterns regardless of the code obfuscation techniques deployed by the ransomware programmers [20, 21]. Among 
the broad range of different behavioral characteristics obtained from the dynamic analysis approach, selecting critical 
features for a robust ransomware classification or detection system has been a constant challenge. Although feature 
selection techniques play a pivotal role in this regard, investigating whether those selected features are crucial for the 
corresponding system has always been ignored and so has the efficiency of the feature selection technique. Especially, 
when applying an iterative feature selection technique, there is always a chance for a crucial feature not being included 
in the best-performed subset of features and the number of selected features may not always be optimal for a given 
problem. Hence, the prime objective of this study is to investigate the efficiency of RFECV- an iterative feature selection 
technique by incorporating XAI in our work and to demonstrate how XAI can be employed to derive highly contributing 
features that would facilitate building robust ransomware detection systems. Again, regardless of the relentless effort 
of the investigated research works, improvement scenarios are still existing in the manual data collection process, not 
having a large or diverse dataset that focuses on both Crypto and Locker types of ransomware [1, 10, 12, 22–26], using 
the Cuckoo sandbox environment that often falls short of providing in-depth and accurate analysis reports [1, 9–13], and 

Fig. 1  Workflow of a 
ransomware



Vol:.(1234567890)

Case Study Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2

1 3

not presenting the highly contributing features to the output of each ML model. Therefore, this study also automates the 
data collection process by developing a Web-Crawler, focuses on both the Crypto and Locker types of ransomware, utilizes 
an advanced sandbox environment, namely, Falcon Sandbox for the dynamic analysis of ransomware, and presents the 
highly contributing features to the output of each ML model.

The main contributions of this study are:

• Developing a Web-Crawler, ‘GetRansomware’ to automate collecting the Windows Portable Executable (PE) files of 
15 different ransomware families from the VirusShare repository. The Web-Crawler is essential to automate searching 
and downloading the samples and cutting down the manual workload.

• Constructing two different ransomware datasets by analyzing two types of binaries, namely, Windows Portable Exe-
cutables (PE) and Packet Capture (PCAP) files of both Crypto and Locker types of ransomware.

• Examining and comparing the performance of six Supervised ML models in identifying ransomware families, both 
with and without the use of the RFECV feature selection approach. Since our approach includes utilizing RFECV for 
selecting the optimum number of features and RandomSearchCV for selecting the optimum hyperparameter values 
for each classifier, this study attempts to optimize each model’s performance in both scenarios before the comparison 
is made.

• Presenting the efficiency of the RFECV feature selection technique in ransomware classification. For this task, first, we 
utilize ‘SHapley Additive exPlanations’ to obtain the highly contributing features from the without feature selection 
scenario. Next, we obtain the RFECV-selected features from the with feature selection scenario. Finally, we report how 
the important set of features varies for each ML model in two scenarios and how they affect the final outcome. Thus, 
this study also demonstrates the application of SHAP to identify the critical features that significantly contribute to 
the classification of ransomware.

The rest of this paper is structured as follows: Sect. 2 presents the related works. Section 3 details our methodology. 
The experimental results and discussions are illustrated in Sect. 4. Section 5 concludes the paper with the direction for 
future works.

2  Related works

In this section, we present several prior approaches to ransomware detection or classification. Although malware of a 
particular kind is called ransomware and many of the previous approaches include ransomware families in the malware 
dataset, our investigation mainly focuses on the binary and multiclass classification of ransomware through the dynamic 
analysis approach. First, we present recent research on API sequence and frequency-based ransomware detection and 
classification techniques. Next, we introduce a few investigations on network traffic features-based methods. Then, we 
mention several works that combine other significant features along with API call features and network traffic features 
towards ransomware detection and classification. All of these approaches are similar to our method since we consider 
both the API call features and network traffic features for comparing the performance of ML models with and without 
the RFECV feature selection technique.

A good number of researchers analyzed API call behaviors and proposed ransomware detection or classification meth-
ods based on the API call sequences or frequencies. Maniath et al. [10] analyzed the API call behavior of 157 ransomware 
and presented Long Short-Term Memory (LSTM)-based ransomware detection that focuses on API call sequence and 
compensates for the ransomware that causes execution delays. However, this work lacks complete information about the 
ransomware families/variants and the number of benign software used for the experiment. Vinayakumar Kumar et al. [11] 
proposed a Multilayer Perceptron (MLP)-based ransomware detection method focusing on API call frequency but they 
deployed a simple MLP network that failed to distinguish CryptoWall and Cryptolocker. Chen et al. [23] used API Call Flow 
Graph (CFG) generated from the extracted API sequence using the API monitor tool for detecting ransomware. Regard-
less, the work is based on a smaller dataset that includes only four ransomware families. Also, graph-similarity analysis 
requires higher computational power that some systems may not provide. Takeuchi et al. [12] used API call sequences 
to identify zero-day ransomware attacks and the work involved kernel tricks for tuning Support Vector Machine (SVM). 
However, the accuracy of this work decreases while using standardized vector representation because of the less diverse 
dataset. Bae et al. [27] extracted the API call sequences using the Intel Pin Tool. Their sequential process includes generat-
ing an n-gram sequence, input vector, and Class Frequency Non-Class Frequency (CF-NCF) for every sample before fitting 



Vol.:(0123456789)

Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2 Case Study

1 3

their model. Nevertheless, their work lacks complete information about the ransomware families/variants used for the 
experiment, and the work’s accuracy can be improved with the help of deception-based techniques. Hwang et al. [13] 
analyzed API calls and used two Markov chains, one for ransomware and another for benign software to capture the API 
call sequence patterns. By using Random Forest (RF), they compensate Markov Chains and control False Positive Rate 
(FPR) and False Negative Rate (FNR) to achieve better performance. However, their model produces high FPR that can 
be improved with the help of signature-based techniques.

In contrast to the API call behaviors, some researchers analyzed network traffic behaviors of different ransomware 
families. Cabaj et al. [24] proposed two real-time Software Defined Networking (SDN) based mitigation methods that 
were developed using OpenFlow to ensure a prompt reaction to the threat while not decreasing the overall network 
performance. However, the proposed method is only based on the features of CryptoWall ransomware. Tseng et al. [25] 
proposed a method that can identify specific network traffic types and detect in-network behavior sequences. Their 
approach detects ransomware before encryption starts. Regardless, the work lacks complete information about the 
ransomware families/variants as well as benign software used for the experiment. Alhawi et al. [26] used TShark for 
capturing and analyzing malicious network traffic activities followed by utilizing the WEKA ML tool to detect ransom-
ware based on only 9 extracted features. Nonetheless, because of using fewer features of only 210 ransomware, the 
proposed method may fall short of recognizing the new ransomware variants. Almashhadani et al. [22] built a dedicated 
testbed for executing and capturing the network traffic of the sample ransomware and proposed a multi-classifier that 
works on two different levels: packet-based and flow-based classifiers. Their method employed a language-independent 
algorithm that can detect domain names from general sonic axioms. However, the proposed method is only based on 
the Locky ransomware. In Almashhadani et al. [28], thoroughly analyze ransomworm network traffic, focusing on Wan-
naCry and NotPetya. They extract 21 informative features from session-based and time-based flow levels to distinguish 
compromised host propagation traffic. Two machine learning classifiers are built based on these features. Moreover, 
they developed MFMCNS, a multi-feature and multi-classifier network system, which shows 99.8% detection accuracy. 
Nevertheless, the research relies heavily on WannaCry traffic analysis due to the greater availability of WannaCry PCAP 
files compared to those of NotPetya. Singh et al. [29] present SINN-RD, an innovative Neural Network-based Ransomware 
Detection System employing Spline Interpolation. They outline data normalization and feature generation from log files. 
Security analysis confirms SINN-RD’s robustness against potential threats. The practical application assesses its impact 
on key performance metrics, including accuracy, precision, recall, and F1-score. Furthermore, comparative analysis dem-
onstrates that SINN-RD outperforms existing schemes, achieving an impressive 99.83% accuracy.

Instead of considering only API call behavior or only the network traffic behavior, some researchers combined these 
two categories of behavior along with other malicious indicators (i.e., registry key operations, file extensions, files/direc-
tory operation, etc.) for their models. D. Sgandurra et al. [9] analyzed API calls, registry key operations, embedded strings, 
file extensions, files/directory operations, and dropped file extensions prior to developing their model. The features were 
selected using the mutual information criterion and their proposed method ‘EldeRan’ was able to deal with sophisticated 
encryption methods of ransomware at an early stage. However, the limitation of ‘EldeRan’ is that it produces a higher False 
Positive Rate. Continella et al. [30] analyzed filesystem operations and presented two models: process-centric trained 
on each process and system-centric trained on the whole system. They developed ‘ShieldFS’-a software on OS that can 
detect malicious file activities and roll back from the attack. However, their system-centric model produces high false 
positives, and the system may face performance degradation due to the add-on driver on the OS. Lu et al. [31] analyzed 
API calls, network features, registry operations, file operations, directory operations, and memory usage for develop-
ing a ransomware detection method based on the Artificial Immune System (AIS). They applied real-valued detector 
generation based on the V-detector negative selection while optimizing the AIS parameter (i.e., hypersphere detector 
distribution) to improve the ransomware detection rate. Regardless, their system also produces higher false alarms. Hasan 
et al. [1] considered API calls, network features, registry key operations. process operations, function length frequency, 
and printable string information for their model. They proposed a framework- ‘RansHunt’ that takes a hybrid approach 
to identify potential static and dynamic features for the SVM classifier that outperforms traditional AV tools. However, 
the proposed method only focuses on the Crypto category. So, it may not be effective for the Locker category. In [32], 
Zahoora et al. analyzed API requests, file directory setups, file extensions, file processes, registry keys setups, strings, and 
dropped file records and introduced CSPE-R, a Cost-Sensitive Pareto Ensemble strategy for detecting new Ransomware 
attacks. Initially, an unsupervised deep Contractive Auto Encoder is used to transform the feature space. CSPE-R explores 
different semantic spaces and uses a novel Pareto Ensemble-based estimator selection strategy to balance false positives 
and false negatives. The experimental results demonstrate 93% accuracy against zero-day ransomware attacks, although 
the dataset includes only 11 crypto-ransomware families. Masum et al. [33] introduce a unique feature selection-based 



Vol:.(1234567890)

Case Study Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2

1 3

framework, incorporating various machine learning algorithms, particularly neural network-based classifiers, for efficient 
ransomware classification and detection. The framework uses variance threshold and VIF threshold as feature selection 
tools to eliminate low-variant and highly correlated features. The models’ performance was evaluated through a com-
prehensive comparative analysis of DT, RF, NB, LR, and NN classifiers. The experimental findings indicate that the Random 
Forest classifier outperforms other classifiers, demonstrating the highest 99% accuracy.

Table 1 presents the synopsis of the previous research works conducted on the analysis, detection, and classification 
of ransomware.

3  Methodology

The methodology of this study consists of three subsequent steps as illustrated in Fig. 2: Data Collection, Feature 
Engineering, and Classification.

3.1  Data collection

We have developed a Web-Crawler- ‘GetRansomware’ to automate collecting the Windows Portable Executable (PE) files 
of 15 different ransomware families from the VirusShare repository [34]. We have also shared the Web-Crawler on our 
GitHub repository for public access [35]. About 95% of the PE files were collected from VirusShare using GetRansomware. 
The rest of the PE files were collected from theZoo [36] and Hybrid-Analysis.com [37]. In addition, we have collected the 
Packet Capture (PCAP) files of those ransomware families from the malware-traffic-analysis [38]. Table 2 presents the 
number of collected samples.

3.2  Feature engineering

The scarcity of the ransomware dataset is one of the major challenges that hinder the research work in this area [39]. 
Therefore, for this study, we construct two different datasets from two types of binaries through separate feature engi-
neering processes. In the first process, we create the first dataset by analyzing the PE files while in the second process, 
we create the second dataset by analyzing the PCAP files.

3.2.1  Process 1: creation of the first dataset‑ ‘Data1’

The feature engineering step for the first process is composed of two phases. The phases are:

• Phase 1: Feature Extraction
• Phase 2: Feature Selection

Phase 1: feature extraction From the wide range of distinct behavioral features, we have considered utilizing API call 
frequencies for our study. API calls are made by the application or program running at a user level to request services 
as depicted in Fig. 3. It is the method through which data or information is exchanged between the sending device and 
the receiving device. The OS performs the requested services by issuing these calls, and the outcomes are returned to 
the caller user applications. Thus, API calls made by the ransomware program allow the attackers to explore and obtain 
control of the system and perform malicious activities. Since analyzing API call behavior leads researchers to better 
understand the program’s behavior [40, 41], therefore, we have considered extracting the API call frequency by execut-
ing the PE files of the ransomware.

We have analyzed the PE files with the help of Hybrid-Analysis.com [37], powered by the CrowdStrike Falcon Sandbox 
[42]. To automate submitting malicious binaries, pull the analysis report after the analysis, and perform advanced or 
required search queries on the database, Falcon Sandbox provides a free, convenient, and efficient API key that one 
can obtain from an authorized user account. For analysis, we have used our API key and Falcon Sandbox Python API 
Connector- VxAPI wrapper [43] to automatically submit the binaries from the system. After submission, Falcon Sandbox 
runs the binaries in a Virtual Machine (VM) and captures the run-time behaviors as illustrated in Fig. 4. Later, it shows the 
analysis results on the web interface.



Vol.:(0123456789)

Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2 Case Study

1 3

Ta
bl

e 
1 

 S
yn

op
si

s 
of

 th
e 

lit
er

at
ur

e 
re

vi
ew

Re
fe

re
nc

es
D

at
as

et
Cl

as
si

fie
r

Ac
cu

ra
cy

A
PI

 c
al

l f
ea

tu
re

s
M

an
ia

th
 e

t a
l. 

[1
0]

15
7 

Ra
ns

om
w

ar
e,

 U
ns

pe
ci

fie
d 

nu
m

be
r o

f b
en

ig
n 

so
ft

w
ar

e
Lo

ng
 S

ho
rt

-T
er

m
 M

em
or

y
96

.6
7%

  
Vi

na
ya

ku
m

ar
 K

um
ar

 e
t a

l. 
[1

1]
75

5 
Ra

ns
om

w
ar

e,
 2

19
 B

en
ig

n 
So

ft
w

ar
e

M
ul

til
ay

er
 P

er
ce

pt
ro

n
10

0%
 (B

in
ar

y)
, 

98
%

 (M
ul

ti-
cl

as
s)

Ch
en

 e
t a

l. 
[2

3]
83

 R
an

so
m

w
ar

e,
 8

5 
Be

ni
gn

Si
m

pl
e 

Lo
gi

st
ic

98
.2

%
Ta

ke
uc

hi
 e

t a
l. 

[1
2]

27
6 

Ra
ns

om
w

ar
e,

 3
12

 B
en

ig
n 

So
ft

w
ar

e
Su

pp
or

t V
ec

to
r M

ac
hi

ne
97

.4
8%

Ba
e 

et
 a

l. 
[2

7]
10

00
 R

an
so

m
w

ar
e,

 9
00

 M
al

w
ar

e,
 3

00
 B

en
ig

n 
so

ft
w

ar
e

Ra
nd

om
 F

or
es

t
98

.6
5%

H
w

an
g 

et
 a

l. 
[1

3]
19

09
 R

an
so

m
w

ar
e,

 1
13

9 
Be

ni
gn

 s
of

tw
ar

e
M

ar
ko

v 
Ch

ai
n,

 R
an

do
m

 F
or

es
t (

Tw
o-

st
ag

e 
de

te
ct

io
n 

m
od

el
)

97
.3

%

N
et

w
or

k 
fe

at
ur

es
Ca

ba
j e

t a
l. 

[2
4]

35
9 

Cr
yp

to
W

al
l s

am
pl

es
N

/A
N

/A
Ts

en
g 

et
 a

l. 
[2

5]
15

5 
Ra

ns
om

w
ar

e,
 U

ns
pe

ci
fie

d 
nu

m
be

r o
f b

en
ig

n 
so

ft
w

ar
e

D
ee

p 
N

eu
ra

l N
et

w
or

k
93

.9
2%

A
lh

aw
i e

t a
l. 

[2
6]

21
0 

Ra
ns

om
w

ar
e,

 2
64

 B
en

ig
n 

so
ft

w
ar

e
J4

8
97

.1
%

A
lm

as
hh

ad
an

i e
t a

l. 
[2

2]
Lo

ck
y 

ra
ns

om
w

ar
e,

 U
ns

pe
ci

fie
d 

nu
m

be
r o

f b
en

ig
n 

so
ft

w
ar

e
Ba

ye
s 

N
et

99
.8

3%
A

lm
as

hh
ad

an
i e

t a
l. 

[2
8]

83
66

1 
KB

 R
an

so
m

w
ar

e,
 1

26
41

85
 K

B 
Be

ni
gn

 S
of

tw
ar

e
M

FM
CN

S
99

.8
%

Si
ng

h 
et

 a
l. 

[2
9]

64
41

 R
an

so
m

w
ar

e,
 6

44
1 

Be
ni

gn
 S

of
tw

ar
e

N
eu

ra
l N

et
w

or
k

99
.8

3%
A

PI
 c

al
l f

ea
tu

re
s, 

ne
tw

or
k 

fe
at

ur
es

, a
nd

 o
th

er
 fe

at
ur

es
Sg

an
du

rr
a 

et
 a

l. 
[9

]
58

2 
Ra

ns
om

w
ar

e,
 9

42
 B

en
ig

n 
So

ft
w

ar
e

Re
gu

la
riz

ed
 L

og
is

tic
 R

eg
re

ss
io

n
96

.3
4%

Co
nt

in
el

la
 e

t a
l. 

[3
0]

38
3 

Ra
ns

om
w

ar
e,

 2
24

5 
Be

ni
gn

 S
of

tw
ar

e
Ra

nd
om

 F
or

es
t

97
.7

0%
Lu

 e
t a

l. 
[3

1]
10

00
 R

an
so

m
w

ar
e,

 1
00

0 
Be

ni
gn

 S
of

tw
ar

e
V-

de
te

ct
or

90
%

H
as

an
 e

t a
l. 

[1
]

36
0 

Ra
ns

om
w

ar
e,

 5
32

 M
al

w
ar

e,
 4

60
 B

en
ig

n 
So

ft
w

ar
e

Su
pp

or
t V

ec
to

r M
ac

hi
ne

97
.1

0%
Za

ho
or

a 
et

 a
l. 

[3
2]

58
2 

Ra
ns

om
w

ar
e,

 9
42

 B
en

ig
n 

So
ft

w
ar

e
CS

PE
-R

 E
ns

em
bl

e
93

%
M

as
um

 e
t a

l. 
[3

3]
96

63
3 

Ra
ns

om
w

ar
e,

 4
14

14
 B

en
ig

n 
So

ft
w

ar
e

Ra
nd

om
 F

or
es

t
99

%



Vol:.(1234567890)

Case Study Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2

1 3

Contrary to the prior works where the analysis tasks were done using the Cuckoo Sandbox [1, 9–13], we have 
analyzed the PE files using the Falcon Sandbox that uses a VM (Windows 7 64-bit) to execute the PE files. Falcon Sandbox 
incorporates many other services, such as VirusTotal, Thug honeyclient, OPSWAT Metadefender, TOR, NSRL (Whitelist), 
Phantom, and a large number of antivirus engines to provide an integrated and in-depth analysis reports compared to 
other Sandboxes. While executing the binaries, we have set run-time to the maximum available duration in the Falcon 

Fig. 2  Process overview of our methodology

Table 2  Number of collected 
samples

Ransomware PE file PCAP file

Cerber (c0) 95 58
CryptoLocker (c1) 95 55
CryptoWall (c2) 97 55
Eris (c3) 98 55
Hive (c4) 100 56
Jigsaw (c5) 95 60
Locky (c6) 95 60
Maze (c7) 100 55
Mole (c8) 100 56
Sage (c9) 100 56
Satan (c10) 100 60
Shade (c11) 98 57
TeslaCrypt (c12) 97 59
Virlock (c13) 95 57
WannaCry (c14) 95 57
Total 1460 856

Fig. 3  Communication 
through the API call



Vol.:(0123456789)

Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2 Case Study

1 3

Sandbox to deal with the delayed execution techniques deployed by the attackers. The total time for the analysis was 
(1460 PE files * 7 min) = 170 h = 7 days approximately. Next, we obtained the analysis report by using the API key from 
which we have only sorted and computed the frequency of each API call. At the end of the PE files analysis process, we 
obtained our first dataset- ‘Data1’ consisting of the different frequencies of 68 distinct API calls associated with the 15 
ransomware families as presented in Table 3.

Phase 2: feature selection At the beginning of the feature selection phase, we have evenly divided (stratified train-test 
split) our dataset into train data (80%) and test data (20%) to avoid data leakage. Next, we have applied Recursive Feature 
Elimination with Cross-Validation (RFECV) [44] to our train data. RFECV is a wrapper-style feature selection method that 
wraps a given ML model as depicted in Fig. 5 and selects the optimal number of features for each model by recursively 
eliminating 0-n features in each loop. Next, it selects the best-performing subset of features based on the accuracy or 
the score of cross-validation. RFECV also removes the dependencies and collinearity existing in the model. By using 
RFECV, we have selected 6 distinct subsets of features for 6 ML classifiers. These features have been selected by setting 
‘min features to select’ as 34 (half of the features), cv=5, and ‘scoring’= ‘accuracy’ so that RFECV would select at least half 
of the features based on the optimum accuracy over the 5-fold cross-validation.

3.2.2  Process 2: creation of the second dataset‑ ‘Data2’

The feature engineering step for the second process is composed of four phases. The phases are:

• Phase 1: Feature Extraction
• Phase 2: Exploratory Data Analysis (EDA)
• Phase 3: Data Preprocessing
• Phase 4: Feature Selection

Phase 1: feature extraction We have considered utilizing network traffic features for the second dataset for our study. 
The Transmission Control Protocol (TCP) refers to the set of standardized communication protocols that specify how 
computers communicate over the network. According to our literature review, the communication between the infected 
host machine (source) and the attacker (destination) is conducted through the transport layer [45]. Besides, HTTP GET or 
POST methods are also used to send back the information to the attacker [22]. Hence, we have opted for capturing the 
TCP traffic and the HTTP traffic information by analyzing the PCAP files of the ransomware.

Again, ransomware often spreads through spam emails containing malignant attachments as macro-enabled 
word documents. By executing a script, these attachments download the executable file of that ransomware from 
a URL and install it on the system. After the installation, the ransomware continuously tries to search and connect 
to its C & C servers to exchange the encryption key and launch the attack session. Firstly, it utilizes an encrypted list 
of IP addresses for creating a TCP session with the C & C servers. Upon failure due to the unreachable or blacklisted 
IP addresses or disrupted session, the ransomware then opts to find out its C & C server by executing the Domain 
Generation Algorithm (DGA) and recurrently produces a good number of pseudo-random domain names. Then, the 
ransomware continues sending the Domain Name System (DNS) request to those domain names until the actual C 
&C server is found as illustrated in Fig. 6. Here, DNS converts human-readable domain names to machine-readable IP 
addresses. Upon successful establishment of a TCP session, the attacker guides the victim in delivering the payload. 
The characteristic of dispatching an extensive number of DNS requests looking for a real C &C server looks like an 
arbitrary set of characters. Meaningful statistical information can be derived from these requested domain names as 
well as the pattern of randomness found in them [46]. If the ransomware detection method can trace the randomness 

Fig. 4  Block diagram of the PE 
file execution process



Vol:.(1234567890)

Case Study Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2

1 3

that occurs before finding out the actual C &C server, it can be stopped before the ransomware begins encrypting 
files. This is an efficient approach in case of a zero-day attack as deriving the information from the known ransomware 
is not required in this case. Therefore, we have opted for extracting DNS traffic information by analyzing the PCAP 
files of the ransomware.

We have analyzed the PCAP files using Wireshark- a network protocol analyzer [47, 48]. This manual process involved 
three identical systems with Wireshark installed and 2 volunteers for analyzing the PCAP files. We have extracted 18 
network traffic features that according to [49], convey important statistical information that enhances the ability of the 
classification algorithms to classify ransomware. Then, these features have been merged resulting in ‘Data2’. Table 4 
presents the list of network traffic features.

Table 3  List of features in the 
‘Data1’ dataset

API Call Features

1. FindWindowExW 35. NtProtectVirtualMemory
2. LdrGetDllHandle 36. NtQueryAttributesFile
3. NtAdjustPrivilegesToken 37. NtQueryDefaultLocale
4. NtAlertThread 38. NtQueryDirectoryFile
5. NtAllocateVirtualMemory 39. NtQueryInformationFile
6. NtAlpcSendWaitReceivePort 40. NtQueryInformationProcess
7. NtConnectPort 41. NtQueryInformationToken
8. NtCreateEvent 42. NtQueryKey
9. NtCreateFile 43. NtQueryObject
10. NtCreateKey 44. NtQuerySystemInformation
11. NtCreateKeyEx 45. NtQueryValueKey
12. NtCreateMutant 46. NtQueryVirtualMemory
13. NtCreateSection 47. NtQueryVolumeInformationFile
14. NtCreateThreadEx 48. NtReadFile
15. NtCreateUserProcess 49. NtReadVirtualMemory
16. NtDelayExecution 50. NtRequestWaitReplyPort
17. NtDeleteValueKey 51. NtResumeThread
18. NtDeviceIoControlFile 52. NtSetContextThread
19. NtEnumerateKey 53. NtSetInformationFile
20. NtEnumerateValueKey 54. NtSetInformationKey
21. NtFsControlFile 55. NtSetInformationProcess
22. NtGetContextThread 56. NtSetInformationThread
23. NtMapViewOfSection 57. NtSetSecurityObject
24. NtNotifyChangeKey 58. NtSetValueKey
25. NtOpenDirectoryObject 59. NtTerminateProcess
26. NtOpenEvent 60. NtTerminateThread
27. NtOpenFile 61. NtUnmapViewOfSection
28. NtOpenKey 62. NtWaitForMultipleObjects
29. NtOpenKeyEx 63. NtWriteFile
30. NtOpenMutant 64. NtWriteVirtualMemory
31. NtOpenProcess 65. NtYieldExecution
32. NtOpenProcessToken 66. OpenSCManager
33. NtOpenSection 67. OpenServiceW
34. NtOpenThreadToken 68. SetWindowsHookEx

Fig. 5  RFECV feature selection 
technique



Vol.:(0123456789)

Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2 Case Study

1 3

Phase 2: exploratory data analysis (EDA) At the beginning of Phase 2, we have evenly divided (stratified train-test 
split) the dataset into train data (80%) and test data (20%) to avoid data leakage. Next, we have done exploratory data 
analysis to better understand the raw data so that the data could be preprocessed as per requirement. The findings from 
this phase are:

• Categorical data: We have found 11 features containing categorical data. They are the IP and port of the client, IP 
and port of the server, Bytes sent from the client to the server, Bytes sent from the server to the client, HTTP method 
GET or POST of the HTTP requests, Response code to the HTTP requests, URL requested in the HTTP request, IP and 
port of the client.1, IP and port of the DNS server, DNS request, and DNS response. These categorical data need to be 
encoded into numerical values since the classifiers require the data to be understandable so that they can be trained 
on and make predictions.

• Random missing values: Since different ransomware families create different numbers of conversations over the 
network, the number of instances captured from the PCAP files was different for each ransomware sample. Hence, 

Fig. 6  Finding out the actual 
C & C server by sending 
DNS requests [Author’s own 
processing]

Table 4  List of features in the 
‘Data2’ dataset

Network traffic features

1. IP and port of the client
2. IP and port of the server
3. Bytes sent from the client to the server
4. Bytes sent from the server to the client
5. RSTs in the TCP connection from client to server
6. RSTs in the TCP connection from server to client
7. FINs in the TCP connection from client to server
8. FINs in the TCP connection from server to client
9. Number of HTTP requests present in the connection
10. HTTP method (GET or POST) of the HTTP requests
11. Response code to the HTTP requests
12. URL requested in the HTTP request
13. Timestamp of the DNS request
14. IP and port of the client in the DNS request
15. IP and port of the DNS server
16. RCode of the DNS response (It is sent by the server indicating whether it was able to settle the request 

or not)
17. DNS request
18. DNS response



Vol:.(1234567890)

Case Study Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2

1 3

we have observed missing values in network traffic information. Handling missing values is an essential part of the 
feature engineering process as the ML models may generate biased or inaccurate results if the missing values are not 
handled properly. There are two ways of dealing with missing values, such as deleting the missing values and imputing 
the missing values. Since deleting the missing values ends up deleting the entire row or column that contains the 
missing values, there is a probability of losing useful information in the dataset. So, we have opted for imputing the 
missing values.

Phase 3: data preprocessing In the data preprocessing phase, firstly, we have encoded the categorical data into numeri-
cal data for which we have applied One-Hot Encoding [50] by using the ‘.get_dummies’ attribute of Pandas data frame 
package that generates the dummy variables of those 11 features. For preventing the ‘Dummy Variable Trap’, we have 
set ‘True’ as ‘drop_first’ parameter. To normalize the data and to prevent the imputer from producing biased numerical 
replacements for the missing data, we have scaled the numerical values between 0 and 1. After normalizing the data, 
we have used Scikit-Learn’s Impute package to apply KNNImputer to fill up the missing values.

Phase 4: feature selection We have selected the network traffic features using RFECV by setting ‘min_features_to_
select’ as 9 (half of the features), cv=5, and ‘scoring’= ‘accuracy’ so that RFECV would select at least half of the features 
based on the optimum accuracy over the 5-fold cross-validation applied on our train data.

3.3  Classification

We have employed Supervised Machine Learning algorithms to classify 15 ransomware families into corresponding 
categories. Supervised learning algorithms are trained on the labeled dataset to make a decision in response to the 
unseen test dataset. These algorithms are generally of two types, such as classification-based and regression-based. The 
classification-based algorithms are used to accomplish both binary and multi-class classification where the instances 
from the test dataset are classified into one among an array of known classes, such as Naïve Bayes, Random Forest, 
K-Nearest Neighbor, etc. On the other hand, regression-based algorithms consider the relationship between independ-
ent features or input variables and dependent target class or continuous output variables to make a prediction, such as 
Linear Regression, Neural Network Regression, Lasso Regression, etc. As this study focuses on classifying 15 ransomware 
families, the following algorithms have been employed that are widely used for both binary and multi-class classification 
as per requirement:

• Logistic Regression (LR): is a type of statistical analysis that predicts the probability of a dependent variable from a 
set of independent variables using their linear combination.

• Stochastic Gradient Descent (SGD): is an optimization algorithm to find the model parameters by updating them for 
each training data so that the best fit is reached between predicted and actual outputs.

• K-Nearest Neighbor (KNN): estimates the likelihood of a new data point being a member of a specific group by meas-
uring the distance between neighboring data points and the new data point.

• Naïve Bayes (NB): is based on Bayes’ theorem and predicts the probability of an instance belonging to a particular 
class.

• Random Forest (RF): constructs multiple decision trees during the training phase and finally determines the class 
selected by the maximum number of trees.

• Support Vector Machine (SVM): takes one or more data points from different classes as inputs and generates hyper-
planes as outputs that best distinguish the classes.

Since this study focuses on multi-class classification and some classifiers are only designed for binary classification 
problems (i.e., Logistic Regression, Support Vector Machine, etc.), these cannot be directly applied to multi-class clas-
sification problems. Therefore, Heuristic Methods [51] can be applied to divide a multi-class classification problem into 
several binary classification problems. There are two types of heuristic methods as illustrated in Fig. 7. The methods are:

• One-vs-Rest (OvR) which splits the dataset into one class against all other classes each time [52].
• One-vs-One (OvO) which splits the dataset into one class against every other class each time [53].



Vol.:(0123456789)

Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2 Case Study

1 3

We have applied the OvR method for our experiment to reduce the time and computational complexities. All these classi-
fiers are built along with ‘RandomSearchCV’ [54]- a hyperparameter optimization technique, to find the best combination 
of hyperparameters for maximizing the performance of the models’ output in a reasonable time. Instead of exhaustively 
searching for the optimal values of the hyperparameters through a manually determined set of values (i.e., Grid Search), 
RandomSearchCV randomly searches the grid space and selects the best combination of hyperparameter values based 
on the accuracy or the score of cross-validation. Since we have used RFECV for feature selection and RandomSearchCV 
for hyperparameter optimization, the Nested Cross-Validation technique has been implemented in the pipeline to build 
each model.

4  Experimental results and discussions

4.1  Experimental results

We have evaluated the models in terms of Precision, Recall, F1-score, and Accuracy. These performance metrics are 
measured as follows:

where, TP = True Positives, FP = False Positives (Type 1 Error), TN = True Negative, FN = False Negative (Type 2 Error).
Table 5 presents the performance comparison of Machine Learning models with and without feature selection for 

the ‘Data1’ dataset. It shows that with and without feature selection LR outperforms other classifiers securing 98.20% 
and 99.30% overall accuracy respectively. Although there is a slight performance degradation in all the classifiers in the 
with-feature selection scenario, remarkable improvement in the processing time has been observed. As shown in Table 6, 
with-feature selection, the average processing time of all the classifiers has been improved by 26.97%. We present the 

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − score =
2 × Precision × Recall

Precision + Recall

Accuracy =
TP + TN

TP + TN + FP + FN
× 100

Fig. 7  Heuristic methods: a 
One-vs-Rest and b One-vs-
One

Table 5  Performance 
comparison between LR, SGD, 
KNN, NB, RF, and SVM with 
respect to the with-feature 
selection and without-feature 
selection using the ‘Data1’ 
dataset (P(avg)= Average 
performance, w FS= With-
Feature Selection, and wo FS= 
Without-Feature Selection

P(avg) LR SGD KNN NB RF SVM

w wo w wo w wo w wo w wo w wo

FS FS FS FS FS FS FS FS FS FS FS FS

Accuracy 98.20 99.30 90.43 92.45 89.62 90.52 97.17 97.46 91.51 92.78 94.34 95.58
Precision 98.53 99.37 98.86 100 94.33 94.08 97.82 98.77 100 99.79 99.15 99.21
Recall 98.22 99.30 91.36 92.45 89.62 90.52 97.17 97.46 91.51 92.78 94.34 95.58
F1- score 98.20 99.29 94.61 95.85 90.78 91.27 97.21 98.02 95.23 95.87 96.40 97.19



Vol:.(1234567890)

Case Study Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2

1 3

classification accuracy for each class of the best-performed supervised machine learning model from these classifiers in 
two different scenarios. Figure 8 illustrates the normalized confusion matrix of the LR classifier. As shown in Fig. 8a, when 
the features are not selected, among 15 classes, the classifier could distinguish 13 classes with 100% accuracy. However, 
the classifier produces 1% false negatives classifying CryptoLocker ransomware and 11% false positives classifying Shade 
ransomware. On the other hand, Fig. 8b shows the confusion matrix of the LR classifier with feature selection. Although 
the classifier could distinguish 10 classes with 100% accuracy, the classifier produces 1% false negatives classifying Cerber, 
22% false positives classifying CryptoLocker, 10% false positives classifying Mole, 10% false positives classifying Sage, 
and 11% false positives classifying Shade ransomware.

Table 7 presents the performance comparison of Machine Learning models with and without feature selection for the 
‘Data2’ dataset. It shows that with and without feature selection NB outperforms other classifiers securing 97.89% and 
98.95% overall accuracy respectively. Even though all of the classifiers in the with-feature selection scenario show a minor 
performance deterioration, a notable improvement in processing time has been seen. As shown in Table 8, with-feature 
selection, the average processing time of all the classifiers has been improved by 34.72%. We present the classification 
accuracy for each class of the best-performed supervised machine learning model from these classifiers in two different 
scenarios. Figure 9 illustrates the normalized confusion matrix of the NB classifier.

As shown in Fig. 9a, when the features are not selected, among 15 classes, the classifier could distinguish 10 classes 
with 100% accuracy. However, the classifier produces 2% false negatives classifying CryptoLocker and 1% false negatives 
classifying Maze ransomware. On the other hand, Fig. 9b shows the confusion matrix of the NB classifier with feature 

Table 6  Classifier’s processing 
time comparison without-
feature selection and with-
feature selection using the 
‘Data1’ dataset

Average processing time improvement (%)

Classifier Without-feature selection (in 
seconds)

With-feature selection (in 
seconds)

Improve-
ment 
(%)

LR 79.21 58.44 26.22
SGD 78.43 57.62 26.53
KNN 78.00 51.25 34.29
NB 76.39 55.67 27.12
RF 75.41 58.28 22.71
SVM 79.19 59.43 24.95

Fig. 8  Confusion matrix of (a) Logistic Regression without feature selection, and (b) Logistic Regression with feature selection for the ‘Data1’ 
dataset [Author’s own processing]



Vol.:(0123456789)

Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2 Case Study

1 3

selection. The classifier could distinguish 9 classes with 100% accuracy with no false negatives. However, with feature 
selection, the classifier produces higher false positives as compared to that without-feature selection.

4.2  Discussions

In this section, we present the comparison between the RFECV-selected features in the with-feature selection scenario and the 
highly contributing features in the without-feature selection scenario to examine the efficiency of the RFECV feature selection 

Table 7  Performance 
comparison between LR, SGD, 
KNN, NB, RF, and SVM with 
respect to the with-feature 
selection and without-feature 
selection using the ‘Data2’ 
dataset P (avg) = Average 
performance, w FS = With-
Feature Selection, and wo FS 
= Without-Feature Selection

P (avg) LR SGD KNN NB RF SVM

w wo w wo w wo w wo w wo w wo

FS FS FS FS FS FS FS FS FS FS FS FS

Accuracy 92.25 94.04 81.69 82.76 80.99 83.25 97.89 98.95 78.87 79.96 92.25 93.90
Precision 98.21 97.81 90.96 93.27 92.05 92.56 98.21 99.05 100 99.90 98.73 98.89
Recall 92.25 94.04 88.03 87.53 80.99 83.25 97.89 98.95 78.87 79.96 92.25 93.90
F1- score 94.81 95.67 88.98 89.91 84.13 85.96 97.92 98.95 86.99 87.64 95.01 96.06

Table 8  Classifier’s processing 
time comparison without-
feature selection and with-
feature selection using the 
‘Data2’ dataset

Average processing time improvement (%)

Classifier Without-feature selection (in 
seconds)

With-feature selection (in 
seconds)

Improve-
ment 
(%)

LR 88.19 56.88 35.5
SGD 85.31 54.66 35.9
KNN 85.44 54.30 36.4
NB 84.13 51.29 35.5
RF 85.27 56.78 33.4
SVM 83.18 56.93 31.6

Fig. 9  Confusion matrix of (a) Naïve Bayes without feature selection, and (b) Naïve Bayes with feature selection for the ‘Data2’ dataset 
[Author’s own processing]



Vol:.(1234567890)

Case Study Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2

1 3

technique toward ransomware classification. For this task, we apply ‘Shapley Additive exPlanations’, a tool for visualizing data 
that helps explain the results of machine learning models. SHAP is based on the coalition game theory that measures each

feature’s individual contribution to the final output while conserving the sum of contributions being the same as the 
final result [55]. Unlike other explanation techniques that are limited to explaining specific models, SHAP values can be used 
to explain a wide variety of models, such as DeepExplainer to explain Deep Neural Networks (i.e., Multi-Layer Perceptron, 
Convolutional Neural Networks, etc.), TreeExplainer to explain tree-based models (i.e., Random Forest, XGBoost, etc.), and 
KernelExplainer to explain any model, etc. [56, 57]. For our study, we have used TreeExplainer to obtain highly contributing 
features from the Random Forest classifier, while for the other classifiers, we have used KernelExplainer.

In the context of the classification model, the SHAP value is represented as a two-dimensional array. Each column cor-
responds to a feature used in the model, while each row represents an individual prediction made by the model. The SHAP 
value in this array indicates the contribution of a specific feature to the output of the corresponding prediction. Positive SHAP 
values indicate that a feature has a positive influence on pushing the model output toward the base value or expected value. 
Conversely, negative SHAP values indicate that a feature has a negative influence on pushing the base value toward the model 
output. The base value, or the average model output, is calculated based on the training data. To visualize this explanation 
for a single prediction, the Force plot can be utilized as illustrated in Fig. 10. In Fig. 10, the features with higher SHAP values 
(highlighted in red) positively contribute to pushing the base value toward the model output, while the features with lower 
SHAP values (highlighted in blue) negatively contribute to pushing the base value toward the model output.

Passing the array of SHAP values to a ‘summary plot’ function creates a feature importance plot as shown in Fig. 11. Here, 
we illustrate 40 highly contributing features (as RFECV selects the highest 40 features for the KNN classifier) for each classifier 
in the without-feature selection scenario for the ‘Data1’ dataset. Here, the x-axis denotes the mean of the absolute SHAP value 
for each feature which indicates the total contribution of the feature to the model and the y-axis denotes the features used 
for the classification. The features are organized in descending order from top to bottom by how strongly they influence 
the model’s decision. As illustrated in Fig. 11, the set of highly contributing features and their order varies for each classifier. 
However, for our study, we only examine the variation of the RFECV-selected features with the highly contributing features of 
the corresponding classifiers. Table 9 presents the set of optimum features selected by RFECV for each ML classifier from the 
‘Data1’ dataset and Table 10 presents the list of RFECV-selected features for each ML classifier that is not present in the top 40 
highly contributing features. By comparing these two tables, we get the features that are causing performance deterioration 
in the with-feature selection scenario and producing higher false alarms as compared to that without-feature selection.

Similarly, for the ‘Data2’ dataset, we present the comparison between the RFECV-selected features in the with-feature 
selection scenario and the highly contributing features in the without-feature selection scenario. Figure 12 illustrates the 
features of the ‘Data2’ dataset in descending order from top to bottom by how strongly they influence the model’s decision. 
For each classifier, the order of the features varies except for the ‘Bytes sent from the client to the server’ feature. However, 
similar to the previous step, we only examine the variation of the RFECV-selected features. Table 11 presents the set of opti-
mum features selected by RFECV from the ‘Data2’ dataset for each ML classifier, and Table 12 presents the list of features that 
were not selected by the RFECV. By comparing these two tables, we get the features that are causing performance deterio-
ration even with the best-performed ML classifier in the with-feature selection scenario and produce higher false alarms as 
compared to that without-feature selection.

Although SHAP importance shows the effect of a given feature on the model output while disregarding the exact-
ness of the prediction, our study, by comparing the highly contributing features in the without feature selection 
scenario and the RFECV selected features in the with feature selection scenario finds out that the RFECV feature 
selection technique often fails to select the crucial features that have a high impact on the model output resulting in 
both Type 1 and Type 2 error. Again, for two different ransomware datasets, the selected features have been ranked 
1, while the not-selected features have been ranked greater than 1. Hence, the order of the selected features based 
on their importance remains unknown in the RFECV feature selection technique. In addition, this study also reveals 
that RFECV falls short of improving the performance of our ML models. Our ML models secure better classification 
accuracies without RFECV (For ‘Data1’ dataset, with and without feature selection LR secures 98.20% and 99.30% 

Fig. 10  Force plot for single instance of ’Data1’ dataset



Vol.:(0123456789)

Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2 Case Study

1 3

overall accuracy respectively. For ‘Data2’ dataset, with and without feature selection NB secures 97.89% and 98.95% 
overall accuracy respectively.) and thus this study also substantiates the performance of our ML models over existing 
literature. While using API call features, although VinayaKumar et al. [11] achieved 100% exactness for binary classi-
fication, the model secured 98% accuracy doing multiclass classification utilizing only 7 classes. Again, regardless of 
having a good detection rate by utilizing network traffic features, Almashhadani et al. [22] did not extend their work 
for multiclass classification, and in [29], they rely heavily on WannaCry traffic analysis due to the greater availability 
of WannaCry PCAP files compared to those of NotPetya. In contrast to these prior approaches, while conducting 
our study, we improved the data collection process by developing a Web-Crawler to automate collecting 15 differ-
ent ransomware families and created two different ransomware datasets based on API call features (‘Data1’) and 
network traffic features (‘Data2’) from 2 types of binaries (‘PE’ and ‘PCAP’ files respectively) of both the Crypto and 
Locker types of ransomware. Also, our LR and NB models offer comparative performance over existing literature with 
explainability that demonstrates the application of SHAP to identify the critical features that significantly contribute 
to the classification of ransomware.

Fig. 11  Summary plot showing the top 40 highly contributing features of the ‘Data1’ dataset for each ML classifier in the without feature 
selection scenario



Vol:.(1234567890)

Case Study Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2

1 3

Table 9  Set of optimum features selected by RFECV from the ‘Data1’ dataset

Classifier: LR

Total Selected Features: 38

NtDelayExecution NtSetinformationThread NtMapViewOfSection NtNotifyChangeKey
NtTerminateProcess NtOpenProcessToken NtUnmapViewOfSection NtAlertThread
NtFsControlFile NtOpenThreadToken NtSetinformationFile NtCreateUserProcess
NtAIpcSendWaitReceivePort NtOpenKeyEx NtAllocateVirtualMemory NtSetInformationKey
NtQueryInformationFile NtYieldExecution NtProtectVirtualMemory NtResumeThread
NtQueryVirtualMemory NtRequestWaitReplyPort LdrGetDIlHandle NtEnumerateKey
NtOpenEvent NtQueryInformationProcess NtOpenDirectoryObject NtCreateEvent
NtWriteVirtualMemory NtCreateKey NtConnectPort NtCreateThreadEx
NtCreateSection NtQuerykey NtOpenProcess NtOpenFile
NtOpenMutant NtAdjustPrivilegesToken

Classifier: SGD

Total Selected Features: 38

NtDelayExecution NtSetinformationThread NtNotifyChangeKey NtAlertThread
NtAIpcSendWaitReceivePort NtOpenThreadToken NtQueryInformationFile NtSetInformationFile
NtMapViewOfSection NtAllocateVirtualMemory NtSetinformationKey NtYieldExecution
NtOpenProcessToken NtOpenkey NtProtectVirtualMemory NtQueryValueKey
NtTerminateProcess NtOpenProcess NtFsControlFile NtQueryInformationToken
NtOpenSection NtCreateKey NtCreateMutant NtRequestWaitReplyPort
NtOpenMutant NtReadFile NtConnectPort NtWriteVirtualMemory
NtCreateSection NtCreateThreadEx NtUnmapViewOfSection NtCreateEvent
NtQueryAttributesFile NtEnumerateKey NtOpenEvent NtQueryInformationProcess
NtSetContextThread NtQueryDirectoryFile

Classifier: KNN

Total Selected Features: 40

NtOpenSection NtTerminateProcess NtDelayExecution NtMapViewOfSection
NtSetinformationFile NtFsControlFile NtSetinformationThread NtCreateEvent
NtAIpcSendWaitReceivePort NtCreateUserProcess NtUnmapViewOfSection NtQueryInformationFile
NtOpenDirectoryObject NtAllocateVirtualMemory NtCreateSection NtOpenMutant
NtQueryValueKey NtOpenKey NtQueryInformationProcess NtCreateThreadEx
NtProtectVirtualMemory NtQueryAttributesFile NtOpenFile NtWriteVirtualMemory
NtReadFile NtQueryVolumelnformation- File NtCreateMutant NtResumeThread
NtEnumerateKey NtSetInformationKey NtOpenThreadToken NtNotifyChangeKey
NtSetinformationProcess NtWriteFile NtCreateFile NtDeviceIoControlFile
NtAlertThread NtGetContextThread NtQueryDirectoryFile NtSetContextThread

Classifier: NB

Total Selected Features: 38

NtAllocateVirtualMemory NtFsControlFile NtAlpcSendWaitReceivePort NtReadFile
NtTerminateProcess NtOpenThreadToken NtOpenProcess NtEnumerateKey
NtSetValueKey NtSetinformationThread NtCreateThreadEx NtCreateEvent
NtQueryDirectoryFile NtCreateUserProcess NtNotifyChangeKey NtQueryKey
NtCreateKey NtOpenkey
NtYieldExecution NtDeviceloControlFile NtQueryObject NtWriteVirtualMemory
NtWaitForMultipleObjects NtDeleteValueKey NtGetContextThread NtOpenMutant
NtQueryInformationToken NtDelayExecution NtSetInformationKey NtAdjustPrivilegesToken
NtResumeThread OpenServiceW NtAlertThread NtOpenSection



Vol.:(0123456789)

Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2 Case Study

1 3

4.2.1  Advantages of SHAP over iterative feature selection technique

SHAP is a powerful tool in explainable AI that can be useful for ransomware detection in the following ways:

• Feature Importance: SHAP helps determine the importance of each feature in a machine learning model’s decision-
making process. By analyzing the SHAP values assigned to each feature, one can identify which features contribute 
the most to the prediction of ransomware attacks. This information can aid in understanding the key indicators or 
patterns associated with ransomware.

• Model Interpretability: Ransomware detection models are often complex, involving various algorithms and tech-
niques. SHAP provides a way to interpret and explain the predictions made by these models. It can help cybersecurity 
experts, analysts, and investigators understand the factors that contribute to a system being classified as potentially 
affected by ransomware. By analyzing the explanations provided by SHAP, they can gain insights into the decision-
making process of the model.

• Anomaly Detection: Ransomware attacks often exhibit anomalous behavior compared to normal system usage. SHAP 
can help identify these anomalies by providing explanations for individual predictions. If a particular prediction has 
a high SHAP value for certain features, it indicates that those features strongly contributed to the model’s decision. 
Unusual values or combinations of features can then be flagged as potential indicators of ransomware activity.

• Early Warning System: By training a model with historical ransomware attack data, SHAP can provide valuable 
insights into early warning signs. It can identify the specific indicators that are most indicative of ransomware 

Table 9  (continued)

Classifier: NB

Total Selected Features: 38

NtCreateKeyEx NtOpenEvent NtQueryInformationFile NtEnumerateValueKey

Classifier: RF

Total Selected Features: 38

NtEnumerateKey NtReadFile NtFsControlFile NAdjustPrivilegesToken
NtOpenSection NtYieldExecution NtCreateThreadEx NtWriteFile
NtOpenThreadToken NtOpenEvent NtTerminateProcess NtResumeThread
NtSetinformationProcess NtProtectVirtualMemory NtQuery DirectoryFile NtAIpcSendWaitReceivePort
NtDelayExecution NtCreateEvent NtAllocateVirtualMemory NtQueryInformationFile
NtQueryKey NtWaitForMultipleObjects NtQueryVirtualMemory NtAlertThread
NtOpenFile NtOpenProcess Token NtSetinformationKey NtDeviceloControlFile
NtQueryobject NtEnumerateValueKey NtQueryAttributesFile NtSetinformationThread
NtOpenProcess NtRequestWaitReplyPort NtCreateUserProcess NtGetContextThread
NtQueryInformationProcess NtMapViewOfSection

Classifier: SVM

Total Selected Features: 37

NtDelayExecution NtSetinformationThread NtMapViewOfSection NtQueryValueKey
NtOpenThreadToken NtSetinformationKey NtOpenSection NtNotifyChangeKey
NtOpenProcessToken NtAIpcSendWaitReceivePort NtTerminate rocess NtUnmapViewOfSection
NtAlertThread LdrGetDIlHandle NtGetContextThread NtSetinformationFile
NtOpenKey NtCreateUserProcess NtQueryVirtualMemory NtAdjustPrivilegesToken
NtCreateThreadEx NtCreateKey NtWriteVirtualMemory NtAllocateVirtualMemory
NtReadVirtualMemory NtRequestWaitReplyPort OpenSCManager NtOpenDirectoryObject
NtFsControlFile NtOpenFile NtCreateEvent NtCreateSection
NtOpenProcess NtQueryInformationToken NtEnumerateKey NtSetContextThread
NtDeviceIoControlFile



Vol:.(1234567890)

Case Study Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2

1 3

attacks, allowing organizations to proactively monitor and detect potential threats. This can help security teams 
respond quickly and prevent or mitigate the impact of ransomware attacks.

• Vulnerability Assessment: SHAP can be used to assess the vulnerability of a system to ransomware attacks. By 
analyzing the contributions of different features to the model’s predictions, security professionals can identify 

Table 10  List of RFECV-
selected features from the 
‘Data1’ dataset for each ML 
classifier that is not present in 
the top 40 highly contributing 
features

Classifier API call features Total Average performance decrease 
with RFECV-selected features 
(%)

LR NtEnumerateKey 3 1.10
NtOpenEvent
NtQueryInformationProcess

SGD NtEnumerateKey 5 2.02
NtOpenEvent
NtQueryInformationProcess
NtSetContextThread
NtQueryDirectoryFile

KNN NtDeviceIoControlFile 5 0.9
NtAlertThread
NtGetContextThread
NtQueryDirectoryFile
NtSetContextThread

NB NtAllocateVirtualMemory 1 0.29
RF NtCreateUserProcess 4 1.27

NtGetContextThread
NtQueryInformationProcess
NtMapViewOfSection

SVM NtSetContextThread 2 1.24
NtDeviceIoControlFile

Fig. 12  Summary plot showing the features of the ‘Data2’ dataset in descending order based on their contribution to each ML classifier’s 
decision



Vol.:(0123456789)

Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2 Case Study

1 3

Table 11  Set of the optimum number of features selected by RFECV from the ‘Data2’ dataset

Classifier: LR

Total Selected Features: 14

RSTs in the TCP connection from server to client RSTs in the TCP connection from client to server
FINs in the TCP connection from client to server FINs in the TCP connection from server to client
Bytes sent from the client to the server Bytes sent from the server to the client
DNS Request DNS Response
IP and port of the client.1 IP and port of the client
HTTP method GET or POST of the HTTP request IP and port of the server
Timestamp of the DNS request RCode of the DNS response

Classifier: SGD

Total Selected Features: 10

IP and port of the client.1 IP and port of the client
IP and port of the server FINs in the TCP connection from server to client
URL requested in the HTTP request RSTs in the TCP connection from client to server
Bytes sent from the client to the server HTTP method GET or POST of the HTTP requests
Number of HTTP requests present in the connection Response code to the HTTP requests

Classifier: KNN

Total Selected Features: 10

Bytes sent from the client to the server Bytes sent from the server to the client
HTTP method GET or POST of the HTTP requests Response code to the HTTP requests
IP and port of the DNS server RCode of the DNS response
URL requested in the HTTP request IP and port of the client
RSTs in the TCP connection from client to server Number of HTTP requests present in the con-

nection

Classifier: NB

Total Selected Features: 16

RCode of the DNS response RSTs in the TCP connection from client to server
IP and port of the server RSTs in the TCP connection from server to client
Number of HTTP requests present in the connection IP and port of the DNS serve
DNS Request DNS Response
Bytes sent from the server to the client FINs in the TCP connection from client to server
Response code to the HTTP requests Bytes sent from the client to the server
HTTP method GET or POST of the HTTP requests IP and port of the client
URL requested in the HTTP request FINs in the TCP connection from server to client

Classifier: RF

Total Selected Features: 13

Timestamp of the DNS request IP and port of the DNS server
Number of HTTP requests present in the connection FINs in the TCP connection from server to client
Bytes sent from the client to the server Bytes sent from the server to the client
RCode of the DNS response IP and port of the client.1
URL requested in the HTTP request IP and port of the client
HTTP method GET or POST of the HTTP requests DNS Response
RSTs in the TCP connection from server to client

Classifier: SVM

Total Selected Features: 13

RSTs in the TCP connection from client to server RSTs in the TCP connection from server to client



Vol:.(1234567890)

Case Study Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2

1 3

Table 11  (continued)

Classifier: SVM

Total Selected Features: 13

Bytes sent from the client to the server Bytes sent from the server to the client
Number of HTTP requests present in the connection IP and port of the client .1
HTTP method GET or POST of the HTTP requests DNS Request
IP and port of the DNS server Timestamp of the DNS request
IP and port of the server RCode of the DNS response
DNS Response

Table 12  List of features from 
the ‘Data2’ dataset that were 
not selected by the RFECV

Classifier Not selected network traffic features Total Average performance decrease 
with RFECV-selected features 
(%)

LR IP and port of the DNS server 4 1.79
URL requested in the HTTP request
Number of HTTP requests present in the connection
Response code to the HTTP requests

SGD Timestamp of the DNS request 8 1.07
DNS Request
DNS Response
RSTs in the TCP connection from server to client
IP and port of the DNS server
RCode of the DNS response
FINs in the TCP connection from client to server
Bytes sent from the server to the client

KNN FINs in the TCP connection from client to server 8 2.26
RSTs in the TCP connection from server to client
IP and port of the server
DNS Response
FINs in the TCP connection from server to client
Timestamp of the DNS request
DNS Request
IP and port of the client .1

NB Timestamp of the DNS request 2 1.06
IP and port of the client .1

RF FINs in the TCP connection from client to server 5 1.09
RSTs in the TCP connection from client to server
IP and port of the server
DNS Request
Response code to the HTTP requests

SVM FINs in the TCP connection from client to server 5 1.65
Response code to the HTTP requests
FINs in the TCP connection from server to client
IP and port of the client
URL requested in the HTTP request



Vol.:(0123456789)

Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2 Case Study

1 3

the weak points in their systems. They can then focus on improving the security measures for those vulnerable 
areas, reducing the risk of successful ransomware attacks.

Overall, SHAP can enhance ransomware detection by providing interpretability, feature importance analysis, anomaly 
detection, and a proactive approach to identifying and mitigating potential threats. Thus, SHAP offers advantages over 
iterative feature selection techniques. By leveraging SHAP, organizations can better understand the factors driving ran-
somware predictions and strengthen their cybersecurity defenses accordingly.

5  Conclusion

Early detection of ransomware is a key research area in cybersecurity. While feature selection techniques aim to improve 
detection accuracy while reducing overfitting and time complexity, the selected features must be crucial to support the 
technique’s effectiveness. This research thoroughly analyzes the performance of an iterative feature selection technique- 
Recursive Feature Elimination with Cross-Validation (RFECV) with widely utilized Supervised Machine Learning models 
on two different ransomware datasets. By employing the SHapley Additive exPlanations (SHAP) framework, critical fea-
tures are determined when RFECV is not integrated with the ML models and then compared to RFECV-selected features. 
The study reveals that without RFECV the classification accuracies are better than with RFECV (For ‘Data1’ dataset, with 
and without feature selection LR secures 98.20% and 99.30% overall accuracy respectively. For ‘Data2’ dataset, with and 
without feature selection NB secures 97.89% and 98.95% overall accuracy respectively). Again, RFECV occasionally fails 
to select impactful features from both datasets, leading to both Type 1 and Type 2 errors. Moreover, the RFECV approach 
fails to disclose the importance-based order of selected features, reducing its efficacy in ransomware classification. Con-
sequently, the study highlights the significance of integrating explainability techniques to identify highly contributing 
features, as relying solely on iterative feature selection techniques is not sufficient for strengthening ransomware detec-
tion systems. However, the research exclusively concentrates on the RFECV feature selection technique and does not 
assess the performance of Deep Learning models. Therefore, future investigations should explore other iterative feature 
selection methods and incorporate Deep Learning models to expand this research further.

Acknowledgements This study was partially funded by NetApp.

Author contributions The contents of the article were experimented and edited by Rawshan Ara Mowri with the supervision of Dr. Maduri 
Siddula and Dr. Kaushik Roy.

Data availability The first dataset- ‘Data1’ has been generated by analyzing the Windows Portable Executable (PE) files collected from VirusShare 
repository: https:// virus share. com/ (last accessed March 20, 2023) [34], theZoo: https:// github. com/ ytisf/ theZoo (last accessed April 1, 2023) 
[36], and Hybrid-Analysis.com: https:// www. hybrid- analy sis. com/ (last accessed April 1, 2023) [37]. The Web-Crawler- ‘GetRansomware’ to 
automate collecting the PE files of the ransomware families from the VirusShare repository is available here: https:// github. com/ rmowri/ 
GetRa nsomw are (last accessed June 7, 2023) [35]. The second dataset- ’Data2’ has been generated by analyzing the Packet Capture (PCAP) 
files collected from the malware-traffic-analysis: https:// www. malwa re- traffi c- analy sis. net/. (last accessed May 28, 2023) [38].

Declarations 

Competing interests The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Hasan MM, Rahman MM. Ranshunt: A support vector machines based ransomware analysis framework with integrated feature set. In: 
2017 20th International Conference of Computer and Information Technology (ICCIT), 2017;1–7. https:// doi. org/ 10. 1109/ ICCIT ECHN. 
2017. 82818 35.

https://virusshare.com/
https://github.com/ytisf/theZoo
https://www.hybrid-analysis.com/
https://github.com/rmowri/GetRansomware
https://github.com/rmowri/GetRansomware
https://www.malware-traffic-analysis.net/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICCITECHN.2017.8281835
https://doi.org/10.1109/ICCITECHN.2017.8281835


Vol:.(1234567890)

Case Study Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2

1 3

 2. Young AL, Yung M. Cryptovirology: the birth, neglect, and explosion of ransomware. Commun ACM. 2017;60(7):24–6. https:// doi. 
org/ 10. 1145/ 30973 47.

 3. Moussaileb R, Cuppens N, Lanet J-L, Le Bouder H. Ransomware network traffic analysis for pre-encryption alert. In: Benzekri A, Barbeau 
M, Gong G, Laborde R, Garcia-Alfaro J, editors. Foundations and practice of security. Cham: Springer; 2020. p. 20–38.

 4. Young A, Yung M. Cryptovirology: extortion-based security threats and countermeasures. In: Proceedings 1996 IEEE Symposium on 
Security and Privacy, 1996;129–140. https:// doi. org/ 10. 1109/ SECPRI. 1996. 502676.

 5. Savage K, Coogan P, Lau H. The evolution of ransomware. https://docs.–broadcom.com/doc/the-evolution-of-ransomware-15-en 
(accessed on 10 March 2023).

 6. Gane B. 9 Scariest Ransomware Viruses. Available. http:// www. e92pl us. com/ blog/  e92pl us/ 2017/ 06/ 02/9- scari estra nsomw are- virus 
es (accessed on 29 June 2017).

 7. Young A, Yung M. Malicious cryptography: exposing cryptovirology. Hoboken: John Wiley & Sons Inc; 2004.
 8. Yang T, Yang Y, Qian K, Lo DC-T, Qian Y, Tao L. Automated detection and analysis for android ransomware. In: 2015 IEEE 17th 

International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on 
Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems, 2015;1338–1343. 
https:// doi. org/ 10. 1109/ HPCC- CSS- ICESS. 2015. 39.

 9. Sgandurra D, Muñoz-González L, Mohsen R, Lupu EC. Automated Dynamic Analysis of Ransomware: Benefits, Limitations and use for 
Detection. 2016.

 10. Maniath S, Ashok A, Poornachandran P, Sujadevi VG, Sankar AU, P, Jan S. Deep learning lstm based ransomware detection. In: 2017 
Recent Developments in Control, Automation & Power Engineering (RDCAPE), pp. 2017;442–446. https:// doi. org/ 10. 1109/ RDCAPE. 
2017. 83583 12.

 11. Vinayakumar R, Soman KP, Senthil Velan KK, Ganorkar S. Evaluating shallow and deep networks for ransomware detection and 
classification. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2017;259–265 
https:// doi. org/ 10. 1109/ ICACCI. 2017. 81258 50.

 12. Takeuchi Y, Sakai K, Fukumoto S. Detecting ransomware using support vector machines. In: Workshop Proceedings of the 47th 
International Conference on Parallel Processing. ICPP Workshops ’18. Association for Computing Machinery, New York, NY, USA. 
2018https:// doi. org/ 10. 1145/ 32297 10. 32297 26.

 13. Hwang J, Kim J, Lee S, Kim K. Two-stage ransomware detection using dynamic analysis and machine learning techniques. Wireless 
Pers Commun. 2020;112:2597–609.

 14. Zhang H, Xiao X, Mercaldo F, Ni S, Martinelli F, Sangaiah AK. Classification of ransomware families with machine learning based onn-
gram of opcodes. Futur Gener Comput Syst. 2019;90:211–21. https:// doi. org/ 10. 1016/j. future. 2018. 07. 052.

 15. Baldwin J, Dehghantanha A. In: Dehghantanha, A., Conti, M., Dargahi, T. (eds.) Leveraging Support Vector Machine for Opcode Density 
Based Detection of Crypto-Ransomware, 2018;107–136. Springer, Cham. https:// doi. org/ 10. 1007/ 978-3- 319- 73951-9_6.

 16. Khammas BM. Ransomware detection using random forest technique. ICT Express. 2020;6(4):325–31. https:// doi. org/ 10. 1016/j. icte. 
2020. 11. 001.

 17. Subedi KP, Budhathoki DR, Dasgupta D. Forensic analysis of ransomware families using static and dynamic analysis. In: 2018 IEEE 
Security and Privacy Workshops (SPW), 2018;180–185. https:// doi. org/ 10. 1109/ SPW. 2018. 00033.

 18. Shaukat SK, Ribeiro VJ. Ransomwall: a layered defense system against cryptographic ransomware attacks using machine learning. In: 
2018 10th International Conference on Communication Systems & Networks (COMSNETS), 2018;356–363. https:// doi. org/ 10. 1109/ 
COMSN ETS. 2018. 83282 19.

 19. Ferrante A, Malek M, Martinelli F, Mercaldo F, Milosevic J. Extinguishing ransomware—a hybrid approach to android ransomware 
detection. In: Imine A, Fernandez JM, Marion J-Y, Logrippo L, Garcia-Alfaro J, editors. Foundations and Practice of Security. Cham: 
Springer; 2018. p. 242–58.

 20. Roundy KA, Miller BP. Binary-code obfuscations in prevalent packer tools. ACM Comput Surv. 2013. https:// doi. org/ 10. 1145/ 25229 
68. 25229 72.

 21. Coogan K, Debray S, Kaochar T, Townsend G. Automatic static unpacking of malware binaries. In: 2009 16th Working Conference on 
Reverse Engineering, 2009;167–176. https:// doi. org/ 10. 1109/ WCRE. 2009. 24.

 22. Almashhadani AO, Kaiiali M, Sezer S, O’Kane P. A multi-classifier network-based crypto ransomware detection system: A case study 
of Locky ransomware. IEEE Access. 2019;7:47053–67. https:// doi. org/ 10. 1109/ ACCESS. 2019. 29074 85.

 23. Chen Z-G, Kang H-S, Yin S-N, Kim S-R. Automatic ransomware detection and analysis based on dynamic api calls flow graph. In: 
Proceedings of the International Conference on Research in Adaptive and Convergent Systems. RACS ’17, 2017;196–201. Association 
for Computing Machinery, New York, NY, USA. https:// doi. org/ 10. 1145/ 31296 76. 31297 04.

 24. Cabaj K, Mazurczyk W. Using software-defined networking for ransomware mitigation: the case of cryptowall. IEEE Network. 
2016;30(6):14–20. https:// doi. org/ 10. 1109/ MNET. 2016. 16001 10NM.

 25. Aragorn T, Yun-chun C, YiHsiang K, Tsungnan L. Deep Learning for Ransomware Detection. https:// www. seman ticsc holar. org/ paper/ 
Deep- Learn ing- for- Ranso mware- Detec tion- Arago rn- Yun- chun/ cc3a4 1b372 30861 cfe42 96327 44e0d 1db19 256b7 (accessed on 11 
March 2023).

 26. Alhawi OMK, Baldwin J, Dehghantanha A. Leveraging machine learning techniques for windows ransomware network traffic detection, 
2018;93–106 https:// doi. org/ 10. 1007/ 978-3- 319- 73951-9_5.

 27. Bae SI, Lee GB, Im EG. Ransomware detection using machine learning algorithms. Concurrency Comput Pract Exp. 2020;32(18):5422. 
https:// doi. org/ 10. 1002/ cpe. 5422.

 28. Almashhadani AO, Carlin D, Kaiiali M, Sezer S. Mfmcns: a multi-feature and multi-classifier network-based system for ransomworm 
detection. Comput Secur. 2022;121: 102860. https:// doi. org/ 10. 1016/j. cose. 2022. 102860.

 29. Singh J, Sharma K, Wazid M, Das AK. Sinn-rd: spline interpolation-envisioned neural network-based ransomware detection scheme. 
Comput Electr Eng. 2023;106: 108601. https:// doi. org/ 10. 1016/j. compe leceng. 2023. 108601.

https://doi.org/10.1145/3097347
https://doi.org/10.1145/3097347
https://doi.org/10.1109/SECPRI.1996.502676
http://www.e92plus.com/blog/%20e92plus/2017/06/02/9-scariestransomware-viruses
http://www.e92plus.com/blog/%20e92plus/2017/06/02/9-scariestransomware-viruses
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.39
https://doi.org/10.1109/RDCAPE.2017.8358312
https://doi.org/10.1109/RDCAPE.2017.8358312
https://doi.org/10.1109/ICACCI.2017.8125850
https://doi.org/10.1145/3229710.3229726
https://doi.org/10.1016/j.future.2018.07.052
https://doi.org/10.1007/978-3-319-73951-9_6
https://doi.org/10.1016/j.icte.2020.11.001
https://doi.org/10.1016/j.icte.2020.11.001
https://doi.org/10.1109/SPW.2018.00033
https://doi.org/10.1109/COMSNETS.2018.8328219
https://doi.org/10.1109/COMSNETS.2018.8328219
https://doi.org/10.1145/2522968.2522972
https://doi.org/10.1145/2522968.2522972
https://doi.org/10.1109/WCRE.2009.24
https://doi.org/10.1109/ACCESS.2019.2907485
https://doi.org/10.1145/3129676.3129704
https://doi.org/10.1109/MNET.2016.1600110NM
https://www.semanticscholar.org/paper/Deep-Learning-for-Ransomware-Detection-Aragorn-Yun-chun/cc3a41b37230861cfe429632744e0d1db19256b7
https://www.semanticscholar.org/paper/Deep-Learning-for-Ransomware-Detection-Aragorn-Yun-chun/cc3a41b37230861cfe429632744e0d1db19256b7
https://doi.org/10.1007/978-3-319-73951-9_5
https://doi.org/10.1002/cpe.5422
https://doi.org/10.1016/j.cose.2022.102860
https://doi.org/10.1016/j.compeleceng.2023.108601


Vol.:(0123456789)

Discover Internet of Things            (2023) 3:21  | https://doi.org/10.1007/s43926-023-00053-2 Case Study

1 3

 30. Continella A, Guagnelli A, Zingaro G, De Pasquale G, Barenghi A, Zanero S, Maggi F. Shieldfs: a self-healing, ransomware-aware filesystem. 
In: Proceedings of the 32nd Annual Conference on Computer Security Applications. ACSAC ’16, pp. 336–347. Association for Computing 
Machinery, New York, NY, USA 2016. https:// doi. org/ 10. 1145/ 29910 79. 29911 10.

 31. Lu T, Zhang L, Wang S, Gong Q. Ransomware detection based on v-detector negative selection algorithm. In: 2017 International Conference 
on Security, Pattern Analysis, and Cybernetics (SPAC), 2017;531–536. https:// doi. org/ 10. 1109/ SPAC. 2017. 83043 35.

 32. Zahoora U, Khan A, Rajarajan M, Khan SH, Asam M, Jamal T. Ransomware detection using deep learning based unsupervised feature 
extraction and a cost sensitive pareto ensemble classifier. Sci Rep. 2022. https:// doi. org/ 10. 1038/ s41598- 022- 19443-7.

 33. Masum M, Hossain Faruk MJ, Shahriar H, Qian K, Lo D, Adnan MI. Ransomware classification and detection with machine learning 
algorithms. In: 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), 2022;0316–0322. https:// doi. 
org/ 10. 1109/ CCWC5 4503. 2022. 97208 69.

 34. VirusShare.com—Because Sharing is Caring. http:// virus share. com (accessed on 8 October 2022).
 35. rmowri/GetRansomware. https:// github. com/ rmowri/ GetRa nsomw are (accessed on 8 October 2022).
 36. ytisf/theZoo. http:// github. com/ ytisf/ theZoo (accessed on 8 October 2022).
 37. Free Automated Malware Analysis Service—powered by Falcon Sandbox. https:// www. hybrid- analy sis. com/ (accessed on 8 October 

2022).
 38. malware-traffic-analysis.net Homepage. https:// www. malwa re- traffi c- analy sis. net/ (accessed on 11 March 2023).
 39. Al-rimy BAS, Maarof MA, Shaid SZM. Ransomware threat success factors, taxonomy, and countermeasures: a survey and research directions. 

Comput Secur. 2018;74:144–66. https:// doi. org/ 10. 1016/j. cose. 2018. 01. 001.
 40. Al-Bakri AM, Hussein HL. Static analysis based behavioral api for malware detection using markov chain. Comput Eng Intel Syst. 

2014;5:55–63.
 41. Amro SA, Cau A. Behavioural api based virus analysis and detection. 2012.
 42. Falcon Sandbox: Automated Malware Analysis Tool - CrowdStrike. https:// www. crowd strike. com/ produ cts/ threa tinte llige nce/ falco nsand 

box- malwa re- analy sis (accessed on 10 May 2022).
 43. PayloadSecurity. https:// github. com/ Paylo adSec urity/ VxAPI (accessed on 9 October 2022).
 44. Recursive Feature Elimination. https:// www. scikit- yb. org/ en/ latest/ api/ model_ selec tion/ rfecv. html#: ~: text= Recur sive% 20fea ture% 20eli 

minat ion% 20(RFE)% 20is,number% 20of% 20fea tures% 20is% 20rea ched (accessed on 30 October 2022).
 45. Narudin FA, Feizollah A, Anuar NB, Gani A. Evaluation of machine learning classifiers for mobile malware detection. Soft Comput. 

2016;20(1):343–57. https:// doi. org/ 10. 1007/ s00500- 014- 1511-6.
 46. Berrueta E, Morato D, Magaña E, Izal M. A survey on detection techniques for cryptographic ransomware. IEEE Access. 2019;7:144925–44. 

https:// doi. org/ 10. 1109/ ACCESS. 2019. 29458 39.
 47. Wireshark. https:// www. wires hark. org/ (accessed on 9 October 2022).
 48. Wireshark User Guide. https:// www. wires hark. org/ docs/ wsug_ html/  # Chapt erIO (accessed on 9 October 2022).
 49. Berrueta E, Morato D, Magaña E, Izal M. Open repository for the evaluation of ransomware detection tools. IEEE Access. 2020;8:65658–69. 

https:// doi. org/ 10. 1109/ ACCESS. 2020. 29841 87.
 50. Pandas get_dummies (One-Hot Encoding) Explained. https:// datagy. io/ pandas- get- dummi es/ (accessed on 30 October 2022).
 51. One-vs-Rest and One-vs-One for Multi-Class Classification. https:// machi nelea rning maste ry. com/ one- vs- rest- and- one- vs- one- for- multi- 

class- class ifica tion/ (accessed on 1 December 2022).
 52. sklearn.multiclass.OneVsRestClassifier. https:// scikit- learn. org/ stable/  modul es/ gener ated/ sklea rn. multi class.  OneVs RestC lassi fier. html 

(accessed on 1 December 2022).
 53. sklearn.multiclass.OneVsOneClassifier. https:// scikit- learn. org/ stable/  modul es/ gener ated/ sklea rn. multi class.  OneVs OneCl assifi er. html 

(accessed on 1 December 2022).
 54. sklearn.model_selection.RandomizedSearchCV. https:// scikit- learn. org/ stable/  modul es/ gener ated/ sklea rn. model_ selec tion.  Rando 

mized Searc hCV. html (accessed on 1 December 2022).
 55. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on 

Neural Information Processing Systems. NIPS’17, 2017;4768–4777. Curran Associates Inc., Red Hook, NY, USA.
 56. Molnar C. Chapter 6 Model-Agnostic Methods. https:// chris tophm. github. io/  inter preta ble- ml- book/ agnos tic. html (accessed on 11 March 

2023).
 57. Welcome to the SHAP Documentation. https:// shapl rjball. readt hedocs. io/ en/  latest/  index. html (accessed on 9 October 2022).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/2991079.2991110
https://doi.org/10.1109/SPAC.2017.8304335
https://doi.org/10.1038/s41598-022-19443-7
https://doi.org/10.1109/CCWC54503.2022.9720869
https://doi.org/10.1109/CCWC54503.2022.9720869
http://virusshare.com
https://github.com/rmowri/GetRansomware
http://github.com/ytisf/theZoo
https://www.hybrid-analysis.com/
https://www.malware-traffic-analysis.net/
https://doi.org/10.1016/j.cose.2018.01.001
https://www.crowdstrike.com/products/threatintelligence/falconsandbox-malware-analysis
https://www.crowdstrike.com/products/threatintelligence/falconsandbox-malware-analysis
https://github.com/PayloadSecurity/VxAPI
https://www.scikit-yb.org/en/latest/api/model_selection/rfecv.html#:%7e:text=Recursive%20feature%20elimination%20%28RFE%29%20is,number%20of%20features%20is%20reached
https://www.scikit-yb.org/en/latest/api/model_selection/rfecv.html#:%7e:text=Recursive%20feature%20elimination%20%28RFE%29%20is,number%20of%20features%20is%20reached
https://doi.org/10.1007/s00500-014-1511-6
https://doi.org/10.1109/ACCESS.2019.2945839
https://www.wireshark.org/
https://www.wireshark.org/docs/wsug_html/%20#ChapterIO
https://doi.org/10.1109/ACCESS.2020.2984187
https://datagy.io/pandas-get-dummies/
https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/
https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/
https://scikit-learn.org/stable/%20modules/generated/sklearn.multiclass.%20OneVsRestClassifier.html
https://scikit-learn.org/stable/%20modules/generated/sklearn.multiclass.%20OneVsOneClassifier.html
https://scikit-learn.org/stable/%20modules/generated/sklearn.model_selection.%20RandomizedSearchCV.html
https://scikit-learn.org/stable/%20modules/generated/sklearn.model_selection.%20RandomizedSearchCV.html
https://christophm.github.io/%20interpretable-ml-book/agnostic.html
https://shaplrjball.readthedocs.io/en/%20latest/%20index.html

	Is iterative feature selection technique efficient enough? A comparative performance analysis of RFECV feature selection technique in ransomware classification using SHAP
	Abstract
	1 Introduction
	2 Related works
	3 Methodology
	3.1 Data collection
	3.2 Feature engineering
	3.2.1 Process 1: creation of the first dataset- ‘Data1’
	3.2.2 Process 2: creation of the second dataset- ‘Data2’

	3.3 Classification

	4 Experimental results and discussions
	4.1 Experimental results
	4.2 Discussions
	4.2.1 Advantages of SHAP over iterative feature selection technique


	5 Conclusion
	Acknowledgements 
	References


