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Abstract
Recently, special attention has been paid in developing methodologies and systems for embedding autonomy within 
smart devices (Things). Moreover, as Things typically operate in an interconnected IoT ecosystem, autonomous operation 
must be performed in a cooperative fashion so the different Things coordinate their autonomous actions towards meet-
ing high-level objectives and policies. Embedding Things with cooperative autonomy typically requires a tedious and 
costly effort not only during the original ecosystem deployment but throughout its lifetime. The current study describes 
CAO (Cognitive Adaptive Optimization)—and its distributed counterpart L4G-CAO (Local for Global Cognitive Adaptive 
Optimization)—which can overcome this shortcoming. CAO and L4G-CAO—which have recently been introduced and 
tested in a variety of IoT applications—can embed Things with cooperative autonomy in a plug-n-play fashion, i.e., without 
requiring the aforementioned tedious and costly effort. Results of the application of the aforementioned approaches 
in three different application domains (smart homes and districts, intelligent traffic systems and coordinated swarms 
of robots) are also presented. The presented results demonstrate the potential, of both approaches, to exploit the IoT 
automation functionalities in order to significantly improve the overall IoT performance without tedious effort.
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1  Introduction

Recent research efforts have been focusing on developing methodologies that embed autonomy within smart devices 
(Things). Next generation IoT must be autonomous as well as cooperative so as to be able to autonomously coordinate 
Things actions towards meeting common high-level goals. Moreover, Things should also be able to compute and imple-
ment their intelligent actions in a highly distributed/ self-sustained manner as it is not possible to employ traditional 
centralized approaches in massive scale systems. Consider, for instance, smart home systems which are becoming more 
and more affordable for the home user. Embedding smart home systems with cooperative autonomy, where smart ther-
mostats, electric appliances, electric chargers, etc., autonomously act and coordinate their actions based on indoor and 
weather conditions, varying energy prices, renewables’ generation and user preferences can result in tremendous energy 
bill savings [5, 7, 12, 31, 44, 45, 54]. Most importantly, a massive implementation of cooperative intelligence capable of 
optimizing energy consumption to the benefit of an entire community (smart neighborhoods or smart cities) can have 
even more significant social and business impacts.

Distributed intelligent control methodologies are probably the best candidate for embedding Things with cooperative 
autonomy. The vast majority of such methodologies methodologies needs a model (mathematical or simulation-based) 
of the IoT ecosystem [8, 11, 14, 18, 24, 25, 33, 41, 49, 52]. Developing, however, a model for an IoT ecosystem is usually 
a quite complex and cumbersome - or sometimes not feasible at all - task; especially when large and heterogeneous 
(multi-domain) IoT implementations are considered. Most importantly, since the IoT ecosystems are constantly subject 
to changes (e.g., failures of some nodes, geographical expansion of the IoT ecosystem, addition/removal of Things, 
changes in external factors such as users’ behavior), a repetitive revising/re-engineering process and verification of the 
model is usually needed. On the other hand, intelligent control methodologies that do not require an accurate model or 
are model-free [10, 16, 17, 29, 35, 50, 55], may exhibit an unacceptable performance due to poor adaptation while their 
application is typically limited to small- or medium-scale applications.

The authors have recently developed CAO (Cognitive Adaptive Optimization) [29, 35] and its distributed counter-
part—the L4G-CAO (Local4Global Cognitive Adaptive Optimization) [30]. These two toolsets have extensively been 
demonstrated in a variety of large-scale real-life IoT applications, exhibiting a remarkably efficient behavior in embedding 
Things with cooperative autonomy that can overcome the above-mentioned shortcomings of state-of-the-art systems 
and approaches [1, 3, 4,  9, 20, 21, 27, 34, 36–39, 47]. CAO and L4G-CAO are model-free but contrary to the existing tools 
they do not present any poor performance problems. Thanks to their self-learning/self-tuning mechanisms, they are able 
to optimize the IoT performance in a rapid, safe and smooth-transient manner. Moreover, they are highly scalable as they 
can handle IoT applications of a very large-scale and complexity as well as applications that involve highly heterogeneous 
elements/entities. Finally, due to their self-adapting and self-learning capabilities, their operational and maintenance 
costs are minimal i.e., there is no need for tedious programming, verification and calibration prior or during the applica-
tion due to IoT topology and ecosystem diversions.

The main purpose of this paper is to provide an overview of the use of CAO and L4G-CAO for embedding autonomy 
within IoT ecosystems. This overview covers theoretical results (reported in [29, 30, 35]) as well as practical implementa-
tions in different IoT-related applications (reported in [1, 3, 4, 9, 20, 21, 2734, 36–39, 47]) and concerns:
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•	 A unified mathematical formulation of the problem of embedding cooperative autonomy within IoT ecosystems and 
the demonstration of how CAO and L4G-CAO can be employed for addressing such a problem;

•	 An overview of the main functionalities and mathematical attributes of CAO and L4G-CAO when applied for embed-
ding autonomy in IoT ecosystems ;

•	 A brief overview of the results and main conclusions of implementing CAO and L4G-CAO in challenging real-life 
large-scale IoT ecosystems.

2 � The Problem set‑up

Let us consider an IoT ecosystem consisting of N Things (smart devices) with each of the Things being embedded with 
an Autonomy Decision-Making Mechanism - (ADMM) as follows:

where t denotes the time index; �(⋅) is a non-linear vector function; zi(t), di(t) denote the vectors of local data (e.g, sensor 
measurements) and external data (e.g., information available through the web/cloud), respectively, available to the ith 
Thing at time t; and �i is a vector of tunable parameters configuring the ADMM of the ith Thing, i.e., for different choices 
of �i we obtain different autonomous behaviours for the ith Thing. Let z, d, u, � denote the augmented vectors of local 
and external data, actions and tunable parameters, of the overall IoT ecosystem:

The performance of the overall IoT ecosystem, is evaluated through an objective function (performance index) over a 
time-horizon T

where �t are known non-negative functions.

Example 1  To better understand the above definitions consider the example of a smart home that is comprised of N 
rooms: a smart device in each room is used to autonomously control the room’s A/C (Air-Conditioning) set-points so as 
to (a) minimize energy bills and (b) keep the rooms’ climate conditions (e.g., temperature, humidity, etc.) within some 
pre-specified limits. Then, zi contains the ith room’s indoor sensor conditions (e.g, temperature,humidity, etc.), ui denotes 
the ith room’s A/C set-point and di contains external information such as the current and forecasted external weather 
data, energy prices, etc. The functions �i are typically calculated as follows:

where the function “Penalty for indoor conditions” penalizes the cost whenever some room’s indoor conditions exceed 
the pre-specified limits and a, b are appropriately defined weighting/normalizing factors. Finally, the time-horizon T is 
typically selected to be one day. See e.g., [4, 9, 27, 36] for more details on the above definitions. 	�  ◻

Remark 1  Typically, the ADMM is designed using parametrized rule-based logics or it is based on standard control system 
theory tools. Apparently, the choice of the ADMM is crucial for the efficiency of the IoT ecosystem: it must be designed in 
such a way that different choices of its tunable paraConstant AC set-pointmeters �i should cover all possible and feasible 
autonomous behaviours. The reader is referred to the practical applications described in the next two sections where 
examples of choices for the ADMM are provided. 	�  ◻

Remark 2  The above formulation is valid not only in the case of IoT ecosystems consisting of homogeneous Things (like 
the smart home example provided above) but also for cases where heterogeneous Things live and interact in the same 
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ecosystem. Moreover, the formulation is still valid—under some minor modifications—in a System-of-Systems (SoS) 
set-up, where if instead of N Things, the overall ecosystem is “split” into N constituent “smaller” ecosystems with each of 
them consisting of a group of Things. 	�  ◻

Using standard results from systems theory (see e.g., [32]), it can be seen that the local data states are evolving accord-
ing to an equation of the form

where gi(⋅) is a non-linear vector function of its elements and Tz, Tu, Td denote the local data state memories. The above 
equation describes the effect of the Thing’s actions to the IoT ecosystem environment. For instance, in the case of Exam-
ple 1, the above equation corresponds to effect the A/C set-points (controlled through the Thing’s ADMM) to the rooms’ 
climate conditions.

Replacing (3) into (2) and using (1), it can be seen after some algebraic manipulations [32] that the performance index 
J is a function of the tunable parameters � and the history of the external data over the time-horizon T, i.e.,

where DT = [d�(1),… , d�(T)] . Therefore, the problem of optimizing the overall IoT ecosystem performance can be mathemati-
cally formulated as the problem of finding the values for the tunable parameters � that optimize the cost criterion (4). Please 
note that the dynamics (3) are “hidden” in the equation (4): in other words, the computation of (4) requires knowledge 
of both the cost function elements �i(⋅) as well as the functions gi(⋅) . As a result, there are two main limitations when 
attempting to solve such an optimization problem:

•	 (Limitation 1). It is difficult, if feasible at all, to apply standard optimization approaches (such as e.g., gradient descent). 
Standard optimization approaches require an analytic form of the cost function (4) and since this function depends 
on the dynamics (3), knowledge of the analytic form of the overall IoT ecosystem dynamics is required. However, 
extracting the analytic form of the IoT ecosystem dynamics is an extremely difficult task, if not impossible at all, even 
for small-scale implementations. To make things even worse, as the IoT ecosystem is usually subject to minor or major 
changes (e.g., addition/removal of devices, changes in the end-users behaviour, etc.), a constant adaptation of the 
model for the IoT ecosystem is required.

•	 (Limitation 2). Intelligent, adaptive and/or learning approaches which do not require knowledge of the analytic 
form of the IoT ecosystem dynamics may exhibit [29, 35] a very poor performance due to adaptation which, in turn, 
may put safety of operations at stake. Moreover, typically such approaches are applicable to small- or medium-scale 
applications.

3 � Centralized version: the cognitive‑based adaptive optimization tool

CAO [29, 35] can overcome both Limitations 1 and 2, described in the previous section. Below, we provide a brief descrip-
tion of CAO along with its main properties. To start with, let us briefly explain how CAO is implemented. CAO starts with 
an initial set of tunable parameters �(0) and lets the ADMM mechanisms operate the Things over a time-horizon T by 
keeping the tunable parameters constant and equal to �(0).1

After the system operates over T time-units, CAO evaluates its performance through the cost function J(0) and calcu-
lates �(1) using the algorithm of Table 1. This procedure is repeated for the next T time-units so as for CAO to calculate 

(3)

zi(t + 1) =gi(z(t), z(t − 1),… , z(t − Tz),

u(t), u(t − 1),… , u(t − Tu),

di(t), di(t − 1),… , di(t − Td))

(4)J ≡ J(�,DT )

1  Typically, the initial set of tunable parameters �(0) is chosen based on past experience so as to provide a performance for the IoT which is 
safe and acceptable but, of course, far from being efficient. For instance, in applications such as smart homes/districts or intelligent traffic 
systems, such initial parameters �(0) can be easily extracted from the usual practice, see [3, 34, 38] for more details. More advanced choices 
of the initial parameters �(0) can also be used, see e.g. [4, 9, 27, 36, 37] for instance, where the initial parameters correspond to control-
based principles. On the other hand, the choice of the time-horizon T depends on the particular application. For instance, in smart homes/
districts and traffic systems, the horizon T is chosen to be a whole day (24h) as the system preserves a 24h periodicity.
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�(2) using J(1),then for the next T time-units in order to calculate �(3) using J(2) and so on. The details on how �(1), �(2),… 
are calculated are provided in Table 1. The next Theorem summarizes the main properties of CAO. Its proof can be found 
in [29].

Theorem 1  Let DT (k) − D̂T  be zero-mean and bounded. Then, under some mild conditions on the continuity of J, the follow-
ing hold:

(a)	
where �∗ denotes a local optimum of J, i.e., ∇J(�∗,DT (k)) = 0.

(b)	
where �(k) is a term that decays to zero exponentially fast.

In simple words, the above Theorem states that:

•	 CAO guarantees that the tunable parameters of the ADMM mechanisms will converge to their locally optimal values, 
provided that the prediction D̂T  satisfies some typical assumptions (see the 3rd item in this list for more details). 
Apparently, the performance improvement depends on the nature of the particular local optimum �(k) where it 
will converge. If the ADMM mechanism is suitably chosen then the improvements that such local optimum may 
provide could be significant: for instance, in the practical applications, which are described later in this paper, the 
improvements can reach 30% or even higher. On the other hand, if the ADMM is chosen according to the procedure 
suggested in [2], �(k) converges to the point whose distance from the globally optimal performance is proportional 

�(k) ↦ �
∗

J(k + 1) ≤ J(k) +O(|DT (k) − D̂T |) + 𝜖(k)

Table 1   The CAO Algorithm

At every kth iteration (where each iteration involves the IoT ecosystem operating for T time-units with � being constant and equal to �(k) ) 
measure the IoT ecosystem performance J(k) and update � using the following steps:

1. Construct an estimator for J(k + 1) as follows:

Ĵ(k + 1) = 𝜗
𝜏 (k)𝜙

(
𝜃(k),DT (k)

)
(5)

where Ĵ(k + 1) denotes the estimate (prediction) of J(k + 1) , � is the regression vector and � is the estimator vector. Standard function 
approximation schemes (e.g. polynomials) can be used to construct estimator (5). The reader is referred to [29, 34] for more details on 
how to construct such an estimator (it must be emphasized that it suffices to use estimators of very “simple” structure and not very 
elaborate ones). The estimation vector � is constructed using standard Least-Squares (LS) estimation, i.e.,

�(k) = argmin
�

∑k−1

�=k−W(k)

�
�
�
�

�
�i(�),DT (�)

�
− J(� + 1)

�2

where W(k) denotes the time-window over which the LS estimation is taking place.
2. Choose a positive function �(k) to be either a constant positive function or a time descending function satisfying 

𝛼(k) > 0,
∞∑
k=0

𝛼(k) = ∞,
∞∑
k=0

𝛼
2(k) < ∞.

3. Generate—randomly or pseudo-randomly—a set of L candidate perturbations ��(1)(k), ��(2)(k),… , ��(L)(k) where ��(j)(k) are vectors of 
the same dimension as �(k) and L is an integer satisfying L ≥ 2dim(�).

4. Estimate the effect of each of the candidate perturbations to the current vector �(k) by employing the estimator (5) and pick the candi-
date perturbation with the “best” effect, i.e., choose the vector ��(j∗)(k) that satisfies

𝛿𝜃
(j∗)(k) = argmin

j=1,…,L

{
𝜗
𝜏 (k)𝜙

(
𝜃(k) + 𝛼(k)𝛿𝜃(j)(k), D̂T (k + 1)

)}

where D̂T (k + 1) denotes an estimate (prediction) of DT (k + 1).
5. Set

�(k + 1) = �(k) + �(k)��(j
∗)(k)

6. Go to step 1 until performance convergence has been achieved.
The reader is referred to [29, 34] for more details on the CAO algorithm as well as for guidelines for the selection of the different design 

parameters of the algorithm (regression vector �, �(k),W(k),etc.).
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to the complexity of the ADMM mechanism: the more complex is the ADMM mechanism the closer to the globally 
optimum performance is obtained (at the expense, of course, of a convergence speed which is inversely proportional 
to the ADMM complexity).

•	 Part (b) of Theorem 1 establishes that CAO does not face the risk of the poor performance (which is one of the main 
shortcomings of other adaptive/learning approaches): the cost J(k + 1) is less than its value of the previous iteration 
plus two terms: (a) an—unavoidable—term that depends on the accuracy of the prediction of the external data and 
(b) a term that converges to zero exponentially fast. The exponentially fast convergence to zero is the best that any 
adaptive/learning algorithm can achieve [19]. As a matter of fact, in the vast majority of adaptive/learning schemes, 
a term similar to �(k) is always present - with the difference that such a term do not converge exponentially fast: as a 
result such a term may take significantly large values during adaptation, leading to situations of very poor or, even, 
unsafe performance.

•	 The properties of CAO are established based on some typical assumptions on the prediction D̂T . Apparently, any type 
of algorithm depends on the accuracy of the prediction D̂T which corresponds e.g., to weather predictions in the case 
of smart home/districts, traffic predictions in the case of traffic systems, etc.

•	 Last, but not least, it is emphasized that due to the model-free nature of CAO, it possesses self-reconfiguration capabili-
ties: if the IoT infrastructure changes (e.g., nodes added/removed), then CAO will automatically re-learn and re-adjust 
the tunable parameters towards optimizing the altered system. The robotic application mentioned in this paper 
exhibits such an attribute: whenever the IoT system changes (because a node joins/leaves the system) or whenever 
the user requirements change (which corresponds to a change in the cost function J structure), CAO rapidly recon-
figures itself towards efficiently optimizing the altered system.

3.1 � Smart Traffic Control (STC): real‑life application in the city of Chania, Greece

One of the benefits of the impressive recent advances of the field of IoT, is that it becomes more and more affordable 
and “easier” to deploy Smart Traffic Control (STC) systems to intelligently and more efficiently control and manage traffic 
operations [3, 34, 38]. Unfortunately, embedding STC systems with intelligence requires a tremendous amount of human 
effort and time for programming and tuning the IoT involved in these operations. The programming and tuning proce-
dure involves the calibration, adjustment and programming of hundreds of parameters, rules, operational schedules, 
decision-making mechanisms, etc. and are typically performed by experienced personnel. Thus, because of the complex-
ity of the problem, there is no guarantee that the overall programming and tuning procedure will end-up successfully.

The CAO system has been implemented in a real-life STC system towards demonstrating its potential for providing an 
automated and systematic approach that will neglect the need for the tedious and costly human involvement. The par-
ticular STC system where CAO has been implemented is the STC system for the urban road network of the city of Chania, 
Greece (see Fig. 1) which is a highly challenging traffic network: it involves a very complex signalling structure; frequent 
illegal or double-parking which change the network characteristics and junction capacities in an unpredictable way; and 
a traffic demand that changes significantly throughout the year (Chania is a touristic city with its population increasing 
by almost 100% during summer time). It is also emphasized that the ADMM employed and its original parameters (i.e., the 
tunable parameters � before their tuning by CAO) correspond to a very well-designed STC system, achieving the best the state 
of the art can offer [28]. Table 2 provides the details of the CAO implementation for the STC system of the city of Chania.

The real-life results after implementing CAO for about 60 days (see Fig. 2), indicate that CAO was able to provide ∼ 50% 
improvements over a well-designed STC system. The improvements have been calculated based on the productivity index 
(the mean speed achieved inside the network multiplied by the traffic demand). The calculations for estimating the cost 
savings in Table 2 assume a fuel consumption of 10L per 100Km [53] in urban areas and a price of 1.2 €/L. Table 3 sum-
marizes the result of CAO application in the STC system of the city of Chania.

3.2 � Smart energy homes (SEH): real‑life applications in two large‑scale buildings

Calculating the optimal decisions that balance energy and user needs is by no means an easy task. Extensive research and 
real-life experiments performed over the last decades exhibited that demand-optimized actions require modifying the 
operating set-points many times during the day, in an intelligent and delicate manner. Such decisions should also con-
sider the complex interplays between diverse factors such as equipment and envelope dynamics, user comfort and needs, 
occupancy schedules, weather conditions, etc. [9, 13, 27, 40]. Things become way more complicated when local energy 
generation (renewable sources, spinning reserves etc.) and storage are involved: in this case, the problem of generating 
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Fig. 1   City of Chania Traffic Network

Table 2   Details of CAO application in the STC system of the city of Chania

N = 20 Smart traffic junctions controlling in real-time green times

ui(t) Green times of traffic lights of the ith junction
zi(t) Number of vehicles in each of the links (incoming roads) to the ith junction
di(t) No of vehicles (for each incoming link) entering the traffic network
ADDM The ADDM consists of the strategy TUC(�, z(t)) , a well-established traffic control strategy which is based on control systems 

principles [28]. The initial set of parameters �(0) were the ones obtained after a quite lengthy and tedious manual tuning 
in the past.

T = 24h Time-horizon
J(t) (average mean speed of the whole traffic network) × (total no of vehicles entering the traffic network)= System Productivity

Fig. 2   Real-life Application of the CAO system to the urban road STC system of Chania: traffic network performance improvements 
(blue=real data; black=linear fit of the real-data). The x-axis corresponds to the number of days the CAO system is operating. The y-axis 
reflects the daily system performance in terms of (speed×demand), which is known as the system productivity

Table 3   Results of CAO application in the STC system of the city of Chania

Annual fuel savings  (due to reduction of travel times) as compared to the “best 
state-of-the-art”

1-2 Million €/year for an urban area of 100,000 people

Improvement of Traffic Network Performance as compared to the “best state-of-the-
art”

 ∼50%
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optimal decisions that guarantee the aforementioned attributes becomes way more complicated. Unfortunately, exist-
ing methods for calculating such optimal decisions usually rely on the analytic knowledge of the building dynamics 
[26, 42]. Apparently, such assumption is not realistic since developing an analytic model is an extremely “expensive” and 
cumbersome procedure. Moreover, such models would require continuous recalibration since SEH ecosystems are not 
static in time, a fact which renders the model “maintenance” extremely expensive when it comes to large-scale deploy-
ments. To make things worse, even in the cases where an elaborate model is available, existing methods for calculating 
the optimal decisions are computationally quite expensive [51].

The CAO system has been implemented in two real-life, large-scale SEH systems towards employing an automated 
and systematic control approach that is able to overcome the aforementioned drawbacks involved in existing solutions:

3.2.1 � Application to the office building of AFCON Ltd. (Tel Aviv, Israel)

The first SEH system concerns the main office building of AFCON Ltd., which is located in a suburban area of Tel-Aviv, 
Israel. It was built in 2004 to host over 600 employees. The building is comprised of 5 floors: Floors 1 and 2 are used as 
storage spaces without any air conditioning units, while floors 3, 4 and 5 are consisted of offices (about 70 offices and 
rooms per floor) (see Fig. 3a). The net heated floor area (3rd, 4th and 5th floor in total) is around 2350m2 . The daily energy 
demand is approximately 11879kWh during spring period. Two couples of chillers are installed for indoor climating 
purposes; each of the chiller can deliver up to 150 refrigeration tons (total of 600 tons) which corresponds to 527kW per 
chiller (total 2.108MW). The indoor air-conditioning system includes AHUs (Air Handling Units) for offices located on the 
same floor—on average 10 offices share the same AHU.

It should be noted that the comparison performance benchmark (base case scenario - BCS) is the common control 
practice adopted in the real-life building employing a constant chiller set-point of 11 oC during working days. The AHU 
thermostats were constantly set to 21 oC . Experiments were conducted focusing on the 3rd, 4th and 5th floors consist-
ing of offices. The test period refers to the period from Monday 30/3/2015 to Friday 10/4/2015, when, due to mediocre 
outdoor conditions, the energy-efficiency of the BCS was poor. Table 4 provides the details of the CAO implementation 
for this application.

The evaluation results demonstrated that CAO led to substantial power savings of ∼ 35% translated into 6711kWh 
average daily consumption, without violating the acceptable comfort bounds. An estimation of the potential savings—
summarized in Table 5—in terms of energy cost, can be extracted considering that the benchmark control application 
requires 11879kWh/day in average and CAO requires only 6711kWh/day. Using the EU-28 average price of 0.125€/kWh 
for industrial consumers [15], such difference can be translated in a daily amount of 646€ savings during summer period.

3.2.2 � Application to an office building of Technical University of Crete, (Chania, Greece)

The second SEH application involves a 2-floor office building, located inside the campus of the Technical University of 
Crete, Greece (see Fig. 3b). The building area of 450m2 is divided into 10 offices, each equipped with a 12000btu con-
ventional air conditioning unit as well as indoor temperature and humidity sensors. The building is also equipped with 
a photovoltaic (PV) panel, which provides solar energy to the building. The building is considered as a conventional 
building with poor insulation characteristics which render the problem of optimization and efficient control design to 
an extremely challenging one, due to the strong dependence of the indoor conditions to the outdoor ones. The energy 

Fig. 3   a AFCON Ltd. building, Tel-Aviv, Israel (left); b Technical University of Crete building, Chania, Greece (right)
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consumption is highest during the summer period when large cooling loads are required to achieve an acceptable 
indoor thermal conditioning. Large glass surfaces, combined with the Greek summer and the poor insulation factor of 
the building, usually lead to overheating. Therefore the respective tests focused on reducing the air-conditioners energy 
consumption during the summer period. The simple rule-based control strategy, which is used in the building control 
practice, was adopted as the base case for comparison purposes. The rule-based control employs a very simple strategy, 
which consists of keeping the air-conditioner set points constantly equal to 25 oC during the office hours, and turn them 
off outside office hours (8 ∶ 00 − 17 ∶ 00) . Table 6 provides the details of the CAO implementation for this application.

CAO was able to reduce energy consumption by 19% , while indoor comfort conditions remained within accept-
able comfort bounds. An estimation of the potential savings—summarized in Table 7—in terms of energy cost, can be 
extracted by considering that the benchmark control application requires 126kWh/day in average while CAO requires 
only 100kWh/day. Using the EU-28 average price of 0.125€/kWh for industrial consumers [15], such energy consumption 
difference can be translated in 3.25€ daily savings during the summer period.

3.3 � Autonomous trajectory design system for AUVs: real‑life application in the Port of Porto, Portugal

Another instance of IoT application is the deployment of underwater robots (AUVs) to accomplish underwater mapping, 
see e.g., [6, 22, 43, 46, 48]). Despite these advances, however, almost all underwater map-building methods are character-
ized by low autonomy, since they typically rely on a set of pre-defined trajectories and often on human intervention. In 
other words, AUVs usually follow trajectories designed off-line, before the actual deployment, which is a limiting factor 

Table 4   Details of CAO 
application in the SEH system 
of AFCON Ltd

N = 2 × 21 AHU thermostat set-points regulating in real-time the water temperature

ui(t) Set-points of the i − th chiller
zi(t) Indoor temperature for all 210 offices located on the 3rd, 4th and 5th floor
di(t) Current and forecasted ambient temperature, total solar radiation and occupancy
ADDM Combination of a linear controller and a rule-based controller
T = 24h Time-horizon
J(t) Weighted summation of the active chiller energy consumption and indoor comfort

Table 5   Results of CAO application in the SEH system of AFCON Ltd.

Daily energy savings  during spring period as compared to the “usual practice”  5168 kWh/day
Daily economic savings during spring period as compared to the “usual practice”  646 €/day

Table 6   Details of CAO 
application in the SEH system 
of Chania Building

N = 10 Air-conditioner set-points

ui(t) Set-points of the i − th air-conditioner
zi(t) Indoor temperature and humidity for all 10 offices
di(t) Current and forecasted ambient temperature, outdoor humidity, total solar 

radiation and occupancy
ADDM Combination of a linear controller and a rule-based controller
T = 24h Time-horizon
J(t) Weighted summation of the total energy consumption and indoor comfort

Table 7   Results of CAO application in the SEH system of Chania Building

Daily energy savings during summer period during spring period as compared to the “usual practice”  35 kWh/day
Daily economic savings during summer period during spring period as compared to the “usual practice”  3.25 €/day
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when a totally unknown area is to be mapped underwater: pre-defined trajectories are quite likely to “miss” areas rich 
in information or AUVs may waste valuable time focusing on low informative regions. A common approach for tackling 
these problems in practice, is to perform the following repetitive procedure. Initially, AUVs map the sea-floor following 
blindly defined trajectories (usually in a lawnmover pattern). Once this first step is accomplished, new trajectories are 
generated, always off-line, but now using the existing seabed knowledge from the constructed maps and this procedure 
is repeated many times.

To alleviate the previously described shortcomings we apply the centralized CAO algorithm. The aim of this research 
is to generate on-line trajectories for a team of AUVs in order to construct fast and accurate sea-floor maps [21] while 
also enabling the possibility to simultaneously track a dynamic event. Two different experiments were conducted in 
the Leixões Port, located in the city of Oporto, Portugal. Both experiments involved a fleet of 3 AUVs (called Noptilus-1, 
Noptilus-2 and Noptilus-3) shown in Fig. 4. Table 8 provides the details of the CAO implementation for this application. 
Next we summarize the details of the 2 real-life experiments.

3.3.1 � 1st experiment: one AUV faces hardware malfunction during the mapping mission

In this experiment, we deployed the fleet of the 3 AUVs having as an objective to perform cooperative mapping of the 
seafloor using their bathymetric measurements. Figure 5a illustrates the progress of the 3 AUVs (blue lines) until time-
step 90. The AUVs’ positions, at this time-step, are depicted with the magenta spheres. The black tiles correspond to 
areas where the AUVs have not yet acquired any measurement, while the colorful ones correspond to the areas where 
the AUVs have started (and may have completed) their estimation process. The color in each one of them is an error 
index that varies from dark-blue, in case where the AUVs have acquired a perfect match from the ground truth, to dark-
red in case where the measurements do not have any correspondence with the actual surface (ground truth map) that 
underlines the specific tile. It should be highlighted that the CAO algorithm does not use any information regarding the 
ground truth map (or error index): during the exploration process, the AUVs adjust their movements taking as input only 
their bathymeters’ measurements and their locations (as estimated by the localization module). Figure 5b depicts the 

(a) NOPTILUS-1 (b) NOPTILUS-2 (c) NOPTILUS-3

Fig. 4   The three AUVs used in the Multi-AUV underwater experiments

Table 8   Details of CAO 
application in the multi-AUV 
mapping test-case

N = 3 Number of AUVs (Noptilus-1, Noptilus-2 and Noptilus-3)

Operation terrain Q Square area with dimensions equal to 240 × 240 meters
ui(t) Robots’ movements
zi(t) Terrain measurements (may be corrupted by noise)
T = 450 timesteps Time-horizon (where by a new time-step is defined 

whenever new waypoints are sent to the AUVs)
d = 1m Safety distance from the ground
dr = 0.5m Safety distance between any two robots
J(t) Summation of the mapping performance on each tile



Vol.:(0123456789)

Discover Internet of Things             (2021) 1:8  | https://doi.org/10.1007/s43926-021-00003-w	 Review

1 3

time-step where a (simulated) hardware malfunction took place. The malfunctioned vehicle had to return immediately 
to the base-station to avoid jeopardizing such an extremely expensive infrastructure. Figure 5c exhibits the adaptation 
in the navigation schemes of the two remaining AUVs. The important feature here is that, one AUV autonomously chose 
to cover the tiles that would have been assigned, under normal conditions, to the damaged AUV. The mapping process 
was terminated after 450 time-steps when the AUVs covered the majority of the operation area having estimated 136 
from 144 tiles (Fig. 5d). It is worth mentioning that in the majority of the estimated tiles, the AUVs acquired a satisfactory 
number of bathymeter’s measurements, different in each case, since it is highly dependent on the actual morphology 
that underlines the tile. A comparison was also performed versus the usual practice of mapping using pre-defined tra-
jectories [21]. The results of the comparison are summarized in Table 9.

3.3.2 � 2nd experiment: performing target tracking simultaneously with the mapping task

In this scenario, the task was to construct a map of the seafloor area while, concurrently, tracking the trajectory of a 
moving target. In this scenario we utilized a fleet of only 2 vehicles, due to the fact that the third available vehicle was 
utilized as the moving target. The information regarding the moving target was available through AUV-to-moving-target 
distance. In other words, the two AUVs do not know the position of the moving target, but they are using their AUV-to-
moving target distance measurements in order to estimate the—dynamic—position of the target. Even from the initial 
time-steps, the difference from the previous experiment is evidential. Figure 6a depicts such an initial state, where one 
AUV seems to approach almost directly the position of moving target in order to minimize their in-between distance.

In a subsequent timestep (Fig. 6c) another feature of the utilized navigation algorithm can be observed. At this very 
moment, the distance between the target and any of the two AUVs was more or less the same. However, the bathymetric 
information below the AUV which was responsible for tracking the target, was far more important than the other one. 
The CAO algorithm without any build-in mechanism to detect and appropriately act on such cases, chose to “switch” 

Fig. 5   Multi-AUV 1st experiment: a Exploration time-step 90 (top-left); b Noptilus-1 has stopped its exploration process(red thick sphere), 
Exploration time-step 100 (top-right); c Noptilus-2 undertakes the tiles of Noptilus-1, Exploration time-step 221 (bottom-left); d Completion 
of the experiment, Exploration time-step 450 (bottom-right)
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the tasks between the two AUVs. By doing so, the AUVs (as a whole) were able to keep track of the movements of the 
moving target without undesired spikes on the estimated trajectory and, at the same time, to dedicate one vehicle to 
gather sensor data from regions where the mapping accuracy was low (Fig. 6d). The aforementioned switching process 
was performed several times during the experiment, in cases where the AUVs had more or less the same distance from 
the target and there was a clear advantage for the specific switching. It is worth highlighting that, the algorithm chose 
to make the transitions only when the AUVs’ distances from the target were the same, in order to avoid sudden increases 
in the estimation error of the target’s motion.

The experiment was terminated after 450 time-steps where the AUVs had accurately estimated, mainly but not limited, 
the area where the target was moving, while at the same time had almost perfectly estimated the target’s trajectory.

4 � Distributed version: the Local4Global cognitive adaptive optimization tool

The CAO algorithm described in the previous sections, assumes a centralized form. However, in large-scale IoT implemen-
tations, such a centralized formation is not practically implementable: instead, the local parameters �i of the ith Thing 
must be updated using only locally available information (plus information about the global criterion time-history). L4G-
CAO [30] suitably revises CAO so as to meet such a requirement. Table 10 describes the details of the L4G-CAO algorithm.

The following Theorem provides the basic attributes of L4G-CAO which—despite the distributed nature of L4G-
CAO—are similar to those of CAO.

Theorem 2  Let Di,TT(k) − D̂i,T  be zero-mean and bounded. Then, under some mild conditions on the continuity of J, the fol-
lowing hold:

(a)	
where �∗ denotes a local optimum of J, i.e., ∇J(�∗,DT (k)) = 0.

(b)	
where �(k) is a term that decays to zero exponentially fast.

Proof  The proof—see also [35]—can be established by using standard results from representing state-space systems 
with input/output models. Using these results it can be seen that Theorem 2 is a direct application of Theorem 1. More 
precisely:

As a first step, it is not difficult for someone to see that the L4G-CAO algorithm assumes a mathematical form as follows:

for some nonlinear vector function Pi(⋅) . Therefore, the overall L4G-CAO dynamics can be written in state-space form 
as follows:

where 𝜃̄ = [𝜃𝜏
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]� and y = J . Please note that �i is considered as 

an exogenous input in the above equations. Using standard results from transforming state-space into input/output 
systems (see e.g., Theorem 2 in [32]) we can see that

�(k) ↦ �
∗

J(k + 1) ≤ J(k) +O(sup
i

|Di,T (k) − D̂i,T |) + 𝜖(k)

(7)𝜃i(k + 1) = Pi(𝜃i(k), D̂i,T (k), J(k − 1),… , J(k − d))

𝜃̄(k + 1) =F
(
𝜃̄(k), D̂T (k), J(k − 1),… , J(k − d)

)
y(k) = h

(
𝜃̄(k), 𝜃i(k),DT (k)

)

Table 9   Results of CAO 
application in the multi-AUV 
mapping test-case

Accuracy as compared to the “usual practice”  1.5 more accurate maps
Mission Time as compared to the “usual practice”  50% reduction (at least)
Preparation/Pre-deployment Effort 90% reduction
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where ℑi(⋅) denotes an unknown nonlinear function. Therefore, the global performance index J(k) can be calculated—
at the ith Thing level—through a nonlinear function ℑi(⋅) by using the previously measured values of J. By defining 
D(k) =

[
J(k), J(k − 1),… , J(k − d),D𝜏

T
(k), D̂𝜏

T
(k)

]𝜏
 , we have that the problem of optimizing J can be transformed into the 

problem of optimizing the cost J̄i at the ith Thing level, where J̄i is as follows:

and thus the CAO algorithm—and its attributes—are directly applicable by replacing J,DT in CAO by J̄i,D , respectively. 	
� ◻

4.1 � Distributed smart energy systems (DSES): real‑Life application in a large‑scale building

The first of L4G-CAO experiments concerns the case where there is a number of independent SEH (Smart Energy Home) 
systems in a large building, with each SEH system operating over a distinct part of a building (e.g., each apartment or 
office of the building is equipped with a distinct SEH system that operates independently of the others). The different 

y(k + 1) ≡J(k + 1) = ℑi

(
J(k), J(k − 1),… , J(k − d), 𝜃i(k),DT (k), D̂T (k)

)

J̄i

(
𝜃i(k),D(k)

)
≡ℑi

(
J(k), J(k − 1),… , J(k − d), 𝜃i(k),DT (k), D̂T (k)

)

Fig. 6   Multi-AUV 2nd experiment: a Noptilus-3 approaches the target in order to improve its estimation, Exploration time-step 18 (top-left); 
b Noptilus-3 keeps tracking of the target, while the Noptilus-1 take measurements in order to produced a detailed map, Exploration time-
step 87 (top-right); c The target tracking task is assigned to Noptilus-1, Exploration time-step 139 (bottom-left); d Noptilus-3 is re-sensing 
the underestimated tiles, while Noptilus-1 keeps tracking of the target. Exploration time-step 150 (bottom-right)
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SEH systems are not allowed to communicate to each other due to e.g., privacy preserving reasons. The only informa-
tion that is common to all different SEH systems is the total daily energy performance of the whole building along with 
a daily comfort index indicating the degree of satisfaction in all the different apartments/offices (for instance, this index 
may correspond to the worst of comfort conditions among all different apartments/offices).

The particular building where the L4G-CAO experiments were performed is an office-building that belongs to E.ON. 
Energy Research Centre of RWTH University and is located in Aachen, Germany. Figure 7 below, illustrates the building’s 
south façade and its ground-floor plan. The available control and sensing infrastructure consisted of:

•	 sensors: room temperature (T), room CO2 level, occupants’ presence contact (PS), window-opening sensor (WS), 
manual temperature dial (TD) and energy measuring devices in each room, and;

•	 actuators: (i) Air Chiller (ACH) systems for cooling the supply air from the central air handling unit individually for each 
room; and (ii) Volume Flow Control (VFC) systems, for adjusting the air flow rate individually for each room, separately 
in supply and exhaust air duct.

It must be emphasized that the energy supplied was a mixture of renewable and non-renewable (i.e. from the power 
distribution grid) energy provided by the central supply system.

The usual case for buildings located in northern climates suggests that the largest amount of the total energy demand 
is consumed during winter and autumn periods, mainly for heating purposes. For this reason, the L4G-CAO real-life experi-
ments were conducted during 21st − 26th of November 2016. The goal of L4G-CAO was to reduce the Non-Renewable 
Energy Consumption (NREC) while keeping user comfort at satisfactory levels. Table 11 provides the details of the L4G-
CAO implementation for this application.

For comparison purposes, the L4G-CAO strategy is compared with the base case control strategy. The base case control 
strategy has been designed and implemented in the respective Building Management System (BMS) by the planners and 
the commercial system provider in a conventional manner. Such a strategy employs a closed PID-based control-loop, 
designed to react on room temperature and CO2 deviations on ACs and VFCs. It should be noted that three rooms of 
about 30m2 each were utilized for the L4G-CAO application (see Fig. 7b blue area). Moreover, two neighboring rooms 

Table 10   The L4G-CAO Algorithm

At every kth iteration (where each iteration involves the IoT ecosystem operating for T time-units with �i being constant and equal to �i(k) ) 
measure the IoT ecosystem performance J(k) and assume that the value of J(k) is available to each of the Things. Then, �i is updated using 
the following steps:

1. Construct an estimator for the global performance J(k + 1) at the ith Thing level  as follows:

Ĵi(k + 1) = 𝜗
𝜏

i
(k)𝜙

(
𝜃i(k),Di,T (k), J(k − 1),… , J(k − d)

)
(6)

where Ĵi(k + 1) denotes the estimate (prediction) of J(k + 1) , � is chosen as in the CAO case, d is a positive integer chosen typically in 
the range 5 − 10 and Di,T (k) = [d�

i
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i
(N)]� . Please note that each Thing has its own estimator.

The estimation vector �i is constructed using standard Least-Squares (LS) estimation, i.e.,
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where W(k) denotes the time-window over which the LS estimation is taking place.
2. Choose �(k) as in the case of CAO.
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4. Estimate the effect of each of the candidate perturbations to the current vector �i(k) by employing the estimator (6) and pick the can-
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where D̂i,T (k + 1) denotes an estimate (prediction) of Di,T (k + 1).
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6. Go to step 1 until performance convergence has been achieved.



Vol.:(0123456789)

Discover Internet of Things             (2021) 1:8  | https://doi.org/10.1007/s43926-021-00003-w	 Review

1 3

with similar thermal characteristics, where the benchmark control was applied during the experimental period, served 
as the base case control scenario test-bed (see Fig. 7b red area). The real-life application of the L4G-CAO optimization 
tool employed a distributed topology to ensure seamless scalability and confirmed all of the aforementioned properties 
in real-life operating conditions. It is worth mentioning that NREC improvements could be observed even from the very 
first experimental day. The total improvement of the defined NREC index was 34% during the considered test period. In 
particular, during the experiments the average daily NREC consumption was about 0.067kWh∕m2∕day in the benchmark 
control case (see red circled area in Fig. 7b) while in the L4G-CAO case it was reduced to 0.043kWh∕m2∕day (see blue 
circled area in Fig. 7b). Note that internal solar heat gains were also negligible during the experimental period therefore 
indoor solar heat gains did not affect the evaluation process. In addition, the indoor comfort levels achieved were similar 
in both L4G-CAO and the base case control strategy.

An estimation of the potential savings in terms of non-renewable energy cost can be extracted considering that the 
benchmark control application requires 0.067kWh∕m2∕day in average and L4G-CAO 0.043kWh∕m2∕day . Using the EU-28 
average price of 0.125€/kWh for industrial consumers [15], daily savings of 0.003€∕m2∕day during the cold period of the 
year can be obtained (Table 12).

4.2 � Distributed Smart Energy Systems (DSES): simulated application in a microgrid of 100 buildings

The second experiment of L4G-CAO concerns a simulated experiment of a connected microgrid of 100 buildings with 
each of the buildings equipped with each own independent SEH system (see Fig. 8). Moreover, the buildings of the 
microgrid share different energy sources: first, renewable energy sources (photovoltaic panels) are shared as a ‘must-take’ 
source, i.e. photovoltaic energy is always used when it is available; as a second source, the microgrid is also connected to 
the main electricity grid, i.e. if the output of the renewable energy sources is not enough, the extra electricity is absorbed 
from the main grid. In the following, more details about the different components of the microgrid are given.

It is important to underline that each one of the 100 buildings has a different size, different orientation, and different 
occupancy schedule (cf. Table 13): this implies that each building has different energy needs. For example, because of the 
orientation, each building receives a different portion of solar radiation, which might influence drastically the selection 
of the Heating, Ventilation, and Air Conditioning (HVAC) set point in each room (and thus the energy need). The size of 
the building and the fact that the building is occupied or not are additional factors influencing the selection of the HVAC 
set point. In particular, Table 13 shows that buildings may have 10, 6 or 4 rooms: the size of the buildings goes from 300 
to 900 m2 , and the rooms in a single building have the same size. Buildings may host office activities, commercial activi-
ties, or residential activities. Each activity has its own occupancy schedule. It is assumed that all the rooms of a building 
exhibit the same occupancy pattern. Table 14 provides the details of the L4G-CAO implementation for this application.

Fig. 7   a RWTH E.ON. Building south facade (left); b RWTH E.ON. Building ground-floor plan overview (right)
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The L4G-CAO results are compared to two the base case control strategies RBC24 oC and RBC24 oC , which are two 
Rule-Based-Controllers setting the building set-points to 24 oC or 24 oC when occupants are present. The two histograms 
presented in Fig. 9, have been obtained from a one-week simulation. The first histogram presents the energy absorbed 
from the grid in € for each type of buildings and the whole microgrid. The second histogram presents the mean percent-
age of people who are dissatisfied. Similarly to the single building test case, L4G-CAO achieves better scores in both 
histograms. In particular, with respect to RBC24 oC , L4G-CAO manages to save more than 400€  for the whole system, 
while maintaining the comfort at better levels. On the other hand, L4G-CAO achieves a slightly better energy cost than 
RBC24 oC : the energy cost is slightly better despite the pre-cooling effect implemented by L4G-CAO that demands more 
energy consumption. Table 15 summarizes the results of the application of L4G-CAO to the microgrid case.

4.3 � Continuous monitoring/inspection of critical infrastructures utilizing a team of robots (simulated 
experiment)

The final L4G-CAO application concerns a multi-robot mission where the objective is to continuously monitor an area of 
interest using the team of robots. Such tasks can be found in several real-life applications including: surveillance in hostile 
environments (i.e. areas contaminated with biological, chemical or even nuclear wastes), environmental monitoring (i.e. 
air quality monitoring, forest monitoring), and law enforcement missions (i.e. border patrol), etc. The task of continuous 
monitoring can be shortened to the task of designing the robots trajectories, in real-time, so that: 

(1)	 the part of the terrain that is monitored (i.e. visible) by the robots is maximized;
(2)	 for every point in the terrain, the closest robot is as close as possible to that point.

The second objective is significant for two practical reasons: (a) at first, the closer is the robot to a point in the terrain, 
the better its ability to monitor this point becomes and (b) secondly, in many multi-robot monitoring applications, fast 
and accurate robot intervention (when needed) is highly essential. More information about this problem set-up along 
with the specialized version of the distributed-CAO algorithm for it can be found in [23].

To validate our approach in a realistic environment, we used data which were collected from the Birmensdorf area 
in Zürich. The main constraints imposed on the robots are that they must remain within the terrain’s limits, i.e. within 
[xmin, xmax] and [ymin, ymax] in the x- and y- axes, respectively. At the same time they have to satisfy a maximum height 
requirement whilst not hitting the terrain, i.e. they must remain within [z + d, zmax] along z-axis. Moreover, the opera-
tional robots had a maximum threshold regarding their sensors’ capabilities, i.e. ||xi − q|| < thres where xi denotes the 

Table 11   Details of L4G-CAO 
application in the SEH system 
of RWTH E.ON

N = 6 ACH and VFC subsystem per test 
room (total of 3 test rooms)

ui(t) ACH set-points and VFC exhaust and
supply set-points in each room

zi(t) Indoor temperature and CO2 for all
3 rooms

di(t) Current and forecasted ambient
temperature, total solar radiation and
occupancy

ADDM Combination of a linear controller 
and a rule-based controller

T = 24h Time-horizon
J(t) Weighted summation of the NREC

and indoor comfort index

Table 12   Results of L4G-CAO 
application in the SEH system 
of RWTH E.ON

Daily NREC savings during test period compared to the “usual practice” 0.024 kWh per m2 per day
Daily economic savings during test period compared to the “usual practice” 0.003€ per m2 per day
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3D position of the ith robot and q any point of the surface. Finally, any two robots should have always a safety distance 
of dr , i.e. ||xi − xj|| < dr, ∀i, j ∈ {1,… ,N} . The details of the performed experiments are summarized in Table 16.

Several initial configurations for the robot team were tested. In Fig. 10 the cost function of an illustrative scenario is 
presented, while the initial and the final configuration of the team (for the same scenario) is displayed in Figs. 11 and 12 
respectively. Please note that, in both figures, the color in each cell of the surface, denotes the closest robot that actively 
monitors that cell. If the cell is marked with black color, it means that no robot is able to monitor that cell, either due to 
the maximum visibility range or the geometry of the environment. In Table 17 the final achieved coverage percentage 
for different initial configurations and different clustering in the Birmensdorf area, is presented.

Fig. 8   Microgrid test case

Table 13   Building 
composition and type of 
activity/occupancy schedule 
for the microgrid test case

No. of buildings Rooms for building Size of building

40 10 From 300 to 900 
m 2

30 6 From 300 to 900 
m 2

30 4 From 300 to 900 
m 2

Type of activity Occupancy schedule
 Office 6–18
 Commercial 7–14 and 17–21
 Residential 0–7 and 14–18 and 21–24

Table 14   Details of L4G-CAO 
application in the microgrid of 
100 Buildings

N = 700 AC subsystem per test room

ui(t) AC set-points
zi(t) Indoor temperature, humidity and occupancy for all rooms
di(t) Current and forecasted ambient temperature, total solar radia-

tion and occupancy
ADDM Constant AC set-point = 24 oC or Constant AC set-point 

= 24 oC

T = 168h Time-horizon
J(t) Weighted summation of the NREC and indoor comfort index
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5 � Conclusions

Despite the complexity and heterogeneity aspects involved in IoT, the CAO and L4G-CAO methodologies have presented 
a quite robust and inter-operable behavior in all application domains considered herein. The absence of elaborate 
simulation models and analytic knowledge of the specified use case scenario did not hinder the applicability of both 
methodologies due to their model-free operation feature.

CAO and L4G-CAO applications proved the high potential of model-free intelligent control in orchestrating a coopera-
tive web of autonomously acting entities in order to improve the overall IoT performance in a real-time cognitive manner. 
Both have been evaluated in three different application domains under diverse conditions and scenarios presenting a 
quite promising behavior. CAO and L4G-CAO were able to improve significantly the overall IoT performance as compared 
to well-established base case strategies.

Fig. 9   District: energy cost in € and Percentage of Dissatisfied People during a 1 week experiment

Table 15   Results of L4G-CAO application in the microgrid of 100 Buildings

NREC savings during test period compared to the “usual practice” 40€ per week per building
Indoor comfort conditions compared to the “usual practice” 33% improvement
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Table 16   Details of L4G-CAO 
application in the multi-robot 
monitoring test-case

N = 6 Number of robots

ui(t) Robots’ movements
zi(t) Terrain measurements (may be corrupted by noise)
T = 1000 timesteps Time-horizon
d = 0.5m Safety distance from the ground
dr = 0.5m Safety distance between any two robots
thres = 16m Maximum visibility of the robots
J(t) Summation of the distance between any point of the ter-

rain with the closest robot and the number of invisible 
points

Advantages over usual practice No need of tele-operation and explicit coordination

Fig. 10   Cost function evolu-
tion in the scenario of moni-
toring an unknown terrain

Fig. 11   Initial robots’ configu-
ration. Black area corresponds 
to the area that has to be 
monitored

Fig. 12   Final robots’ positions 
along with their sub-areas of 
responsibility
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