
Vol.:(0123456789)

 Discover Water            (2024) 4:22  | https://doi.org/10.1007/s43832-024-00079-9

Discover Water

Research

Multivariate statistical methods for analysis of physicochemical 
and microbiological parameters of well water from the village M’Pody

Aubin Yao N’Dri1 · Stanislas Egomli Assohoun1 · Cyrille Gueï Okou1 · Georges Aubin Tchapé Gbagbo2,3 · 
Renaud Franck Djedjro Meless2,3 · Christophe N’Cho Amin2,3

Received: 10 July 2023 / Accepted: 24 April 2024

© The Author(s) 2024  OPEN

Abstract
The pollution of surface water and groundwater is a real public health problem that is currently receiving particular 
attention throughout the world. The use of water for food or hygiene purposes requires excellent physicochemical and 
microbiological quality. Well water is used for many purposes by the inhabitants of M’pody, a village in the Anyama district 
of Côte d’Ivoire. In this village, an epidemic of diarrhoea was detected in January 2020. This epidemic claimed sixty-nine 
(69) victims. This study aims to evaluate well water quality controls using the methods of principal component analysis 
(PCA), correspondence factorial analysis (CFA), analysis of variance (ANOVA) and self-organizing map (SOM) algorithm. 
The parameters studied were, turbidity (Tur), conductivity (Cond), hydrogen potential (pH), temperature (T), nitrate 
( NO

3−
 ), nitrite ( NO

2−
 ), ammonium ( NH

4+
 ), phosphates ( PO3−

4
 ), chlorides (Cl−) , total hydrotimetric degree (DHT), sulfates 

( SO2−

4
 ), bicarbonate ( HCO

3−
 ), total alkalinity contents (TAC), escherichia coli (E.coli), thermotolerant coliforms (CTH) and 

enterococcus faecalis (E.faecalis). Data were collected from seventy-two (72) wells in the village during four campaigns 
in 2020. Physicochemical parameters were determined by electrochemical and spectrophotometric methods. Microbio-
logical analysis was carried out using membrane filtration technique. Descriptive statistics revealed that Tur, Cond, pH 
and T parameters did not meet world health organization (WHO, 2017) standards. However, the parameters NO

3−
 , NO

2−
 , 

NH
4+

 , PO3−

4
 , Cl− , DHT, TAC, SO2−

4
 and HCO

3−
 comply with WHO standards. The results of bacteriological analyzes confirm 

the presence in very significant numbers of indicators of faecal contamination (CTH, E.coli and E.faecalis) in all wells. 
The logical explanations for faecal pollution would come from the infiltration of septic tanks located near the wells and 
the run-off of waste water carrying human and animal faecal matter. The diarrhea epidemic would therefore be caused 
by the consumption of this polluted water. PCA, FCA and hierarchical cluster analysis (HCA) were jointly employed to 
identify the structure of wells and deduce the principal factors controlling the parameters of these well waters. ANOVA 
revealed the effect of human-induced activities as the main factors influencing the physicochemical and microbiological 
parameters of the studied well waters. Further studies should focus on multivariate statistical techniques for effective 
forecasting and monitoring of emerging pollution for improved water quality.
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1 Introduction

Well water is generally used for agricultural activities or as drinking water. Its quality affects human activities and, con-
sequently, the health of the population. Wells are the main source of water for the inhabitants of M’pody, a village in 
Anyama, a suburb north of Abidjan (Côte d’Ivoire). The water that these populations use for drinking is not always treated. 
This can lead to illness. This was the case in the village M’pody, where an epidemic of diarrhoea was detected in January 
2020. This epidemic affected sixty-nine (69) people, the majority were children aged 0 to 5. It is therefore necessary to 
quantitatively assess the characteristics of well water in order to find links between the quality of the water in these wells 
and this epidemic. The traditional method of assessing water quality involves analyzing physicochemical and microbio-
logical parameters and comparing them with existing standards, in order to inform the public about the environmental 
conditions of these waters and the measures to be taken. With this in mind, Agbasi et al [2] studied the contamination of 
sachet water using an analysis of physicochemical parameters, heavy metals and microbial loads tested in sachet water in 
the six geopolitical zones of Nigeria, during the period 2020–2023. The manufacture, delivery, storage and sale of sachet 
water, as well as poor environmental hygiene, were identified as potential sources of contamination. Abba et al [1] used 
spatial, chemometric and indexical approaches to assess trace element pollution in the multi-aquifer groundwater system 
of the Al-Hassa oasis in Saudi Arabia. The average values revealed that chromium and iron concentrations exceeded the 
recommended limits for drinking water quality. The heavy metal assessment index, the heavy metal pollution index and 
the modified heavy metal index indicated low levels of groundwater pollution. Chemometric analysis identified human 
activities and geogenic factors as contributing to groundwater pollution. In a similar vein, Gobinder et al [13], assessed 
the seasonal suitability of groundwater for irrigation using indexed approaches, statistical calculations, graphical plots 
and machine learning algorithms. They concluded that seasonal changes in groundwater quality for irrigation are influ-
enced by monsoon dynamics, showing significant changes in cation and anion chemistry. The artificial neural network 
models were found to have superior predictive capabilities for irrigation suitability.

When a pollution event occurs, the water can be treated and reused for a variety of purposes. However, the specific 
purpose of the reuse will determine the levels of treatment recommended. This is a difficult task, especially as the 
number of water points to be treated is large. It is therefore necessary to find techniques for grouping wells that take 
into account the physicochemical and microbiological characteristics of each group in order to provide the optimum 
treatment required. To this end, multivariate statistical analysis, such as principal component analysis (PCA), were used 
to study the interactions between multiple factors ([5, 9, 10, 24, 25, 31, 32]). This method serves as a theoretical basis for 
other multidimensional statistical methods called factorial, which appear as special cases. The quality of the estimates 
it produces depends on the choice of the number of principal components used to reconstruct the initial data. When 
the number of components is greater than two, it is necessary to look at the individuals projected on all the planes for 
a good interpretation. This becomes tedious. Additionally, PCA is limited to linear correlations. Kernels PCA or hierarchi-
cal cluster analysis (HCA) are often used to overcome these problems. The HCA method was the most widely used for 
studying the physicochemical and microbiological characteristics of water ([22, 23, 36]).

Unlike all these studies, which have combined several multivariate statistical techniques, this study attempts to find 
links between the quality of well water and an epidemic that has claimed many lives. In other words, this study attempts 
to determine how poor water quality contributed to an epidemic. The aim of this paper is to perform a detailed and com-
prehensive study of well water quality using conventional multivariate analysis techniques. The aim is to find relationships 
and conclusions that can help determine the state of water quality using biological, physical and chemical indicators in 
order to prevent future epidemics in other regions. Multivariate statistical analysis, including PCA, correspondence facto-
rial analysis (CFA) and self-organizing map (SOM), is applied to a data set comprising three microbiological parameters 
(escherichia coli (E.coli), enterococcus faecalis (E.faecalis) and thermotolerant coliforms (CTH)) and thirteen physicochemical 
parameters (chlorides (Cl−) , conductivity (Cond), total hydrotimetric degree (DHT), bicarbonate ( HCO3− ), ammonium ( NH4+ ), 
nitrate ( NO3− ), nitrite ( NO2− ), hydrogen potential (pH), phosphates ( PO3−

4
 ), sulphates ( SO2−

4
 ), temperature (T), total alkalinity 

contents (TAC) and turbidity (Tur)) sampled in seventy-two wells in 2020 over four campaigns (long dry season, long rainy 
season, short dry season and short rainy season). This paper can be used as a guide for future studies of water quality 
using multivariate statistics.
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2  Materials and methods for classical data analysis

2.1  Materials

2.1.1  Description of the study area

M’Pody is a village in the Anyama commune in the autonomous district of Abidjan in Côte d’Ivoire (Fig. 1). The geo-
graphical coordinates are 5◦34′29′′ North latitude and 4◦14′8′′ West longitude in DMS (Degrees, Minutes, Seconds) 
or 5.57472 and −4.23556 in decimal degrees. The universal transverse mercator (UTM) position is UM61 and the Joint 
Operation Graphics reference is NB30–10. Anyama covers an area of 114 km2 and its population is estimated at 325,209 
inhabitants [29]. Natural vegetation has given way to intense agriculture. The highly developed culture of oil palms and 
rubber trees leads to maximum degradation of the natural environment [12]. The climate is equatorial, with four seasons 
in the annual cycle. A long rainy season from April to July followed by a short dry season from August to September; a 
short rainy season from October to November and a long dry season from December to March. Average annual rainfall 
varies between 1600 and 2500 mm. Humidity is the order of 80 to 90 percent. The study area is located in the onshore 
sedimentary basin to the north of the lagoon fault. The geological formations in the area are those of the ivorian coastal 
sedimentary basin (coarse sands, variegated clays, iron-bearing sands and sandstones, etc.) [33]. The hydrography of 
the area is composed of small rivers, the Niéké and the gbangbo, as well as several small non-permanent streams. The 
Niékéis a left bank tributary of the Agnéby river, which flows from north-east to south-west. The gbangbo flows in a 
north–south direction and empties into the Ebrié lagoon. The geological context of the study area makes it possible to 
define a single hydrogeological unit that contains groundwater: continuous aquifers. These aquifers are characteristic of 
the sedimentary basin. These are, the Quaternary aquifer, the Mio-Pliocene aquifer (Continental Terminal) and the Upper 
Cretaceous (Maestrichtian) aquifer ([14, 19]).

2.1.2  Equipment and sampling

The main measuring equipment consists of a Palintest photometer (Great Britain), a pH meter, a conductivity meter and a 
turbidity meter for physicochemical parameters, and a membrane filtration device for bacteriological parameters. Water 
sampling was carried out from the seventy-two wells in the village during four campaigns (long dry season, long rainy 
season, short dry season, short rainy season) of the year 2020. Samples were taken in 1000 ml polyethylene containers 

Fig. 1  Location map of the study area
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for physicochemical parameters and 500 ml containers for microbiological parameters. The reagents used were of ana-
lytical quality. The reagents used to measure chemical parameters were PALINTEST brand (Great Britain). BIORAD Rapid 
E. coli 2 Agar, Bile Esculin Azide (BEA) agar and Tryptone Sulfite Neomycin (TSN) agar were used to enumerate markers 
of faecal contamination ([11, 12]).

2.2  Methods for classical data analysis

Samples were taken in strict aseptic techniques to prevent any accidental contamination. Each sample was carried out 
in sterile flasks according to Jean Rodier’s recommendations [30]. Collected samples were stored in a cooler (4 ◦ C) and 
then transmitted to the laboratory on the same day for analysis. Physicochemical parameters were determined using 
electrochemical and spectrophotometric methods. Microbiological analysis was carried out using the membrane filtra-
tion method (100 ml on 0.45 m membrane). There are thirteen physicochemical parameters. They are, Chlorides (Cl−) , 
Conductivity (Cond), Total Hydrotimetric Degree (DHT), Bicarbonate ( HCO3− ), Ammonium ( NH4+ ), Nitrate ( NO3− ), Nitrite ( NO2− ), 
Hydrogen potential (pH), Phosphates ( PO3−

4
 ), Sulfates ( SO2−

4
 ), Temperature (T), Total Alkalinity Contents (TAC), and Turbidity 

(Tur). There are three microbiological parameters. They are Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis) and 
thermotolerant coliforms (CTH). For more details on the analysis of these parameters, see [12]. Descriptive analysis and 
multivariate analysis were performed using the two hundred and eighty-eight (288) samples. The analysis of the param-
eters is carried out on the average of the measurements of the physicochemical and microbiological parameters of the 
water samples from each well. Means determination was carried out using EXCEL 2010 software. PCA, CFA, analysis of 
variance (ANOVA), SOM and the location map of the study area were obtained using Python, R, GIMP and ArcGIS software.

2.2.1  Principal component analysis method

The context for PCA involves a data set with observations on p numerical variables, for each of n individuals. These data 
values define an n × p data matrix Y = (Yj)(1≤j≤p) . The observation of the vector Yj on individual 1 ≤ i ≤ n is Yij . In most 
cases, the variables studied do not have the same unit of measurement. It is common practice to begin by standardizing 
the variables as in (1)

where Yk and Sk are respectively the mean and the standard deviation of the variable Yk . The principle of PCA is to reduce 
the dimension of the initial data, by replacing the initial p variables with ( q < p ) new uncorrelated variables. These new 
uncorrelated variables are called the principal components of the data set, and denoted (Fk)(1≤k≤q) (2)

Principal components are linear combinations of the initial p variables that successively maximize variance. The total 
variance captured by all the principal components is equal to the total variance in the original data set. The first principal 
component captures the most variation in the data, but the second principal component captures the maximum vari-
ance that is orthogonal to the first principal component, and so on. Before analyzing the results of a PCA, the correlation 
matrix between the initial variables must be studied. This gives an initial idea of the correlation structure between these 
variables. This correlation matrix is then used to create a table of the percentages of variance explained corresponding 
to the different eigenvalues. This table also contains the associated cumulative percentages. It is used to select the q 
dimensions used to interpret the PCA. This technique is used to calculate the linear correlation coefficients between each 
initial variable and each selected factor.

Let pi be the weighting of individual i, ck
i
 the coordinate of individual i on the k-th principal component Fk , the cor-

relation of the variable Yj with respect to Fk is given by formula (3)

(1)Zk = (Zik)(1≤i≤n) =

(
Yik − Yk

Sk

)

(1≤i≤n)

(2)

⎧⎪⎪⎨⎪⎪⎩

F1 = a11Z1 + a21Z2 +⋯ + ap1Zp
⋯

Fk = a1kZ1 + a2kZ2 +⋯ + apkZp
⋯

Fq = a1qZ1 + a2qZ2 +⋯ + apqZp
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where, �2(Fk) =
∑n

i=1
pi(c

k
i
)2 = �k . This correlation is used to construct graphs of the variables. The study of these graphics 

leads to the significance of the principal component. Another tool for interpreting principal components is the notion of 
contribution defined by formula (4). The contribution of the variable Yj to the variance of the Fk axis is defined by

The contribution is also defined for individual Xi . The contribution of individual Xi to the dispersion of the Fk axis is defined 
by (5)

2.2.2  Correspondence factorial analysis method

Correspondence analysis is a factorial method of multidimensional descriptive statistics. Its aim is to analyze the relation-
ship between two qualitative variables. The graphical results of these two analyzes are then superimposed to produce 
one or more scatter plots. This graph combines the modalities of the two variables under study. This makes it possible 
to study the relationship between the two variables. In this system, proximity between observations or between variables 
is interpreted as strong similarity. Proximity between observations and variables is interpreted as strong relationship. 
This proximity between two qualitative variables X = (Xi)(i∈I) and Y = (Yj)(j∈J) is studied on N individuals. The cardinal of 
I is noted n and that of J is noted p. The number of individuals having the modality i of X and the modality j of Y is noted 
by xij . The contingency table is given by the matrix (xij)(1≤i≤n;1≤j≤p) or (fij)(1≤i≤n;1≤j≤p) with fij =

xij

N
. The column-profiles form 

a cloud of p points in space ℝn and the array of column-profiles is 
fij

f.j
= P(Y = j|X = i) where f.j =

∑n

i=1
fij = P(Y = j) , for 

j = 1,… , p . The associated marginal column profile is GC = (f1.,… , fn.).
The �2 distance between two profiles columns j and j′ is

The �2 distance between the profile column j and its marginal profile GC is defined as follows

The total inertia of the cloud of profiles columns with respect to GC is

This total inertia is decomposed into a sequence of axes of decreasing importance, each representing a synthetic aspect 
of the relationship between the two variables, and then a representation of the rows and columns is provided in which 
the position of a point reflects its participation in the independence gap. The definition of the �2 distance between 

(3)cor(Yj , Fk) =
1

n

n∑
i=1

piYij
ck
i

�(Fk)

(4)ctr(Yj , Fk) =
cor(Yj , Fk)

2

∑p

l=1
cor(Yl , Fk)

2
.

(5)ctr(Xi , Fk) =
pi(c

k
i
)2

�k
.

(6)d2

�2(j, j
�) =

n∑
i=1

1

fi.

(
fij

f.j
−

fij�

f.j�

)2

.

(7)d2

�2(j,GC) =

n∑
i=1

1

fi.

(
fij

f.j
− fi.

)2

.

(8)
IGC

=

p∑
j=1

f.jd
2

�2(j,GC) =

n∑
i=1

p∑
j=1

(
fij − fi.f.j

)2
fi.f.j

=
�2

n
= �2.
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two profiles lines, between the profile line and its marginal profile and the total inertia of the cloud of profiles lines are 
respectively similar to those defined in (6), (7) and (8).

2.2.3  ANOVA method

One-way analysis of variance is used to study the effect of a qualitative variable X called a factor on a continuous 
quantitative variable Y. It shows whether the mean of the quantitative variable is the same in the different groups 
[4]. The different values taken by the factor X are called level (or population). For factor X, it is assumed that there are 
k levels, k samples of respective sizes n1,… , nk . The total number of samples is n =

∑k

i=1
ni . The value of the variable 

Y = (Yij)1≤i≤k;1≤j≤ni is measured at each experiment. Then, the analysis of variance model is written as in (9)

with

• �ij ∼ N(0, �2),
• � average effect,
• �i effect of level i of factor X,
• Yij observation of index j of level i of the factor X.

Constraints are, 
∑k

i=1
ni�i = 0, ∀(i, j) ≠ (k, l), �ij and �kl are independent. Then, the null and alternative hypotheses of 

the one-factor ANOVA are given by (10) or (11)

or,

The statistical test defined in (12) is used to determine the significance of the factorial variance in relation to the residual 
variance. This is the ratio test of these two variances, the formula for which is as follows:

The quantities used in this report are defined by: SCF =
∑k

i=1

∑ni
j=1

(Yi − Y)2 , is the dispersion due to the factor and 

SCR =
∑k

i=1

∑ni
j=1

(Yij − Yi)
2, the residual dispersion; Y =

1

n

∑k

i=1

∑ni
j=1

Yij , is the overall average of the observations and 

Yi =
1

ni

∑ni
j=1

Yij the mean of level i of factor X. Under the assumptions of normality and homogeneity of the residuals 

(differences between the observations and the group means), the F statistic follows a Fisher distribution with k − 1 and 
n − k degrees of freedom. If the value of F is greater than the theoretical threshold value according to the Fisher distribu-
tion, with a given alpha risk (usually 5 percent), then the test is significant. In this case, the factorial variability is signifi-
cantly higher than the residual variability. We conclude that the means are globally different. If these hypotheses are not 
verified, it is always possible to apply a transformation at the level of the responses (log for example), or to use a non-
parametric ANOVA (Kruskal-Wallis test), or to carry out an ANOVA based on permutation tests.

2.2.4  Self‑organizing map method

SOM is a method of classification, representation and analysis of relationships. It was defined by Teuvo Kohonen, in 
the 80’s, from neuromimetic motivations ([17, 18]). In practice, a Kohonen network is made up of N units arranged 
according to a certain topology. For each unit i in the network, a neighborhood of radius r denoted Vr(i) is defined. 

(9)

{
Yij = mi + �ij , 1 ≤ i ≤ k ; 1 ≤ j ≤ ni

= � + �i + �ij

(10)

{
H0 ∶ m1 = m2 = … = mk

H1 ∶ ∃ i, j ∈ {1,… , k} such as mi ≠ mj

(11)

{
H0 ∶ �1 = �2 = … = �k = 0

H1 ∶ ∃ i ∈ {1,… , k} such as �i ≠ 0.

(12)F = F(k−1,n−k) =
SCF∕(k − 1)

SCR∕(n − k)
.
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This network is then formed by all the units located at a distance less than or equal to r. Each unit i is repre-
sented in ℝp space by a vector Ci called weight vector or code vector. The state of the network at time t is given 
by C(t) = (C1(t),C2(t),… ,CN(t)). For a given state C and a given observation x, the winning class i0(C , x) is the one 
whose code vector C(i0(C ,x)) is closest to the observation x in the sense of a certain distance. The winning class i0(C , x) 
is defined in (13)

For a given state C, the network defines an application �C which associates to each observation x the number of its class. 
After convergence of the Kohonen algorithm, �C respects the topology of the input space, in the sense that neighbor-
ing observations in the space ℝp are associated to neighboring units or to the same unit. The code vector construction 
algorithm is defined in (14) iteratively as follows:

• At time 0, the N code vectors are randomly initialized,
• At time t, the state of the network is C(t) and an observation x(t + 1) is presented according to a probability distribu-

tion P,

where 0 ≤ �(t) ≤ 1 is the adaptation parameter and r(t) the radius of the neighborhoods at time t. After convergence of 
the algorithm, the n observations are classified into K classes according to the nearest neighbor method, relative to the 
distance chosen in ℝp. Graphical representations can then be constructed based on the network topology. For further 
details, please refer to [6] and [7].

3  Results and discussion

3.1  Descriptive statistics

The mean, maximum (max), minimum (min), median (med) and standard deviation (sd) were used to describe all the 
data corresponding to the sixteen (16) parameters studied for two hundred and eighty-eight samples (288). Means of 

(13)i0(C , x) = argmin
i

‖x − Ci‖.

(14)

⎧⎪⎨⎪⎩

i0(C(t), x(t + 1)) = argmin
�‖x(t + 1) − Ci(t)‖, 1 ≤ i ≤ N

�
Ci(t + 1) = Ci(t) − �(t)

�
Ci(t) − x(t + 1)

�
,∀i ∈ Vr(t)(i0)

Ci(t + 1) = Ci(t), ∀i not in Vr(t)(i0)

Table 1  Average 
concentrations of 
physicochemical and 
microbiological parameters in 
well water

Notations Mean WHO (2017) Min Max Med sd

Tur 22.41 NTU < 5 NTU 2.71 162.43 16.04 23.55
Cond 157.776 �S∕cm 180–1000 �S∕cm 24.73 594 133.29 121.12
pH 5.21 6.5−8.5 4.22 11.51 5.08 0.88
T 27.79◦C ≤ 25◦C 25.88 29.08 28.03 0.83
NO

3−
14.09 mg/l ≤ 50 mg/l 1.11 44.16 12.38 7.61

NO
2−

0.08 mg/l ≤ 3 mg/l 0.01 0.54 0.04 0.11
NH

4+
0.356 mg/l ≤ 0.5 mg/l 0.01 3.82 0.25 0.48

PO3−

4
0.111 mg/l 0.5 mg/l 0.03 0.75 0.06 0.13

Cl− 18.17 mg/l ≤ 250 mg/l 1.75 44.7 17.16 9.8
TAC 74.08 mg/l – 26.25 216.25 65 40.23
DHT 25.78 mg/l – 5 106.25 19.25 20.80

SO2−

4
10.68 mg/l 250 mg/l 2.25 40.5 7.88 7.77

HCO
3−

90.71 mg/l – 30 216.25 73.75 42.9
CTH 1219.77 UFC/250 ml 0 UFC/250 ml 4.25 7400 818.88 1269.81
E.coli 947.85 UFC/250 ml 0 UFC/250 ml 2 5650 658.75 1050.09
E.faecalis 936.07 UFC/250 ml 0 UFC/250 ml 3.5 3913 692.50 1043.25
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all the parameters were compared to WHO [35] standards in Table 1. Temperature influences the rate of chemical and 
biological reactions. It affects the level of dissolved oxygen in the water. In the present study, water temperature varied 
from 25.88 ± 0.83 ◦C to 29.08 ± 0.83 ◦C with mean 27.79 ± 0.83 ◦C . The pH is used to measure the acidity or basicity 
of a solution. It varied between 4.22 ± 0.88 to 11.515 ± 0.88 with mean 5.21 ± 0.88 , which means that the water from 
the wells is acidic. In all this wells, the pH is outside the world health organization (WHO) permitted limit [6.5, 8.5]. The 
characteristics of the M’pody soil (coarse sands, ferruginous sands and sandstones, etc.) could explain the acidity of 
these waters. In line with WHO standards, these well waters should not be consumed without being treated. Electrical 
conductivity is the ability of an aqueous solution to conduct electric current. It determines all the minerals present in a 
solution. It varied between 24.73 ± 121.12�S∕cm to 594 ± 121.12�S∕cm with mean 157.776 ± 121.12�S∕cm . This means 
that well water is generally poorly mineralized. Turbidity varied from 2.71 ± 23.55 to 162.43 ± 23.55 NTU with a mean 
22.41 ± 23.55 NTU. Turbidity levels in well water are on average higher than the WHO standard. In well water, turbidity is 
caused by small particles in suspension of various natures, such as, clays and silts, microsands, bacteria, organic matter 
and mineral salts, etc. Most of the time, they are the result of leaching from the surrounding soil and therefore indicate a 
well that is poorly protected from run-off water. In addition, mean of NO3− , NO2− , NH4+ , PO

3−

4
 , Cl− , TAC, DHT, SO2−

4
 and HCO3− 

check WHO standards. Microbiological analysis of the well water showed the presence of germs. These microorganisms 
reached maxima of 7400 CFU/250 ml for thermotolerant coliform, 5650 CFU/250 ml for E. coli and 3913 CFU/250 ml for 
E. faecalis. The logical explanations for this situation of faecal pollution of the water could come, on the one hand, from 
the infiltration of septic tanks located near the wells and, on the other hand, from the run-off of waste water carrying 
human and animal faecal matter. These results are consistent with those of [12] and [15].

3.2  Results of principal component analysis and correspondence factor analysis

PCA is used to extract information from a table of quantitative data of the type individuals×variables to study the proxim-
ity between individuals (wells) on the one hand and the links between variables (parameters) on the other. Measuring 
the proximity between wells means determining which wells are similar in terms of physicochemical and microbiological 
parameters, in order to form groups of wells based on their proximity. Intuitively, two wells are close if their coordinates 
in ℝp , the space of parameters, are close. In other words, if the observations made on the p parameters are close. To 
quantify this proximity, we need to associate a measure of this proximity with the space ℝp . In other words, a measure of 
distance between the wells. Furthermore, PCA can also be used to obtain graphical representations of distances between 
individuals and correlations between variables. PCA is also a method of dimension reduction (construction of a small 
number of synthetic variables (axis) summarizing the initial variables as best as possible). In this study, the eigenvalue 
extraction method was applied to the correlation matrix (Fig. 2) to determine the principal components. The results are 
presented in Fig. 3 and Table 2. Combining the criteria of Kaiser, the scree plots and the proportion of variance explained, 
the number of factors to retain is five. Thus, in the analysis, only these first five principal components were chosen and the 
other components were omitted. It is very important to study the correlations between the new synthetic dimensions 

Fig. 2  Correlation matrix 
between the parameters
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and the original variables. These correlation coefficients will finally be used to estimate the relative contributions (ctr) of 
each original variable (Table 3) in the construction of the principal components. All the wells are then projected into the 
different planes defined by these principal components. An extract from these projections is shown in Fig. 4.   

The factor loading classification method adopted by Liu et al. [21] is used to study the correlations between the vari-
ables and the returned principal components. In this classification, the load r is considered strong for |r| ≥ 0.75, moderate 
if 0.5 ≤ |r| < 0.75 and weak if   0 < |r| < 0.5. Fig. 2 shows that, in general, the values of the correlation coefficients show 
natural physical, chemical and microbiological behavior. Further evaluation of these coefficients shows that the strong-
est correlations are observed between TAC and DHT (0.891), TAC and HCO3− (0.875), E.coli and CTH (0.96); moderate cor-
relations between E.coli and E.faecalis (0.655), CTH and E.faecalis (0.665), Tur and DHT (0.632), Cl− and Cond (0.525), TAC 

Fig. 3  Principal components explain of the variance

Table 2  Eigenvalues and 
percentage of variances on 
each principal component 
in PCA

Dimensions Eigenvalue Percentage variance Cumulative 
percentage 
variance

Dim1 4.412 27.573 27.573
Dim2 3.328 20.797 48.370
Dim3 1.922 12.015 60.385
Dim4 1.220 7.626 68.011
Dim5 1.131 7.068 75.079
Dim6 0.893 5.583 80.662
Dim7 0.735 4.595 85.257
Dim8 0.509 3.184 88.441
Dim9 0.467 2.918 91.359
Dim10 0.370 2.314 93.673
Dim11 0.320 2.001 95.674
Dim12 0.277 1.730 97.404
Dim13 0.214 1.338 98.742
Dim14 0.128 0.797 99.539
Dim15 0.045 0.278 99.817
Dim16 0.029 0.183 100
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and Tur (0.515), NO3− and Cond (0.687), TAC and SO2−

4
 (0.672), SO2−

4
 and HCO3− (0.612), HCO3− and DHT (0.719). The other 

correlations have significantly low values.
The PCA extracted 5 principal components (Fig. 3) which accounted for 75.079 percent of the total variances with 

eigenvalues ranging from 1.131 to 4.412 (Table 2). PC1 accounted for 27.573 percent, PC2 accounted for 20.797 

Fig. 4  Projection of wells on the factorial plane (1, 2) in PCA

Table 3  Correlations and 
contributions of variables 
on the different component 
principal

The moderate and strong correlations of the variables with the main axes are in bold. The same applies to 
some large-value contributions

Dim1 Dim2 Dim3 Dim4 Dim5

Cor ctr1 Cor ctr2 Cor ctr3 Cor ctr4 Cor ctr5

Tur 0.519 6.102 0.338 3.427 − 0.352 6.445 − 0.091 0.681  − 0.790 2.829
Cond 0.489 5.411 − 0.557 9.328 0.494 12.688 0.170 3.362 0.044 0.170
pH 0.390 3.447 0.188 1.065 − 0.356 6.580 0.262 5.618 0.658 38.234
T 0.326 2.402 − 0.627 11.828 0.106 0.581 0.061 0.303 − 0.365 11.800
NO

3−
0.285 1.838 − 0.549 9.051 0.565 16.618 0.043 0.150 − 0.159 2.223

NO
2−

0.652 9.642  − 0.052 0.080 0.046 0.109  − 0.361 10.684 0.403 14.352
NH

4+
0.387 3.402  − 0.336 3.394 0.280 4.080  −0.355 10.335 0.395 13.776

PO3−

4
0.275 1.711 − 0.141 0.597 0.150 1.169 − 0.678 37.671 0.020 0.035

CL− 0.246 1.374 − 0.557 9.321 0.201 2.100 0.486 19.318 0.187 3.095
TAC 0.902 18.422 0.194 1.132 − 0.161 1.343 − 0.048 0.189 − 0.194 3.328
DHT 0.875 17.363 0.196 1.158  − 0.138 0.991  − 0.032 0.081 −0.251 5.583

SO2−

4
0.761 13.126  − 0.002 0.000 − 0.162 1.364 0.359 10.566 0.010 0.729

HCO
3−

0.809 14.826 0.181 0.985  − 0.123 0.791 0.047 0.178  − 0.201 3.573
CTH 0.058 0.075 0.737 16.307 0.617 19.824 0.068 0.319 0.025 0.053
E.coli 0.082 0.151 0.730 16.008 0.613 19.578 0.059 0.288 0.042 0.156
E.faecalis 0.177 0.709 0.737 16.318 0.332 5.739 0.121 1.196  − 0.027 0.065
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percent, PC3 accounted for 12.015 percent, PC4 accounted for 7.626 percent, while PC5 accounted for 7.068 percent. 
The parameters defining PC1 are TAC, DHT, SO2−

4
 , HCO3− , NO2− and Tur; PC2 are CTH, E.coli, E.faecalis, Cond, T, Cl− and 

NO3− ; PC3 are CTH, E.coli, Tur. Cond, pH and NO3− ; PC4 are NO2− , NH4+ , PO3−

4
 , Cl− and SO2−

4
 while PC5 is defined by pH, T, 

NO2− and NH4+ . The PC1 can be interpreted as metal cations (calcium, magnesium), hydroxides, bicarbonates, carbon-
ates, and turbid water component. The outcome for the PC1 is consistent with those of the study of [37] and [38]. The 
second and third components indicate microbial components. The fifth component indicates turbid and acidic water.

The parameters are then projected onto the different factorial planes. They are correctly projected onto the different 
planes when the end of the projected vector approaches the unit circle. An extract of the projections of the 16 variables 
onto the factorial planes (1,2) and (1,3) is given in Fig. 5. Three groups of variables can be distinguished. The first group 
is made up of the parameters DHT, TAC, HCO3− and SO2−

4
 . They are strongly correlated to the first axis. The second group 

is composed of the CTH, E.coli and E.faecalis parameters. They have a moderate correlation with the second axis. CTH 
and E.coli also have a moderate correlation with the third axis. While the third group is composed of the variables Cond, 
T, NO3− and Cl− . They have a moderate correlation with the second axis. This third group is opposed on the second axis 
to the second group. Taking into account Fig. 2, TAC, DHT, HCO3− and are strongly correlated. Using this natural property 
of water, the TAC measurement is used directly to estimate the DHT and HCO3− values of the water. This result is not 
consistent with those of [20, 28] and [34] who have shown that groundwater quality can be accurately predicted solely 
by measuring electrical conductivity. Moreover, the measurement of E.coli could be sufficient to predict water quality 
with regard to the parameters CTH and E.faecalis. The correlations obtained between the microbiological parameters 
studied are similar to those of [3] and [16]. Finally, the correlations obtained between the parameters (Cond, NO3− and 
Cl− ) and also with ( SO2−

4
 , Tur, DHT and TAC) are similar to the results of [23, 26] and [36].

Then, the proximity of the wells is studied in order to determine the wells that are similar in terms of physicochemical 
and microbiological parameters. This will make it possible to form homogeneous groups of wells. This takes into account 
the respective coordinates of the principal components (Table 4) and the CFA method, which is used to study wells and 
parameters simultaneously in order to highlight correspondences. The eigenvalue extraction method was chosen for this 
purpose. Using the proportion of variance explained (Table 5), the number of factors to be retained is two. Consequently, 
the analysis will be limited to this design. Figure 6 shows the position of the wells and the parameters studied. Table 6 
shows the partial correlations and partial contributions of the physicochemical and microbiological parameters in relation 
to the factors. The first factor, which accounts for 49.077 percent of the total variance, has a strong positive correlation 
with Cond (0.884), NO3− (0.806) and CL− (0.755); moderate correlation with pH (0.614), T (0.676), HCO3− (0.613), TAC (0.599) 
and weak correlation with DHT (0.483), SO2−

4
 (0.458), NH4+ (0.388), PO3−

4
 (0.314). Parameters Cond, HCO3− , TAC, CL− , NO3− and 

T contribute more to the inertia of this axis. The factor 1 represent physicochemical component presented in PCA study.  

Fig. 5  Projection of variables on the factorial planes (1, 2) and (1, 3) in PCA
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Factor 2 explains 30.7 percent of the total variance and is strongly correlated with E.faecalis (0.896), moderately cor-
related with CTH (0.575) and E.coli (0.506). The parameters E.faecalis, CTH and E.coli contribute more to the inertia of this 
axis. The factor 2 represent microbiological component presented in PCA study.

Wells P22, P23, P24, P25, P28, P42, P45, P48, P57, P58, P59, P61, P68, P70 and P71 (Table 4) are well projected 
onto the first factorial plane because their coordinates on axis 1 are large. These wells share a high frequency on 
the axis for the variables DHT, TAC, HCO3− and SO2−

4
 . Wells P03, P07, P08, P10, P11, P12, P13, P16, P17, P23, P28, P29, 

P30, P31, P33, P36, P38, P44, P45, P48, P50, P51, P57, P57, P58, P61, P62, P63, P65, P66, P67, P68, P69, and P70 are 
also well projected on this plan but it is on axis 2 that their coordinates are large. These wells take on large values 
on axis 2 for the variables CTH, E.coli and E.faecalis. The wells P10, P12, P13, P16, P26, P55, P56, P61, P63, P65, P66, 
P67; P38, P45, P55, 58, P61; and P25, P38, P61 are well projected onto PC3, PC4 and PC5 respectively. The data makes 
it possible to characterize them. These wells share relatively high concentrations of certain parameters among all 

Table 4  Coordinates of the wells projected onto the principal components

Wells PC1 PC2 PC3 PC4 PC5 Wells PC1 PC2 PC3 PC4 PC5

P01 −1.09 −0.32 −1.56 0.22 0.28 P37 −0.13 −0.52 −0.27 −0.77 −0.63
P02 −2.19 0.8 −1.97 0.53 0.59 P38 −0.11 −1.36 1.24 2.21 1.62
P03 −1.69 1.58 0.04 0.06 0.31 P39 −0.66 −0.66 −1.51 −0.16 0.05
P04 −2.47 0.63 −1.54 1.04 0.37 P40 1.24 −1.51 0.08 −0.97 −0.19
P05 −1.98 1.14 −1.68 1.37 0.55 P41 −1.85 −0.86 0.42 0.12 −0.01
P06 −1.59 1.16 −1.63 0.27 −0.07 P42 1.63 −1.46 0.08 −0.88 −0.01
P07 −0.76 3.72 0.46 −0.18 −0.07 P43 −1.79 −2.36 0.79 −0.27 0.23
P08 −0.28 −0.09 −0.24 −1.61 1.14 P44 −0.16 1.32 −1.31 0.55 0.22
P09 −2.67 0.64 −1.32 0.35 0.47 P45 5.67 0.87 0.39 3.34 −0.13
P10 −1.38 6.46 3.73 −0.01 0.56 P46 −2.28 −0.55 −1.28 0.16 0.24
P11 −2.03 2.88 0.03 0.09 0.53 P47 −1.18 0.62 −2.25 0.63 0.37
P12 −1.15 4.55 2.65 −0.25 0.03 P48 1.61 1.41 −1.14 1.64 −1.09
P13 −2.42 3.39 1.21 0.30 0.64 P49 −0.31 −1.02 −0.08 −0.59 −0.69
P14 −1.56 −0.30 −0.49 0.24 −0.49 P50 −1.33 0.09 0.19 0.35 −0.24
P15 −1.28 −0.97 −0.96 −0.53 −0.33 P51 −1.01 −0.18 −0.11 −0.54 −0.07
P16 −1.32 4.52 3.17 0.02 0.19 P52 0.61 −0.97 0.12 −1.16 0.38
P17 −1.31 −0.26 −0.02 0.08 −0.32 P53 −1.38 −0.98 −0.04 0.56 0.28
P18 −1.74 −0.07 −1.63 0.83 −0.32 P54 −1.27 −1.07 −1.15 1.38 −0.19
P19 −1.59 −0.69 −0.25 1.28 −0.11 P55 0.27 −3.19 1.40 2.39 −0.39
P20 −1.88 −0.80 −0.95 0.29 −0.61 P56 0.57 0.13 1.58 −0.57 −0.47
P21 −0.78 0.16 −0.88 0.31 −0.36 P57 1.52 0.71 −0.73 −0.11 −0.46
P22 1.57 −0.8 −1.17 −0.89 −0.65 P58 4.62 1.58 −2.86 1.95 −2.03
P23 1.52 0.49 0.96 −0.51 −1.22 P59 2.89 −0.23 −1.11 −0.40 −0.92
P24 3.35 0.24 −1.03 −1.57 −0.99 P60 −0.51 −2.34 −0.05 −0.70 −0.19
P25 1.64 0.37 −2.79 −3.07 6.24 P61 4.21 −3.84 3.42 3.21 4.33
P26 0.35 −4.39 2.84 −1.26 −0.76 P62 0.83 −1.28 1.02 −0.74 −0.48
P27 −0.67 −2.03 0.99 −1.43 −0.36 P63 −1.36 −1.22 1.35 −0.8 0.29
P28 3.68 0.66 −0.02 −0.70 0.15 P64 −1.63 −1.98 0.21 0.24 −0.8
P29 −0.07 0.08 −0.25 −1.32 −0.03 P65 0.09 0.43 1.47 −0.84 −0.62
P30 0.67 0.96 −0.75 −0.69 −0.69 P66 −0.18 −1.83 2.52 0.61 −0.74
P31 1.09 −0.68 0.93 −0.55 −0.61 P67 −0.18 −0.15 1.46 1.14 −0.33
P32 −0.69 −0.72 −0.28 −0.51 −0.73 P68 7.39 1.16 0.77 −2.15 −0.71
P33 −0.4 −0.33 0.24 −0.92 −0.52 P69 0.42 1.29 0.76 −0.84 −0.04
P34 −1.81 −2.07 0.24 −0.41 −0.27 P70 4.93 2.83 −0.35 0.56 0.34
P35 −1.81 −2.2 0.22 0.14 −0.07 P71 4.59 0.04 −1.91 0.57 0.39
P36 −1.11 −0.70 1.13 −0.88 −0.09 P72 0.07 0.11 −0.58 0.74 0.28
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the parameters studied. For example, P25 has the highest pH (11.515); P26 (594 �S∕cm ) and P61 (545.25 �S∕cm ) 
have the greatest conductivities.

3.3  One‑way ANOVA results

One-way analysis of variance is used to study the effect of wells on physicochemical and microbiological parameters. 
It shows whether the average for each parameter is the same in the different groups studied. Note that correlated 
parameters will have similar responses in the ANOVA. Based on PCA results, the result obtained with the Cond param-
eter will be similar to that obtained with NO3− and CL− . The same is true of the result obtained with the TAC parameter. 
It will be the same as that for DHT, SO2−

4
 and HCO3− . Finally, the result obtained with the parameter E.coli will also be 

Table 5  Eigenvalues and 
percentage of variances on 
each component principal 
in CFA

Dimensions Eigenvalue Percentage variance Cumulative 
percentage 
variance

Dim1 0.139 49.077 49.077
Dim2 0.087 30.717 79.794
Dim3 0.030 10.526 90.320
Dim4 0.012 4.385 94.705
Dim5 0.006 2.039 96.744
Dim6 0.004 1.427 98.171
Dim7 0.001 0.526 98.697
Dim8 0.001 0.441 99.138
Dim9 0.001 0.326 99.464
Dim10 0.001 0.242 99.706
Dim11 0.001 0.194 99.900
Dim12 0.0001 0.051 99.951
Dim13 7.204E-05 0.025 99.977
Dim14 4.815E-05 0.017 99.994
Dim15 1.768E-05 0.006 100

Table 6  Correlations and 
contributions between 
variables and factors

The moderate and strong correlations of the variables with the main axes are in bold. The same applies to 
some large-value contributions

Parameter Factor 1 Factor 2 ctr1 ctr2

Tur 0.112 0.125 0.785 1.403
Cond 0.884 0.004 53.478 0.369
pH 0.614 0.006 0.662 0.01
T 0.676 0.002 4.138 0.023
NO

3−
0.806 0.002 4.248 0.013

NO
2−

0.296 0.006 0.012 0.00
NH

4+
0.388 0.008 0.085 0.003

PO3−

4
0.314 0.002 0.032 0.00

CL− 0.755 5.098×10−5 4.443 0.00

TAC 0.599 0.021 7.551 0.415
DHT 0.483 0.067 2.422 0.538

SO2−

4
0.458 0.011 1.179 0.045

HCO
3−

0.613 0.006 9.32 0.154
CTH 0.216 0.575 4.076 17.360
E.coli 0.202 0.506 3.478 13.893
E.faecalis 0.089 0.896 4.089 65.771
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Fig. 6  Projection of the wells and parameters studied on the first factorial plane in CFA

Table 7  Wells classified by 
concentration levels of the 
conductivity parameter

Wells Cond Level Wells Cond Level Wells Cond Level

P26 594 a P64 173.075 P51 84.275 ghij
P61 545.25 ab P38 172.875 P54 67.475
P27 440.95 abc P22 170.7 P48 67.35
P68 430.75 P37 166.1 P16 67.025
P56 400.9 bcd P67 159.45 P14 64.55 hij
P31 313.75 cde P49 158.975 P58 62.6
P52 311.75 P65 158.1 P11 62.425
P24 295.75 cdef P33 156.775 P01 62.35
P55 295.25 P69 151.175 P46 58.7
P66 273.75 P41 143.45 efghij P19 57.55
P45 272.9 cdefg P32 138.575 P20 57.5
P40 271.575 P50 138 P07 52.65
P63 267.75 P25 128.575 P12 48.05 ij
P62 259.35 cdefgh P36 127.075 P02 44.625
P28 236.575 defghi P53 120.8 P09 42.0225
P71 224.825 P30 117.55 P18 40.7
P43 222.7 defghij P17 116.875 P06 40.15
P60 221.2 P72 112.05 P05 37.925
P35 193.65 P03 106.675 fghij P47 35.65
P59 180.025 P29 104.925 P15 34.55
P08 179.275 efghij P70 96.95 P10 32.5 j
P23 178.8 P21 94 ghij P39 31.6
P34 178.725 P44 90.4 P04 25.853
P42 177.325 P57 87.175 P13 24.725
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similar to that obtained with the parameter CTH and E.faecalis. Consequently, the parameters (Cond, E.coli and TAC) 
were selected for testing. Shapiro-Wilk’s normality test gave the following results. The p − value < 2.2 × 10−16 for 
the Cond, TAC and E.coli parameters. This confirm the non-normality nature of this parameters. The non-paramet-
ric Kruskal-Wallis test is therefore necessary for the study. Significant differences ( p − value = 0.0071 < 0.05 ) were 
observed in E.coli between wells. Significant difference is observed in TAC ( p − value = 1.504 × 10−7 < 0.05 ). Electri-
cal conductivity concentration shows significant differences between wells ( p < 2.2 × 10−16 ). This indicates that the 
wells have an effect on these parameters. It also means that the factors influencing the well parameters are different. 
Duncan’s multiple comparison test carried out on the Cond, TAC and E.coli parameters gave the results summarized in 
Table 7, Table 8 and Table 9 respectively. These results show significant differences between wells for the parameters 
studied. Table 7 shows sixteen significant levels for Cond. Nineteen significant levels for TAC are observed in Table 8. 
Eight significant levels for E.coli are observed in Table 9. With regard to the parameters studied, if three wells belong 
to different significant levels, namely a, ab and c for example, the well at level a is close to the well at level ab but 
different from the well at level b. Similarly, the well of level b is close to the well of level ab but different from the 
well of level a and so on. In other words, although they are in the same study area, the parameters of the well water 
evolve differently. The advantage of this classification is as follows. If we want to treat all the seventy-two wells for 
E.coli, these wells must be grouped into eight sub-groups. Each sub-group must be treated differently depending 
on the concentration level.  

3.4  Classification of wells water samples by SOM

The concept of the SOM algorithm is to conduct a nonlinear classification of complicated data sets by recognizing similar 
patterns. In this work, the input layer consists of vectors representing seventy-two (72) wells, each of which contains 
sixteen (16) components representing the 16 physicochemical and microbiological parameters of the well water studied. 
The output layer is composed of 16 neurons (4 rows× 4 columns). This size was chosen for the output map after conver-
gence of the algorithm. Figure 7 shows the role of parameters in defining the different areas of the topological map and 

Table 8  Wells classified by 
concentration levels of the 
total alkalinity contents 
parameter

Wells TAC Levels Wells TAC Levels Wells TAC Levels

P68 216.25 a P29 73.75 P54 51.25
P45 207.5 ab P52 73.75 P60 51.25
P71 178.75 abc P33 72.5 P17 50
P58 176.25 P37 72.5 P09 48.75
P24 148.75 bcd P51 72.5 P13 48.75
P70 147.5 bcde P07 70 fghijkl P27 47.5
P28 133.75 cdef P72 70 P53 47.5
P31 126.25 cdefg P21 68.75 P03 46.25 hijkl
P59 109.25 defgh P12 67.5 P26 46.25
P22 107.5 defghi P56 67.5 P04 45
P48 105 defghij P55 66.25 P11 45
P42 101.25 P10 65 P19 45
P40 100 P65 65 P20 43.75
P23 98.75 P32 63.75 P05 42.5
P30 98.75 P15 57.5 P36 42.5
P39 98.75 defghijk P50 57.5 ghijkl P66 38.75
P61 92.5 P06 56.25 P38 37.5
P57 85 P67 55 P41 37.5
P62 83.75 P16 53,75 P64 36.25
P44 80 P18 53.75 P34 35 ijkl
P49 78.75 efghijkl P02 51.5 P35 32.5 jkl
P47 75 P25 51.251 P63 31.25 kl
P69 75 P08 51.25 P43 28.75
P01 73.75 P14 51.25 P46 26.25 l
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Table 10 shows the wells of each node. With the exception of the south-western part, almost the entire map is character-
ized by parameters in green and yellow (Tur, Cond, pH, T, NO3− , NO2− , NH4+ , PO

3−

4
 , Cl− , TAC and DHT). The south-western 

part is characterized by the variables in pink (E.coli, CTH and E.faecalis). A graph (Fig. 8) of each variable is produced to 

Table 9  Wells classified by 
concentration levels of the 
escherichia coli parameter

Wells E.coli Levels Wells E.coli Levels Wells E.coli Levels

P10 5650 a P33 957.25 P04 406.25
P16 4242.75 ab P48 950.75 P59 385
P12 4125 abc P17 895 P09 352.5
P13 3867.5 abcd P72 880 P22 329
P65 2329.5 P24 867.5 P71 324.5
P07 2205 P31 839 P51 293.25
P69 2125 P03 785 P40 252.5
P68 2065 P49 751.5 P39 210
P45 1817.5 P37 717.5 P02 200.75 de
P67 1750.25 P19 692.5 P20 188
P23 1710 P11 690.5 P58 180
P70 1702.5 P41 660 bcde P15 155
P56 1666 P06 657.5 P35 146.25
P28 1470 bcde P14 627 P34 130
P66 1286.5 P52 612.75 P46 126.75
P57 1175 P27 572.5 P01 117.75
P62 1148 P44 567.5 P26 112.5
P36 1101.25 P05 565 P18 97.75
P61 1096.5 P21 532.75 P43 63.75
P29 1095 P38 532.5 P47 51.5 e
P50 1057.5 P32 532.25 P64 45.75
P08 1057.5 P25 527.5 P55 12
P30 1003.5 P53 488.5 P60 11
P63 1000.25 P42 435 cde P54 2

Fig. 7  Graph of the nature 
of the different zones on 
the map in relation to the 
parameters

Table 10  Distribution of wells in each node

P45 P58 P68 P70 P71 P24 P25P28 P38 P61 P26 P55 P66
P48 P59 P22 P31 P40 P42 P52 P57 P62 P27 P36 P49 P63 P34 P35 P41 P43 P60 P64
P07 P23 P30 P56 P65 P69 P08 P29 P32 P33 P37 P51 P14 P15 P17 P19 P20 P53 P54 P67
P10 P12 P13 P16 P03 P11 P01 P18 P21 P39 P46 P50 P72 P02 P04 P05 P06 P09 P44 P47
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show the correlations between them and this graph can help to summarize the effective parameters of the wells in each 
node. The SOM component planes of the data set allow distinguishing two types of colors; dark red cells represent high 
values, while blue cells represent low values for each parameter [27]. The similar colors between the variables correspond 
to a positive correlation. This can be illustrated between the variables HCO3− , DHT, SO2−

4
 and TAC. There is also a positive 

correlation between these parameters and Tur. Cond and NO3− are positively correlated. There is also a positive correla-
tion between E.coli, E.faecalis and CTH variables. These results confirm those obtained previously. On the other hand, 
T, PO3−

4
 , Cl− , NO2− , NH4+ and pH vary independently of each other. The same idea can be expressed by using a dispersion 

indicator such as variance. The variance weighted by the number of nodes is calculated. It then becomes possible to rank 
their role. The important variables (because they induce the strongest contrasts) appear in first position (Table 11). The 
parameters PO3−

4
 and NH4+ are the least influential. This means that the conditional averages tend to be homogeneous 

across the map. These results confirm what we have seen in the various graphs. A detailed summary of the parameters 
for each well is presented in (Fig. 8). The dark red nodes represent high values of each parameter.

Wells P01, P03, P05, P06, P07, P08, P10, P11, P12, P13, P15, P16, P17, P18, P21, P22, P23, P24, P25, P28, P29, P30, 
P37, P42, P44, P45, P47, P48, P52, P56, P57, P58, P59, P62, P65, P67, P68, P69, P70, P71 and P72 are mainly character-
ized by high Tur concentrations (13.9 NTU, 162.43 NTU). Wells P08, P23, P24, P26, P27, P28, P31, PP34, P35, P38, P40, 
P42, P43, P45, P52, P55, P56, P59, P60, P61, P62, P63, P64, P66, P68 and P71 are mainly characterized by high Cond 
concentrations (172.875 �S/cm, 594 �S/cm). Wells P01, P03, P05, P08, P22, P23, P24, P25, P28, P29, P30, P39, P42, 
P44, P45, P46, P59, P61, P68, P69, P70, P71 and P72 are mainly characterized by high pH (5.24, 11.51). Wells P15, P22, 
P26, P27, P35, P36, P37, P39, P49, P58, P60, P62, P63, P64, P65, P66, P68, P69 and P72 are mainly characterized by 
high T (28.425 ◦ C, 29.08 ◦C). Wells P23, P26, P42, P43, P55 and P66 are mainly characterized by high NO3− concentra-
tions (27.018 mg/l, 44.16 mg/l). Wells P25, P26, P28, P38, P42, P45, P55, P58, P59, P61, P68, P70 and P71 are mainly 
characterized by high NO2− concentrations (0.11 mg/l, 0.54 mg/l). Wells P38, P61 and P72 are mainly characterized 
by high NH4+ concentrations (1.1225 mg/l, 3.82 mg/l). Wells P01, P02, P03, P04, P05, P06, P07, P08, P10, P11, P12, P13, 
P14, P15, P16, P17, P18, P19, P20, P21, P22, P23, P24, P26, P27, P28, P29, P30, P31, P32, P35, P36, P37, P38, P39, P40, 
P41, P42, P43, P44, P45, P47, P48, P49, P50, P53, P54, P55, P56, P57, P58, P59, P60, P61, P62, P63, P64, P65, P66, P67, 
P68, P69, P70, P71 and P72 are mainly characterized by high PO3−

4
 concentrations (0.0375 mg/l, 0.75 mg/l). Wells P27, 

P29, P34, P40, P42, P49, P61, P63, P66 and P68 are mainly characterized by high Cl− concentrations (27.975 mg/l, 
44.7 mg/l). Wells P24, P45, P58, P68, P70 and P71 are mainly characterized by high TAC (147.5 mg/l, 216.25 mg/l). 
Wells P45, P58 and P68 are mainly characterized by high DHT concentrations (86.25 mg/l, 106.25 mg/l). Wells P24, 

Fig. 8  Graph of the nature of the different zones on the map in relation to each parameter

Table 11  Relevance of 
parameters E.coli HCO

3−
TAC CTH T DHT NO

3− SO2−

4

0.8988 0.8971 0.8886 0.8653 0.8536 0.8397 0.8281 0.8035
Cond E.faecalis NO

2−
CL− Tur pH PO3−

4
NH

4+

0.7807 0.7677 0.7325 0.7299 0.7242 0.6310 0.5123 0.4736
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P25, P28, P51, P59, P68 and P71 are mainly characterized by high SO2−

4
 concentrations (21.25 mg/l, 40.5 mg/l). Wells 

P12, P23, P24, P28, P30, P31, PP39, P40, P42, P44, P45, P48, P49, P56, P57, P58, P59, P62, P68, P70, P71 and P72 are 
mainly characterized by high HCO3− concentrations (93.75 mg/l, 216.25 mg/l). Wells P10, P12, P13 and P16 are mainly 
characterized by high CTH concentrations (4367.5 UFC/250 ml, 7400 UFC/250 ml). Wells P10, P12, P13 and P16 are 
mainly characterized by high E.coli concentrations (3868 UFC/250 ml, 5650 UFC/250 ml). Wells P01, P02, P03, P04, 
P05, P06, P07, P08, P09, P10, P11, P12, P13, P14, P15, P16, P17, P19, P21, P22, P23, P24, P25, P27, P28, P29, P30, P31, 
P32, P33, P34, P36, P37, P38, P39, P40, P41, P42, P43, P44, P45, P46, P47, P48, P49, P50, P51, P52, P53, P56, P57, P58, 
P59, P62, P63, P64, P65, P66, P67, P68, P69, P70, P71 and P72 are mainly characterized by high E.faecalis concentra-
tions (84.5 UFC/250 ml, 3913 UFC/250 ml).  

Once the Kohonen map has been obtained, the HCA is used to group the seventy-two wells based on the similarity 
of the responses to physicochemical and microbiological parameters. Ward’s method and the complete method give 
better results than other existing methods. Ward’s method (Fig. 9) gives three clusters as in [8]. The Complete method 

Fig. 9  Dendrogram of wells from M’pody village obtained using the Ward method

Fig. 10  Dendrogram of wells from M’pody village obtained using the Complete method
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(Fig. 10) gives five clusters. Cluster1 of the Complete method is formed by well 61. It is the only well which has a good 
projection on all the factorial planes of the PCA (Table 4). Cluster 2 of the complete method is cluster 2 of Ward’s method. 
Cluster 3 and cluster 4 of the complete method form Ward’s cluster 1. Finally, cluster 5 corresponds to Ward’s cluster 3. 
The results obtained using Ward’s method will therefore be used for the analysis. The clusters obtained are very close to 
those obtained by PCA. 

Moreover, cluster 1 contains seven wells (P24, P28, P45, P58, P68, P70 and P71) and represents 09.72 percent of the 
total number of the wells. These wells have the largest coordinates on PC1. It is mainly characterized by high concentra-
tions of microbiological elements (CTH [362 UFC/250 ml, 2365 UFC/250 ml]; E.coli [180 UFC/250 ml, 2065 UFC/250 ml]; 
E.faecalis [716 UFC/250 ml, 3542.5 UFC/250 ml]). These waters are very turbid [13.54 NTU, 162.43 NTU]; acidic [5.09, 6.48], 
with conductivity [62.6 �S/cm, 430.75 �S/cm] and a temperature [27.875 ◦ C, 28.525 ◦ C] higher than the WHO standard. 
They verify the WHO standards with regard to the parameters: NO3− , NO2− , NH4+ except P68 (1.02 mg/l), PO3−

4
 except P45 

(0.7525 mg/l), Cl− , TAC, DHT, SO2−

4
 and HCO3−.

Cluster 2 contains four wells (P10, P12, P13, P16) and represents 05.56 percent of the total number of the wells. These 
wells have the largest coordinates on PC2. It is mainly characterized by very high concentrations of microbiological 
elements (CTH [4367.5 UFC/250 ml, 7400 UFC/250 ml]; E.coli [3867.5 UFC/250 ml, 5650 UFC/250 ml]; E.faecalis [84.5 
UFC/250 ml, 3913 UFC/250 ml]). These waters are turbid [15.7 NTU, 20.7475 NTU] and acidic [4.625, 5.19], with very low 
conductivity [24.725 �S/cm, 67.025 �S/cm] and a temperature [26.1 ◦ C, 26.3 ◦ C] higher than the WHO standard. They 
verify the WHO standards with regard to the parameters NO3− , NO2− , NH4+ , PO

3−

4
 , Cl− , TAC, DHT, SO2−

4
 and HCO3− . This cluster 

represent the microbiological component (F2) previously described in PCA/CFA study.
Cluster 3 includes the largest number of wells (sixty-one) and represents 84.72 percent of the total wells. It is charac-

terized by concentrations of microbiological elements with high variability (CTH [4.25 UFC/250 ml, 2730 UFC/250 ml]; 
E.coli [2 UFC/250 ml, 2329.5 UFC/250 ml]; E.faecalis [3.5 UFC/250 ml, 3781.25 UFC/250 ml]). These waters are turbid [2.705 
NTU, 83.775 NTU], more acidic [4.22, 6.065], with conductivity [25.8525 �S/cm, 440.95 �S/cm] and a temperature [25.875 
◦ C, 28.675 ◦ C] higher than WHO standard. They verify the WHO standards with regard to the parameters: NO3− , NO2− , 
PO3−

4
 except P55 (0.5425 mg/l), Cl− , TAC, DHT, SO2−

4
 and HCO3− . With regard to ammonium, 18.03 percent of wells do not 

comply with WHO standards. These are the wells, P31 (0.76 mmg/l), P35 (0.565 mg/l), P38 (1.1225 mg/l), P40 (0.675 mg/l), 
P52 (0.542 mg/l), P55 (0.5525 mg/l), P57 (0.6375 mg/l), P61 (3.8175 mg/l), P62 (0.64 mg/l), P63 (0.52 mg/l) and P72 (1.215 
mg/l). Cluster 1 and cluster 2 represent physicochemical component (F1) presented in PCA/CFA study.

4  Conclusion

A multivariate statistical approach was applied to a database comprising sixteen (16) physicochemical and microbio-
logical parameters carried out on two hundred and eighty-eight (288) well water samples from the village M’pody. This 
technique is very promising, because it makes it possible to understand water quality while highlighting the different 
correlations that exist between the parameters studied. The study showed that turbidity, conductivity, hydrogen potential 
and temperature did not meet WHO standards. In addition, the water from all the wells is polluted with faecal bacteria 
(E.coli, E.faecalis and CTH). It is certainly this faecal pollution that is at the root of this diarrhoea epidemic. It indicates that 
poor well maintenance is the main factor controlling microbiological pollution of well water in the study area. The logical 
explanations for this situation could come, on the one hand, from the infiltration of septic tanks located near the wells 
and, on the other hand, from the run-off of waste water carrying human and animal faecal matter. To prevent epidem-
ics, populations who use well water or surface water should use approved technicians for the construction of latrines. 
Erect perimeters to protect water points. Learn water treatment techniques. For example, filtering water through layers 
of granular materials or on granular activated carbon. However, all the physicochemical parameters NO3− , NO2− , NH4+ , 
PO3−

4
 , Cl− , TAC, DHT, SO2−

4
 and HCO3− comply with WHO standards. The ANOVA method showed that there were significant 

differences between the wells for the parameters TAC, Cond and E.coli, due to the specificity and characteristics of each 
well. In addition, the ANOVA confirmed that human activities were the main factors influencing the physicochemical and 
microbiological parameters of the wells studied. PCA, CFA and SOM methods are the multivariate analysis techniques 
used to highlight certain specificities in the structure of the data. Five principal components identified by PCA accounted 
for 75.079 percent of the total variance. The PCA, CFA and HCA identified the structure of the wells and deduced the 
main factors controlling the physicochemical and microbiological parameters of the water in these wells. With regard 
to the CFA, two main factors were identified. The first factor was identified as the physicochemical component with 
49.077 percent contribution and the second with 30.717 percent contribution was related to the microbial load. The 
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physicochemical component is mainly formed by the parameters Cond, HCO3− , TAC, CL− , NO3− , pH, T and the microbial 
component is linked to E.coli, E.faecalis and CTH. The results of the PCA/FCA are broadly similar to those obtained by 
applying the Ward and complete methods. However, there are some additional differences, due to the specificity of each 
method. This study also showed that measuring DHT is therefore sufficient to predict water quality in terms of TAC, HCO3− , 
SO2−

4
 . Similarly, the measurement of E.coli could be sufficient to predict water quality with regard to the parameters CTH 

and E.faecalis. What’s more, major difficulties are often encountered when using traditional PCA/CFA methods. An indi-
vidual who is poorly represented but whose contribution is significant is eliminated from the analysis (extra individual). 
On the other hand, there are individuals whose contribution is too large and whose reliability is called into question. In 
this case, a new study is carried out. To overcome these difficulties, we plan to replace traditional PCA/CFA distances with 
robust distances such as the Hellinger distance. Subsequently, in order to implement effective planning and support 
methods for sustainable well water management, multiple linear regression and multi-layer perceptron models can be 
used to predict the dependent parameters. In practical terms, E.coli can be predicted from CTH and E.faecalis; TAC from 
DHT, SO2−

4
 , and HCO3− ; Cond from T, NO3− and Cl−.
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