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Abstract
Despite the regulations and controls implemented worldwide by governments and institutions to ensure the availabil-
ity and quality of water resources, many water sources remain susceptible to contamination. This contamination poses 
significant risks to human health and can lead to substantial economic losses. One of the challenges in this context 
is the presence of missing or incomplete data, which can arise from various factors such as the methodology used or 
the expertise of personnel involved in sample collection and analysis. The existence of such data gaps hampers the 
accurate analysis that can be conducted. To address this issue and estimate a water quality index from the available 
samples, it is crucial to handle missing information appropriately to avoid biased calculations. This study focuses on the 
application of machine learning methods for imputing missing data in water samples. Furthermore, it quantifies the 
performance of different models based on the distribution of the obtained data. By applying 10 distinct methods to a 
sample of water quality data, the most effective approaches, namely Bayesian Ridge, Gradient Boosting, Ridge, Support 
Vector Machine, and Theil-Sen regressors, were identified. The selection of these models was based on the evaluation 
of two estimation error metrics: average percent bias (PBIAS) and Kling-Gupta Efficiency statistic (KGEss). The respective 
metric values for the aforementioned methods are as follows: ⟨PBIAS⟩0.5 = 14.665, 19.555, 14.300, 15.380, 15.920 and 
⟨KGEss⟩0.5 = 0.670, 0.585, 0.655, 0.620, 0.595 . The results obtained from these models have been utilized to establish 
unbiased relationships among physical, chemical, and biological parameters based on the information retrieved through 
the applied imputation methods.

Keywords Water quality · Imputation methods · Machine learning · Data mining · Process improvement

1 Introduction

Water, as one of the most vital mineral resources crucial for human existence, plays a significant role in our develop-
ment, survival, and commercial activities. Despite its importance, water resources are often underutilized and not fully 
optimized. Considering the abundance of water on the planet (refer to Table 1), approximately 95–97% of it exists in 
the form of saltwater in seas and oceans [1–3]. Consequently, this salty water cannot be directly consumed, utilized for 
agricultural purposes, or employed in most industrial processes. The remaining 3–5% of water is fresh, but a significant 
portion is locked in ice at the polar regions and glaciers.
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Moreover, approximately 67–69% of the water derived from glaciers is fresh, while around 30% originates from aqui-
fers and other sources. Consequently, only a minuscule proportion of 0.003% of the total water mass on Earth is readily 
accessible and suitable for human use.

Each country bears the responsibility for managing sanitation and purification processes to ensure the highest pos-
sible quality of water, particularly for human consumption. In light of these circumstances, governments and institutions 
dedicated to the conservation and monitoring of water quality must establish methodologies to ensure the correct 
application of minimum sanitary standards, thereby guaranteeing its quality.

To achieve this goal, these institutions commonly collect water samples from various sources, such as outfalls, rivers, 
lakes, dams, and other ecosystems. Subsequently, these samples are transported to laboratories where they undergo 
thorough analysis and are subjected to diverse measurement and qualification processes.

Water quality is influenced both naturally by the characteristics of the river basin and artificially by human activities 
within that basin [4–7]. The concept of quality is closely related to the specific uses for which the water is intended. Thus, 
distinctions are made between the quality required for domestic use, which differs from the quality necessary for human 
consumption, irrigation, or ecosystem support. Furthermore, water quality encompasses the conditions that water must 
meet to maintain a balanced ecosystem. Water pollution occurs when foreign substances, often resulting from human 
activities, are introduced. Pollutants can take various forms, including chemicals, organic matter, soil particles, and plastics 
[8, 9]. Additionally, any discharge occurring in secondary basins is likely to find its way into rivers, eventually reaching 
dams and potentially altering the water content used for human consumption.

Real-time water quality monitoring data are invaluable for conducting innovative studies that address dynamic tem-
poral variations, such as water quality prediction, assessment, and environmental management [10].

In the evaluation of water quality, particularly in monitoring and environmental management systems, a common 
challenge, especially in real-time and automated processes, is the prevalent issue of missing data [11–13]. This lack of 
data often arises from equipment failures, network coverage limitations, or data corruption, constituting a frequently 
encountered problem in studies and systems where not all data or parameters are reported on time, measurement 
instrumentation and equipment may be unavailable, or data tabulation issues may arise [14]. The loss of data introduces 
randomization dilution, unknown biases, and compromises the statistical power of studies and analyses, posing a seri-
ous challenge to the reliability of results. Missing data may pertain to the effectiveness of treatments, adverse effects, or 
prognosis. However, research papers or reports often do not explicitly address or specify the extent of missing data in 
their studies, and many computer programs assume that data are complete, further exacerbating the problem.

The issue of missing data is pervasive across decision-making processes and information management in general. 
Analyzing data in the absence of relevant information can lead to erroneous conclusions or, at best, conclusions unsup-
ported by robust indicators [15]. Moreover, many advanced analysis techniques require complete data, as the algorithms 
rely on real values (or strings) for all instances and variables in the dataset [16]. Therefore, it is crucial to develop effective 
approaches for handling missing data.

Missing data refers to the absence of values that would be meaningful or useful for result analysis. There are 
various types of missing data, and multiple reasons can account for their occurrence, significantly impacting how 

Table 1  Distribution of water 
resource across of globe

The table appear in [1]. Water on Earth is primarily distributed among three categories based on its salin-
ity. Approximately 97.5% of the water on the planet is saline, predominantly found in oceans and seas. The 
remaining 2.5% is freshwater, with about 68.7% trapped in the form of ice in glaciers and polar ice caps. 
The remaining 0.3% constitutes the freshwater available in rivers, lakes, and underground aquifers

Resource Volume (km3
× 10−6) Total water (%) Fresh water (%)

Atmospheric water 0,0129 0,001 0,01
Glaciers 24,064 1,72 68,7
Ground Ice 0,3 0,021 0,86
Rivers 0,00212 0,0002 0,006
Lakes 0,1764 0,013 0,26
Swamps 0,01147 0,0008 0,03
Soil Moisture 0,0165 0,0012 0,05
Aquifers 10,53 0,75 30,1
Lithosphere 23,4 1,68 –
Oceans 1338 95,81 –
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missing data should be addressed during result analysis. One key consideration is determining whether the missing-
ness is random, affecting all individuals equally, or whether it is due to specific reasons that could introduce biases, 
potentially invalidating the results.

In the existing literature, various approaches have been proposed to address the issue of missing data in water 
quality studies. For instance, artificial neural networks have been utilized, as demonstrated in the work of Tabari et al. 
[17]. The study employed a combination of artificial neural networks, specifically, MultiLayer Perceptron (MLP) [18, 
19] and Radial Basis Function (RBF) [20, 21] algorithms to reconstruct missing river water quality data. The research 
found that the MLP and RBF algorithms were effective in estimating important parameters, such as hardness, based 
on other water quality parameters.

While the use of MLP and RBF networks in water quality studies offers advantages, it comes with certain disadvan-
tages. RBF networks require a larger number of neurons for training, especially with a high number of training vectors, 
leading to increased computational effort and memory storage requirements. Additionally, selecting centers for RBF 
networks can be challenging, unlike MLP networks where this process does not occur. The complex task of selecting 
centers in RBF networks can impact the network’s performance and training process. Training an MLP network can 
be time-consuming when the output dimension is high, whereas RBF networks are less influenced by the output 
dimension. However, RBF networks lack extrapolation capability, returning a result of 0 far away from the centers 
of the RBF layer, limiting their use for extrapolation. In the context of missing components, MLP networks are less 
affected if a weight or neuron is missing, while RBF networks can experience a strong local error for a lesion and a 
weak but global error, impacting the network’s output. These limitations may restrict the flexibility and adaptability 
of RBF or MLP networks in certain applications, particularly in addressing missing data in water quality. While these 
techniques offer valuable capabilities, their complexities and limitations should be considered to ensure their effec-
tive and appropriate use in addressing missing data and enhancing decision-making in water quality management.

Another approach involves the use of Hot-Deck Methods, as showcased in the study by Srebotnjak et al. [22]. This 
research highlights how these imputation methods, when applied to freshwater quality parameters, can enhance 
decision-making by incorporating geographic coverage information. This suggests that while the hot-deck imputa-
tion method offers a valuable approach to address missing data, it is essential to recognize and address the limitations 
associated with the availability and quality of geographical data to ensure the reliability and accuracy of the imputed 
values and the resulting water quality index. Without robust geographical data, the effectiveness and accuracy of 
the hot-deck imputation method may be compromised, leading to potential biases in the imputed values and the 
overall water quality index. Therefore, the availability and quality of geographical data pose a significant challenge 
in the successful application of the hot-deck imputation method for water quality studies.

Additionally, machine learning techniques have been employed in various imputation methods for predicting 
water quality parameters with a high percentage of missing values, as shown by Rodriguez et al. [23]. However, the 
study faced certain disadvantages and difficulties, particularly related to the high percentage of missing data and the 
high temporal and spatial variability in the water-quality datasets. The substantial proportion of missing data posed 
a significant challenge, as traditional imputation methods may not be well-suited to handle such a large volume of 
missing values. Additionally, the high temporal and spatial variability in the datasets may have introduced complexi-
ties in the imputation process, as the imputed values needed to accurately capture the dynamic and heterogeneous 
nature of water quality parameters across different time periods and geographical locations. Moreover, effectively 
due to the large amount of missing data in the dataset used in their study, the authors needed to use supporting 
variables to proceed with the process of recovering missing data. In other words, recovery of missing values is justi-
fied, but it is necessary to utilize many other features and variables that are complete, indicating that much missing 
data requires much more additional information.

However, it is important to note that imputation methods, including those developed using machine learning 
tools, should not be regarded as the ultimate goal of the study. Instead, their purpose is to provide missing informa-
tion to enhance other processes, such as improving the predictability of data-driven recommender systems. Many 
of the previous studies referenced in the preceding paragraphs primarily focus on evaluating such methods as a 
standalone objective. In our case, not only compare the performance of missing data imputation methods but also 
utilize this information to assess the percentage improvement in modeling and prediction processes before and after 
applying the imputation method, specifically for predicting the standard water quality index.

The forthcoming study explore techniques for recovering and inferring missing data in real datasets obtained 
from water quality risk systems used to determine drinking water quality indices and other everyday applications. 
Leveraging original and official information provided by agencies involved in monitoring aqueduct systems that 
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supply drinking water to the population in Colombia, evaluating the effectiveness of applying imputation methods 
to address information gaps in generating models for determining drinking water quality.

The methods outlined above pose a significant challenge due to their intricate implementation requirements. 
Difficulties arise from the extensive computing time needed for computational experiments and the necessity for 
profound knowledge of computer language and programming. However, here it’s present a different perspective 
in this argument. This study, adopt a much simpler approach, recognizing that operators and data analysts in Latin 
American cities, particularly in Colombia [24], often lack the technical expertise for the advanced analyses proposed 
in previous studies. Moreover, computational resources and the requisite expertise for developing machine learning 
models are frequently unavailable, especially in rural areas distant from major urban centers. This situation is further 
complicated by the time constraints faced by our analysts, who need prompt insights into the specific conditions 
of locations where water quality data is under scrutiny.

In contrast, our study employs techniques that are easily implementable on various information management and 
analysis platforms. These techniques do not demand advanced technical proficiency for implementation. Platforms 
such as Amazon Web Services, Google Cloud, and Microsoft offer highly configurable and user-friendly interfaces 
with pre-trained machine learning models. These platforms enable users, including water quality analysis centers, 
to access and utilize these resources with minimal training or induction.

Specifically, to address the previous challenge, the paper utilize data collected by SIVICAP (Sistema de Información 
de la Vigilancia de la Calidad del Agua para Consumo Humano) to determine the quality conditions of water for 
human consumption in Colombia. From the data collected over a wide time interval, it’s recognize the percentage of 
missing data in the dataset and demonstrate how using machine learning tools can improve conditions for a more 
efficient estimation of the water quality index locally. This enhancement benefits decision-makers by providing a 
more solid basis for decision-making.

In contrast to certain prior investigations, our study distinguishes itself through its noteworthy contribution, 
involving the assessment of the efficacy of models employed for data imputation. This contribution extends to 
demonstrating how these models enhance predictions and elucidate established connections between physico-
chemical and biological parameters. By establishing these relationships, our study aids in making well-informed 
decisions rooted in improved models.

The paper is divided into the following parts. Sections 2.1 and 2.2 present the data used and the collection 
sources, as well as the data mining and preprocess engineering. Sections 2.3 and 2.5 outline the methods used to 
recover the missing data in the dataset and the performance metric to evaluate the strategy. In Sect. 3, the results 
of the implementations are discussed, and finally, in Sect. 4, the conclusions and final comments are presented.

2  Data and methods

To conduct this study, a methodology is employed based on extracting data from the monitoring systems and ana-
lyzing water samples from reservoirs and dams intended for human consumption by the Colombian government. 
Given the substantial amount of missing data in the available variables of the physico–chemical–biological tests 
of the samples, established a methodology to recover these values, enabling more robust analysis and improving 
prognosis and decision models.

The process begins with a data mining and data engineering phase, where preprocess, arrange, clean, and organ-
ize the information. Unimportant variables are discarded, and the most suitable set of physicochemical–biological 
variables is established. Subsequently, selecting several machine learning algorithms to model the recovery of 
variables from the data. Performance metrics and model evaluations are employed. Finally, the models are used 
to create an imputed dataset with information on the missing variables, which is then utilized to establish water 
quality prediction models for human consumption. The entire process is schematically represented in Fig. 1.

2.1  Water quality index

According to Ball and Church [25], water quality indices can be classified into 10 categories grouped into 4 main groups. 
These categories are organized based on their specific uses. For a comprehensive list of these groups and categories, 
please refer to the original publication by [25].
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In the context of human health risk assessment, one of the most commonly employed types of indices is the drinking 
water quality index. Each country, through its respective evaluation systems and designated institutes responsible for 
water resource monitoring, establishes its own definition and utilization of indices for assessing drinking water quality.

Most water quality indexes (WQIs) follow a similar calculation structure. They involve standardizing the parameters 
incorporated within the index based on their concentrations and subsequently assigning weights to these parameters 
based on their importance in determining the overall perception of water quality. The calculation of WQIs involves inte-
grating the weighted parameters using various mathematical functions [26].

There are two primary approaches to calculating WQIs. The first approach utilizes a weighted product method, where 
the weights assigned to the scores of each parameter are multiplied together, considering their respective importance. 
The second approach employs a weighted sum method, where each score is multiplied by its corresponding weight, 
and the products are then summed to obtain the index value. In the case of equal weights assigned to each score, the 
weighted sum approach simplifies the calculation.

The index value is called the unweighted arithmetic value, if the sum of the weights is not equal, it is known as the 
arithmetic value of water quality [25]. Some examples for WQIs calculation equations, associated by groups according 
to the type of equation used are: (a) Geometric weighted indices, NFS-WQI (EU) [27, 28], Dinius (EU) [29], CETESB (Brazil) 
[30] in which WQIm =

∏n

i=1
I
Wi

i
 , where Wi is the weight or percentage assigned to the i-th parameter, Ii is the subscript of 

the i-th parameter; (b) Arithmetic weighted indices as for example used for UWQI (Europe) [31, 32] which 
UWQIm =

∑n

i=1
WiIi where Wi is the weight or percentage assigned to the i-th parameter and Ii is the subscript of the i-th 

parameter; (c) Mixed weighted indices like CCME-WQI (Canada) [33–35], DWQI (EU), CCMEm = 100 − 0, 5773
√

F2
1
+ F2

2
+ F2

3
 , 

the index incorporates three elements: Scope ( F1 ): percentage of parameters exceeding the standard, Frequency ( F2 ): 
percentage of individual tests of each parameter exceeding the standard, Amplitude ( F3 ): magnitude by which each 
parameter that does not meet the standard exceeds the standard; and (d) Custom truncated indices used for example 
in ISQA (Spain) [36], ISQAm =T(COD+DO+SS+Cond) where T is Temperature, COD: Chemical Oxygen Demand, DO: Dis-
solved Oxygen, Cond: Conductivity, SS: Suspended Solids.

In Colombia, the National Institute of Health operates the Information System for Monitoring the Quality of Water for 
Human Consumption (SIVICAP, Sistema de Información de la Vigilancia de la Calidad del Agua para Consumo Humano), 
which serves as the health authority responsible for reporting water quality monitoring data. The primary indicator or 
index used to assess water quality for human consumption is the “Indice de Riesgo de Calidad del Agua” (IRCA), which 
translates to the Water Quality Risk Index in English.

The measurement methodology for IRCA is similar to other indices such as the UWQI (Water Quality Index) with some 
variations. The purpose of IRCA is to assess the risk associated with the non-compliance of water with physical, chemical, 
and microbiological standards established for human consumption. The IRCA is categorized into different ranges, each 
corresponding to a specific level of risk: 0–5% (No risk-Water suitable for human consumption), 5.1–14% (Low level of risk), 
14.1–35% (Medium level of risk), 35.1–70% (High level of risk), and 70.1–100% (Unfeasible from a sanitary perspective).

The calculation of IRCA involves a weighted average, where risk scores are assigned to each characteristic (physical, 
chemical, and microbiological) based on their impact on water quality and health risks. The numerator represents the 
sum of scores assigned to characteristics that do not meet the quality parameters, while the denominator represents 
the total sum of scores for all analyzed characteristics [24].

Fig. 1  Methodology used in this study. This study employs a methodology involving data extraction from monitoring systems and analysis 
of water samples from Colombian government-designated reservoirs and dams for human consumption. Due to significant missing data, a 
methodology is established, involving data mining, engineering, and machine learning, to recover values in physico–chemical–biological 
tests, enhancing analysis and decision models for water quality prediction
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By utilizing this weighted average calculation, the IRCA provides an assessment of the overall risk level associated 
with water quality, helping to prevent the occurrence of diseases related to water consumption that does not comply 
with established standards.

where NAC sum running over Non-Acceptable Characteristics and TC sum running over the complete Total of 
Characteristics.

The risk factors ( RISKscore ) are characterized by the norm standard and are used to code each of the measurements 
in the chemical and biological elements in the water and used to determine water quality according to acceptability 
conditions in accordance with national and international standardized regulations.

2.2  Data

Data used in this study come from the Water Quality Risk Index for Human Consumption (https:// www. datos. gov. co/ api/ 
odata/ v4/ wppj- n4q2) for 27 municipalities in the Department of Caldas Colombia (Lat = 5 ◦06′ N, Lon = 75◦33′ O). Caldas 
is one of the thirty-two departments that, together with Bogotá, the Capital District, form the Republic of Colombia. Its 
capital is Manizales. It is located in the center of the country, in the Andean region, bordering Antioquia to the north, 
Boyacá to the northeast, Cundinamarca to the east, Tolima and Risaralda to the south and Risaralda to the west. With 
7888 km2 it is the fifth least extensive department and with 125 inhabitants/km2 , the sixth most densely populated.

It belongs to the coffee-growing region and the Paisa region. It was created in 1905, as a result of the reform of the 
political-administrative division at that time. In this department it is possible to find all the thermal floors, from the warm 
valleys of the Magdalena and Cauca rivers to the perpetual snows of the Nevado del Ruiz. The mountainous topography 
is predominant.

The data consists of 216 instances (27 municipalities for 8 years of sampling) and 131 attributes corresponding to 
measurements of 20 different parameters, namely: Total Alkalinity, Aluminum, Free Residual Chlorine, Chlorides, Total 
Coliforms, Apparent Color, Conductivity, Total Organic Carbon (TOC), Cryptosporidium, Total Hardness, Florides, E.coli, 
Fluorides, Giardia, Total Iron, Nitrites, Odor, ph, Taste, Sulfates, Turbidity, for average, maximum and minimum values in 
addition to the index calculated for these measurements (IRCA, Water Quality Risk Index for Human Consumption or 
Índice de Riesgo de la Calidad del Agua para Consumo Humano by its Spanish acronyms). The number of all samples and 
the number of Not-Suitable samples and their corresponding percentages are also collected.

For the purposes of this study, 56 variables have been retained, corresponding to the data for the number of samples, 
averages, and maximums. In addition to the averages, information about the number of samples to obtain the average 
of each measurement and the maximum value of that measurement for each physicochemical–biological parameter 
has been included. Other variables, such as minimum measurements, have been eliminated due to an almost total loss 
of data. Table 2 displays the percentage of missing data for 23 variables in the dataset.

From Table 2, it is evident that at least half of the considered variables contain missing data. Among these, 46% of the 
variables exhibit a minimum of 20% missing data, with an additional 6 variables surpassing the threshold of 30% miss-
ing data. The distribution of missing data is assumed to be random and lacks a standardized pattern. The complete set 
of variables with missing data, on average, lacks approximately 20% of information.

Although not employed in the methodology of this study, Fig. 2 illustrates the distribution of the Water Quality Index 
measure for all monitoring stations in each municipality, categorized by the year of evaluation. According to the results, 
all the values measured in each year indicate samples that pose a high risk for human consumption.

2.3  Imputation methods and missing data handle

The presence of missing data is a common challenge faced by researchers and decision-makers. While having a 
complete dataset is ideal, applying inappropriate imputation methods can create more problems than solutions. 
Over the past few decades, alternative procedures with better statistical properties have been developed, surpass-
ing traditional options such as listwise deletion, pairwise deletion, mean imputation, and hot-deck imputation. 
Multiple imputation (MI) algorithms have been introduced and can be implemented using various commercial and 
freely available packages. It is important to note that the choice of imputation method should be tailored to each 

(1)IRCA =

∑NAC
RISKscore

∑TC
RISKscore

× 100,

https://www.datos.gov.co/api/odata/v4/wppj-n4q2
https://www.datos.gov.co/api/odata/v4/wppj-n4q2
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specific situation, considering the non-response rate and its spatial distribution, as these characteristics may vary 
between surveys.

In the context of water quality research, it is crucial to acknowledge and address the challenges posed by biases, 
missing data, and their subsequent imputation. Bias, often arising from systematic errors in data collection or analysis, 
can significantly impact the reliability of study outcomes. Missing data, a common occurrence in real-world datasets, 
introduces complexities in the analysis, potentially leading to skewed interpretations. This study recognizes the need for 
a comprehensive understanding of these concepts to ensure the robustness of water quality assessments.

Biases in water quality data can arise from various sources, including sampling methods, instrumentation, and envi-
ronmental factors. To enhance the significance of our research, we must delve into the implications of biases on the 
interpretation of water quality parameters. Clear identification and mitigation of biases ensure that the results obtained 
are more representative of the true state of water quality, reinforcing the reliability and applicability of our findings.

Missing data, whether due to logistical constraints or other factors, presents a common hurdle in water quality stud-
ies. It is imperative to acknowledge the impact of missing values on the comprehensiveness of our analyses. This study 
employs advanced imputation techniques to address missing data, ensuring a more complete dataset for accurate 
assessments. By elucidating our approach to handling missing values, we aim to enhance transparency and foster a 
deeper understanding of the methodology employed.

The statistical imputation process plays a pivotal role in refining our dataset by estimating missing values. However, 
it is essential to communicate the intricacies of this process to maintain transparency and foster trust in the results. This 
study employs machine learning algorithms for imputation, specifically emphasizing Bayesian Ridge, Gradient Boosting, 

Table 2  Percentage of missing 
values throughout the 23 data 
attributes in the dataset

MD: Missing Data. Values in MD are written in percentages respect total of data

Variable MD (%) Variable MD (%)

Nitrites 88.89 Total Iron Average 20.37
Maximum Odor 47.22 Maximum Sulfates 18.52
Average Odor 47.22 Sulfates Average 18.52
Maximum Nitrites 43.06 Clorides Average 15.74
Taste 40.74 Maximum Clorides 15.74
Maximum Taste 40.74 Maximum Total Alkalinity 15.28
Maximum Aluminium 32.41 Maximum Total Hardness 15.28
Average Aluminium 32.41 Total Hardness Average 15.28
Fluorides Average 28.70 Total Alkalinity Average 15.28
Maximum Fluorides 24.54 Maximum TOC 8.33
Maximum Total Iron 20.37 TOC Average 8.33
Untreated Samples 0.46

Fig. 2  BoxPlot for Water Quality Index in Colombia and Number of Samples evaluated for determination of index and desegregated by year
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Ridge, Support Vector Machine, and Theil-Sen regressors. Understanding these imputation methods is crucial for inter-
preting the reliability of water quality predictions and the subsequent impact on decision-making processes.

2.4  Machine learning approach to missing data

This section presents the methods employed in this study to construct a model for imputing missing and non-response 
values related to the physical, chemical, and biological composition of water samples for human consumption. This 
research is part of a broader project aimed at evaluating the efficacy of Machine Learning techniques in imputing missing 
data for both quantitative and qualitative variables. To achieve this objective, the study conduce imputation experiments 
using several Machine Learning algorithms briefly described below.

In general, these methods leverage the information present in the dataset to create prediction models using a clas-
sification process that employs decision trees for stratification and discrimination of target variables based on the con-
ditions of predictor variables. Some of the models, in addition to decision trees, utilize bootstrap methods to reduce 
variance and generate more decision trees, thereby increasing the information available for each classification iteration. 
Additionally, some models incorporate non-parametric regression into the classification task by combining the initial 
predictions with decision trees to enhance the predictive power on the target variables.

All the algorithms employed in this study are implemented in a Python library [37] specifically designed for these 
purposes. The sklearn library (https:// scikit- learn. org/ stable/) [38, 39], along with the modules sklearn.ensemble and 
sklearn.linear_model, encompasses all these algorithms.

2.4.1  RandomForestRegressor (RF)

RF is a machine learning algorithm [40, 41] that is based on the ensemble learning technique, where multiple models 
are combined to improve overall performance. The philosophy behind Random Forest lies in the idea that combining 
multiple decision trees can reduce the overfitting inherent in a single tree and improve the generalizability of the model.

The algorithm works by building a “forest” of decision trees during training. Each tree is trained on a random subsample 
of the original data set and a random selection of features, ensuring that the individual trees are diverse and not overly 
correlated with each other. During prediction, the results of all the trees are combined to produce a final prediction, 
either by averaging the predictions in the regression case or voting in the classification case.

RF outperforms traditional techniques based on robust statistics alone by taking advantage of the diversity and 
complexity of multiple decision trees. While traditional statistical methods may face limitations in the ability to capture 
nonlinear relationships or complex interactions between variables, Random Forest can model these relationships more 
effectively thanks to its ability to handle high-dimensional data and nonlinearities.

In terms of performance optimization, the most important hyperparameters in RF include the number of trees in the 
“forest”, the maximum depth of each tree, and the minimum number of samples required to split a node. Adjusting these 
hyperparameters appropriately can help avoid overfitting and improve the generalizability of the model.

2.4.2  AdaBoostRegressor (AB)

AB is a machine learning algorithm that belongs to the boosting family of methods [42, 43]. The underlying idea behind 
AdaBoostRegressor is to build a strong predictive model from the weighted combination of multiple weaker models. 
This approach is based on the principle that combining weak models can result in a more robust and accurate model.

The algorithm works as follows: initially, a base model (e.g., a weak decision tree) is trained on the original data set. 
Then, weights are assigned to each data instance based on the accuracy of the base model in predicting those instances. 
In subsequent iterations, more weight is given to instances that were misclassified by the previous base model, allowing 
the next base model to focus on the more difficult to predict instances.

During the prediction stage, the results of all base models are combined by weighting, where the models that perform 
better on the training data set are given more weight in the final prediction.

AB is generally much more powerful and potent than other techniques by focusing on iteratively improving model 
performance through the combination of multiple weak models. Unlike traditional statistical methods, which may face 
difficulties in capturing nonlinear or complex relationships between variables, AB can adapt and continuously improve 
its predictive capability as more base models are added.

https://scikit-learn.org/stable/
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In terms of performance optimization, the most important hyperparameters in AdaBoostRegressor include the num-
ber of base models to use (n_estimators), the learning_rate that controls the contribution of each base model in the 
final combination, and the hyperparameters specific to the base models used in the boosting process. Adjusting these 
hyperparameters appropriately can help improve the generalization capability of the model and avoid overfitting.

2.4.3  BaggingRegressor (B)

Bagging Regressor [44–47] is another machine learning algorithm that is based on the concept of ensemble learning, 
specifically on the technique known as bagging (bootstrap aggregating). The fundamental idea is to build multiple inde-
pendent predictive models and then combine their predictions to obtain a more robust and accurate final prediction, in 
a technique more or less similar to AB.

The algorithm works by creating multiple bootstrap samples (samples of equal size to the original data set, but with 
replacement) from the training data set. For each of these bootstrap samples, a separate regression model is trained, 
usually a base model such as a decision tree. Since each model is trained on a different bootstrap sample, they are inher-
ently different from each other.

During the prediction stage, the regression predictions from each individual model are combined to produce a final 
prediction, usually by taking the average of all predictions.

Bagging Regressor stands out as a robust algorithm by taking advantage of the diversity of models trained on differ-
ent bootstrap samples. This allows the final model to have lower variance and be less prone to overfitting compared to 
a single model trained on the entire dataset.

In terms of performance optimization, the most important hyperparameters in BaggingRegressor include the num-
ber of estimators (n_estimators), which determines how many models will be created in the ensemble, and the size 
of the bootstrap samples (max_samples), which controls the size of the samples used to train each individual model. 
Adjusting these hyperparameters appropriately can help improve the generalizability of the model and reduce the risk 
of overfitting.

2.4.4  SupportVectorRegressor (SVR)

SVR is a machine learning algorithm [48, 49] used for regression problems in particular. It is based on the idea of finding 
the optimal hyperplane that best separates data points in a high-dimensional space. In its methodology it focuses on 
finding a regression function that best fits the data while maintaining the widest possible margin of separation.

The algorithm transforms the input data into a high-dimensional feature space using a kernel function, such as linear, 
polynomial or radial kernel (RBF). In this high-dimensional feature space, SVR seeks to find the hyperplane that best fits 
the training data, where this hyperplane is defined by a set of support vectors, which are the data points closest to the 
hyperplane.

During training, SVR minimizes a loss function that penalizes both the discrepancy between model predictions and 
actual values and the violation of the separation margin. This is achieved using convex optimization techniques.

SVR outperforms traditional techniques based on robust statistics alone by being able to efficiently handle nonlinear 
and high dimensionality data through the kernel function. Unlike some traditional statistical methods that may face dif-
ficulties in modeling nonlinear relationships, SVR can effectively capture these relationships by transforming the data 
into a higher dimensional feature space.

In terms of performance optimization, the most important hyperparameters in SVR include the type of kernel to use 
(linear, polynomial, RBF), as well as kernel-specific hyperparameters such as the regularization coefficient (C) and the 
kernel coefficient (gamma). Properly adjusting these hyperparameters can help to improve the generalizability of the 
model and avoid overfitting.

2.4.5  BayesianRidge (BR)

BR [50, 51] is a regression algorithm that relies on the Bayesian framework to estimate model parameters. Actually, the 
algorithm uses inferential statistics, specifically the application of Bayes’ theorem to infer the distribution of model 
parameters given the observed data.
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The algorithm begins by modeling the relationship between the input variables and the target variable using a prob-
ability distribution. Instead of estimating a single set of values for the model parameters, Bayesian Ridge estimates a full 
distribution over these parameters, which allows capturing uncertainty in the estimates.

During training, Bayesian Ridge uses Bayesian methods to estimate the posterior distribution of the model parameters 
given the observed data and an initial prior distribution. This prior distribution can incorporate prior information about 
the model parameters, if available.

Once the posterior distribution is estimated, Bayesian Ridge can make predictions using the predictive distribution, 
which takes into account both the uncertainty in the model parameters and the inherent uncertainty in the input data.

Unlike some traditional statistical methods that can produce point estimates without accounting for uncertainty, 
Bayesian Ridge provides a full estimate of the posterior distribution, providing a more complete and realistic view of 
the regression problem.

In terms of performance optimization, the most important hyperparameters in Bayesian Ridge include the selection 
of the initial prior distribution for the model parameters, as well as regularization via an alpha precision parameter.

2.4.6  RidgeRegressor (R)

Ridge Regressor [52, 53] is a regression algorithm that is based on the ridge regression method, also known as ridge 
regression. The philosophy behind RidgeRegressor is to add a regularization penalty to the loss function of the standard 
linear regression model, with the goal of reducing overfitting and improving model generalization.

The algorithm works by minimizing a loss function consisting of two terms: the mean squared error (MSE) term that 
measures the discrepancy between model predictions and actual values, and a regularization penalty term that penal-
izes the magnitude of the model coefficients.

During training, RidgeRegressor adjusts the coefficients of the linear regression model such that it minimizes the 
weighted sum of these two terms. The regularization penalty controls the trade-off between fitting the training data 
accurately and keeping the model coefficients small to avoid overfitting.

RidgeRegressor outperforms traditional techniques based on robust statistics alone by incorporating the regulariza-
tion penalty, which helps mitigate overfitting and improve the stability of model parameter estimates. RidgeRegressor 
can provide more stable and reliable estimates in such scenarios.

In terms of performance optimization, the most important hyperparameter in RidgeRegressor is the regularization 
parameter (alpha), which controls the strength of the penalty applied to the model coefficients.

2.4.7  ExtraTreesRegressor (ET)

ET [41] is a variant of the Random Forest algorithm that is characterized by its focus on the randomness and diversity 
of the constructed decision trees. Unlike Random Forest, which seeks to find the best threshold for each node split, ET 
selects the splitting thresholds randomly.

The algorithm works by constructing a “forest” of decision trees during training, similar to Random Forest. However, 
during the construction of each tree, ExtraTreesRegressor randomly selects a subset of features and split thresholds for 
each node, rather than exhaustively searching for the best thresholds.

This randomness in the selection of thresholds and features leads to greater diversity among the individual trees in 
the ensemble. As a result, Extra Trees Regressor tends to have greater variability in the individual trees, which can help 
reduce overfitting and improve the generalizability of the model.

In terms of performance optimization, the most important hyperparameters in Extra Trees Regressor include the 
number of trees in the “forest” (n_estimators), the maximum depth of each tree (max_depth), and the minimum number 
of samples required to split a node (min_samples_split).

2.4.8  GradientBoostingRegressor (GB)

GB is a machine learning algorithm [54, 55] that belongs to the boosting family of methods. Unlike other boosting algo-
rithms that focus on improving the model by iteratively adding weaker models, GradientBoostingRegressor focuses on 
improving the model by iteratively adding stronger models that fit the residuals of the previous model.
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The algorithm works sequentially, building a series of weak regression models, where each new model fits the residuals 
(differences between current model predictions and actual values). During training, GB fits the models in the direction 
of the downward gradient of the loss function, hence the name.

At each iteration, a new regression model is added to the ensemble, and adjusted by the gradient descent method 
to minimize the overall loss function. This technique allows GB to continuously improve model accuracy by adding 
additional models that focus on the residual errors of the previous model.

Unlike traditional methods that may have difficulty capturing nonlinear relationships or complex interactions between 
variables, GB can effectively accommodate high-dimensional data and nonlinearities.

In terms of performance optimization, the most important hyperparameters in GB include the number of base models 
to use (n_estimators), the learning rate (learning_rate) that controls the contribution of each base model in the final 
combination, and the maximum depth of each tree (max_depth).

2.4.9  HistGradientBoostingRegressor (HGB)

HGB [56, 57] is a variant of the Gradient Boosting algorithm that uses histograms to improve computational efficiency 
and model performance. Unlike GB, which uses decision trees based on complete features, HGB uses discrete histograms 
to represent the features, allowing for faster training and prediction speed.

The algorithm works by dividing the features into discrete intervals and constructing a histogram for each feature 
instead of evaluating all possible splits. This significantly reduces the amount of computation required during training 
and prediction, resulting in faster training times and more efficient models.

Compared to GB, this can be faster and more scalable on large datasets with many features. However, there may be a 
slight loss in model accuracy due to feature discretization.

In terms of performance optimization, HGB has similar hyperparameters to GB, such as the number of base models 
(n_estimators), the learning rate (learning_rate), and the maximum depth of each tree (max_depth). However, HGB also 
introduces additional hyperparameters related to feature discretization, such as the number of intervals (max_bins) 
and the number of bins per feature (max_bins_per_feature). Adjusting these hyperparameters appropriately can help 
improve the speed and accuracy of the model.

This algorithm offers an efficient and scalable alternative to GB, especially on large data sets, while providing compa-
rable prediction results in terms of accuracy. The choice between the two algorithms depends on the specific needs of 
the problem, the amount of data and the importance of training and prediction speed.

2.4.10  TheilSenRegressor (TS)

TS [58] is a robust regression algorithm that is based on the Theil-Sen regression estimator. Unlike many other regression 
algorithms that rely on least-squares methods, S uses a robust estimation of the slope and the regression line intersec-
tion, which makes it less sensitive to outliers in the data.

The algorithm works by calculating all possible combinations of pairs of data points and estimating the slope and 
intersection of the regression line that best fits these combinations. Then, the median of all these slopes and the median 
of all the intersections are calculated to obtain the final slope and intersection estimates.

By focusing on the median of all possible slopes and intersections, TS is less sensitive to outliers or noisy data compared 
to traditional least squares methods, which can be significantly influenced by extreme values.

Unlike least squares methods, which can produce biased or unreliable estimates in the presence of outliers, TS provides 
a more stable and reliable estimate of the regression model parameters.

In terms of performance optimization, TS has no additional hyperparameters to adjust compared to other regression 
algorithms. Its robust approach and its ability to handle outliers without the need for additional hyperparameters make 
it attractive for applications where robustness is a priority. However, it can be slower on very large data sets due to its 
exhaustive approach to computing all possible combinations of pairs of data points.

2.5  Performance of models

Nine algorithms were applied to the data, and the performance of the imputation model was evaluated using two metrics 
specifically chosen for this case study.
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The first metric used is the Kling-Gupta Efficiency skill score (KGEss), a variant of the Kling-Gupta Efficiency (KGE) metric 
developed by Gupta et al. [59]. KGEss assesses the degree of similarity or association between the target variable (e.g., 
observed series, x0i for i = 1,… , n data points) and the predicted variable (e.g., imputed series, x1i ) before and after the 
imputation process. It considers bias, variability, and correlation between the two time series, incorporating the coef-
ficient of variation to address cross-correlation between bias and variability terms. KGEss is calculated using the formula:

where A = CV1∕CV0 , B = �1∕�0 , �1 and �0 are the means of the imputed and observed data, �1 and �0 are the standard 
deviations of the imputed and observed data, CV1 and CV2 are the coefficients of variation of the imputed and observed 
data, and r is the correlation coefficient between the imputed and observed data. A perfect match between the imputed 
and observed series results in a KGEss value of 1, indicating a high level of similarity. Lower values indicate increasing 
divergence between the two series, and a value close to or equal to zero suggests that the imputed series is no better 
than using the mean as an imputation method. A negative KGEss indicates that the observed series is a better estimator 
than the imputed series [60].

The second metric employed is the Percent Bias (PBIAS), which measures the average tendency of the imputed values 
to be higher or lower than the observed values. It is calculated as:

where x0i represents the original values in the dataset, and x1i denotes the imputed values. The optimal value of PBIAS 
is 0, indicating accurate model imputation. Lower absolute values of PBIAS suggest better model performance. Positive 
values indicate an underestimation bias of the model, while negative values indicate an overestimation bias. In this study, 
|PBIAS| 15 is considered the convention for optimal model performance.

By utilizing these two metrics, the aim is to assess the quality of the imputation models and determine their effec-
tiveness in recovering missing values in the physical, chemical, and biological composition of water samples for human 
consumption.

3  Results and discussions

From the correlation analysis between variables, it’s calculated all the cross-correlation coefficients for each pair of vari-
ables in the dataset. The analysis reveals that the variable Total Alkalinity is highly positively correlated with Conductivity 
( r = 0.630829 ), Total Hardness ( r = 0.920800 ), and Nitrites ( r = 0.626527 ). Alkalinity, or the basicity of water, is a measure 
of its ability to neutralize acids. In natural waters, this property is primarily due to the presence of certain salts of weak 
acids, although the presence of weak and strong bases can also contribute. Generally, in natural waters, bicarbonates 
contribute the most to alkalinity, formed easily by the action of atmospheric carbon dioxide on the constituent materials 
of soils in the presence of water, as shown in the reaction: CO2 + CaCO3 + H 2 O ↦ Ca2+ + 2HCO−

3
.

A high presence of ions in water increases average conductivity and also affects water hardness due to the concentra-
tion of mineral compounds, particularly magnesium and calcium salts. While Alkalinity should have a greater impact on 
the measured pH, correlations in this dataset suggest that pH should also be correlated with Conductivity, Total Hardness, 
Alkalinity, and Nitrites. However, in terms of the data, this correlation has not emerged, or it is shown to be weak, with 
correlation coefficients of 0.255021, 0.219427, 0.262429, and 0.296015, respectively. Hardness also contributes strongly 
to sulfates ( r = 0.515953).

Apparent color appears correlated with the variables Flavor ( r = 0.506351 ) and Turbidity ( r = 0.851362 ). Color in water 
bodies results from the presence of both suspended and dissolved substances and is referred to as apparent color. There-
fore, it is entirely reasonable that its interference with these two variables is likely to be strong.

Total Organic Carbon is highly correlated with Iron content ( r = 0.76487 ). Total Organic Carbon (TOC) refers to the 
carbon that is part of the organic substances in surface waters. In the contemporary environment, various natural and 
artificial substances contribute to increasing TOC levels. However, microorganisms can decompose this substance dur-
ing the process of oxygen consumption. TOC generally originates naturally in plants and animals as a result of their 

(2)KGEss = 1 −

√
(r − 1)2 + (A − 1)2 + (B − 1)2

√
2

, −∞ ≤ KGEss ≤ 1,

(3)PBIAS = 100 ×

∑
(x0i − x1i)
∑
(x0i)

,
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metabolism, excretion, and decomposition. Additionally, effluents from industries using organic compounds serve as a 
significant source of TOC emissions into the environment. Companies discharging wastes into the sampled waters may 
also dispose of high iron content in the products derived from their industrial processes.

Among the strongest correlations found in this dataset is the relationship for Taste ∼ (Apparent Color, r = 0.506351 ) + 
(Odor, r = 0.997284 ). Water taste and odor are organoleptic determinations with subjective assessments, lacking obser-
vation instruments, records, and units of measurement. These determinations are of particular interest in drinking water 
intended for human consumption. Waters acquire a salty taste from 300 ppm of Cl− and a salty and bitter taste with more 
than 450 ppm of SO2−

4
 . Free CO2 gives it a pungent taste, while traces of phenols or other organic compounds can result 

in an unpleasant color and taste.
Figure 3 shows the dependence between some variables with maximum correlations found from the analysis of the 

original data set. Additionally, Fig. 4 shows the variability from some parameters by stations and year sample.
Looking at Fig. 4, it is evident that the variables and parameters analyzed in this study exhibit maximum or above-

average values between the years 2011 and 2012 across most of the sampling stations and water collection points. This 
pattern suggests a potential association with the “La Niña” phenomenon observed during 2010–2011 [61–63]. The winter 
wave related to the 2010–2011 “La Niña” event is considered one of the most devastating natural disasters in Colombia’s 
history, resulting in significant socio-economic losses. The term “La Niña” refers to the temporal and spatial distribution 
of oceanic-atmospheric indices during the 2010–2011 phenomenon [64, 65]. Within the spectrum of climate variability, 
the El Niño-Southern Oscillation (ENSO) phenomena, including the cold phase known as “La Niña” and the warm phase 
known as “El Niño”, play a crucial role in shaping climate patterns across various regions of the Earth’s surface. During 
“La Niña”, sea level pressure tends to be lower in the western Pacific and higher in the eastern Pacific, while the opposite 
pattern is observed during “El Niño”. This pressure field variation is known as the Southern Oscillation, with a standard 
measure being the difference in sea level pressure between Tahiti (18◦ S, 150◦ W) and Darwin (12◦ S, 131◦ E). Colombia 
is among the regions significantly affected by these phenomena. The presence of “La Niña” has had a noticeable impact 
on Colombia’s climate, resulting in emergencies associated with slow flooding, flash floods, and landslides, leading to 
human and material losses.

The data imputation process was implemented using Python programming, and all calculations for the 10 evaluated 
models were executed on a laptop computer equipped with an Intel i5 core processor, 8GB of RAM, and the Ubuntu 
operating system, running within a Python Notebook. The entire task of constructing and imputing with the 10 models 
took approximately 3 min.

Throughout the imputation process, all variables are employed as inputs for imputing a specific variable. This approach 
implies that for the imputation of a parameter, no variables were excluded from being used as inputs. Instead, it is con-
sidered all variables as predictors for the imputation.

Table 3 provides a comprehensive summary of the evaluation metrics for all variables within the complete set of 
physico–chemical parameters of the water samples. The table presents the results for the assessed metrics, namely, the 
Nash-Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency skill score (KGEss), and Percent Bias (PBIAS).

Fig. 3  Visual correlation between some variables from dataset studied. The scatter plot shown the mayor correlations ( |r| > 0.5 ) for pair of 
parameters
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Based on the previously mentioned imputation strategy, an imputed dataset have been generated using each imple-
mented algorithm. In Fig. 5, present a visual representation of the overall impact of the strategy on the complete dataset 
for some ratio missing data at each variable, showcasing the average behavior of selected imputed variables character-
ized by varying degrees of missing data. It’s essential to recognize that each algorithm comes with its set of advantages 
and drawbacks, potentially resulting in imputed values that either closely align with or deviate from the average values 
in the original imputed variable.

It is crucial to note that the proximity of imputed values to the average value in the original imputed variable doesn’t 
inherently imply superiority or inferiority. This is primarily because information solely on the average imputed value per 
year lacks the context needed for evaluation. In reality, the distribution of values for each variable may undergo changes, 
and the loss of data can significantly impact and skew the distribution itself.

Based on the results presented in Table 3 and Figs. 5 and 6, it can be concluded that there is no single method or model 
that provides optimal estimation for all parameters of the water quality samples in the Colombian dataset. However, with 
the exception of certain parameters (such as maximum and average aluminum, maximum and average nitrates, maxi-
mum and average odor, and maximum and average taste) which do not yield good estimates based on the evaluation 
criteria, all other parameters can be imputed optimally by considering two evaluation metrics, namely KGEss and PBIAS.

This indicates that regardless of the metric used for evaluating the model, the measured variables can be effectively 
reproduced using the same model for both evaluation metrics. Among the tested models, the best performers accord-
ing to the two metrics are Bayessian Ridge, Gradient Boosting, Ridge, Support Vector Machine, and Theil-Sen regressors, 
with the latter three exhibiting better overall performance.

These findings demonstrate the suitability of the selected models for imputing missing data in the water quality 
dataset, as they consistently yield favorable results based on the evaluation metrics.

By utilizing the best-performing imputation models, a new dataset can be constructed that contains the imputed 
values for the corresponding parameters. This allows for a fresh evaluation of the relationships between these parameters. 
In particular, four important relationships have been identified: 

1. The relationship between Alkalinity Average and Hardness Average, Nitrites Average, Sulfates Average, and Con-
ductivity Average exhibits a high coefficient of determination ( R2 = 0.840 ). The relationship can be expressed 

Fig. 4  Annual evolution of the values of some physico–chemical parameters throughout the seasons and years of sampling
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Table 3  Best imputation models and corresponding goodness-of-fit indicator values per variable

Parameter/Model AB Bag BR ET GB HGB R RF SVM TS

Metric = KGEss
 Maximum Alkalinity 0.59 0.60 0.76 0.63 0.68 0.70 0.78 0.64 0.71 0.71
 Alkalinity Average 0.50 0.49 0.56 0.51 0.49 0.48 0.56 0.52 0.61 0.57
 Maximum Aluminium 0.11 −0.06 0.37 0.08 0.26 0.31 0.48 0.13 0.26 0.36
 Aluminium Average 0.13 0.03 0.32 0.07 0.22 0.30 0.46 0.12 0.15 0.45
 Cloruros Máximo 0.70 0.73 0.78 0.73 0.76 0.34 0.83 0.70 0.81 0.70
 Clorides Average 0.71 0.75 0.81 0.74 0.77 0.38 0.83 0.72 0.82 0.79
 Maximum TOC 0.94 0.94 0.85 0.94 0.94 0.05 0.82 0.94 0.98 0.92
 TOC Average 0.87 0.86 0.87 0.87 0.88 0.47 0.88 0.87 0.94 0.90
 Maximum Hardness 0.52 0.52 0.72 0.58 0.59 0.51 0.70 0.56 0.63 0.60
 Hardness Average 0.55 0.54 0.63 0.57 0.55 0.46 0.62 0.55 0.65 0.58
 Maximum Fluorides 0.64 0.48 0.71 0.54 0.75 0.34 0.72 0.72 0.73 0.71
 Fluorides Average 0.56 0.51 0.63 0.53 0.68 0.19 0.69 0.55 0.45 0.59
 Maximum Iron 0.73 0.61 0.98 0.76 0.83 0.18 0.17 0.68 0.85 0.69
 Iron Average 0.61 0.62 0.76 0.62 0.65 0.36 0.85 0.60 0.43 0.90
 Maximum Nitrites 0.00 0.09 0.31 0.15 0.12 0.18 0.32 0.10 −0.95 0.44
 Nitrites Average −6.19 −16.21 −2.47 −12.58 −12.09 −21.56 −2.07 −15.01 −16.80 − 1.58
 Maximum Odor −1.65 −1.88 0.15 −1.86 −1.69 −1.76 −0.25 −1.89 −1.57 − 0.07
 Odor Average −0.12 −0.17 0.28 −0.07 −0.05 −0.06 0.31 −0.15 0.35 −0.04
 Maximum Taste −1.48 −1.59 −1.37 −1.59 −1.47 −1.39 −0.96 −1.59 −1.11 − 0.41
 Taste Average −0.12 −0.16 0.11 −0.02 −0.03 −0.03 0.09 −0.16 0.42 −0.02
 Maximum Sulfates 0.53 0.54 0.82 0.56 0.58 0.55 0.78 0.51 0.70 0.64
 Sulfates Average 0.55 0.56 0.83 0.59 0.61 0.50 0.84 0.52 0.77 0.70

Metric = PBIAS
 Maximum Alkalinity 17.74 17.04 10.34 15.73 13.52 13.54 9.63 15.25 12.23 13.00
 Alkalinity Average 17.11 17.26 14.92 16.55 17.50 19.42 14.79 16.52 12.93 14.49
 Maximum Aluminium 37.68 46.30 29.45 38.35 32.49 36.72 25.23 36.72 31.39 30.31
 Aluminium Average 37.01 43.06 31.42 39.60 33.90 38.05 27.85 37.60 36.18 33.42
 Cloruros Máximo 16.39 14.68 12.10 15.15 13.31 38.67 9.68 16.25 9.93 16.19
 Clorides Average 16.51 14.82 11.34 15.31 13.51 38.75 10.63 15.97 10.38 12.09
 Maximum TOC 4.26 4.24 10.40 4.05 3.98 52.53 12.19 4.45 1.68 5.37
 TOC Average 8.69 8.95 9.06 8.44 8.11 35.54 7.96 8.86 3.96 6.66
 Maximum Hardness 18.05 18.43 10.73 15.58 14.97 19.08 11.29 16.31 13.27 14.86
 Hardness Average 16.37 16.74 13.42 15.54 16.38 20.84 13.81 16.37 12.49 14.99
 Maximum Fluorides 21.15 32.22 19.54 26.61 15.18 39.05 19.19 17.34 16.31 19.57
 Fluorides Average 25.26 28.03 24.70 27.25 19.70 44.26 21.52 27.36 30.40 29.07
 Maximum Iron 16.78 26.90 − 0.71 15.13 11.20 46.93 −61.88 20.76 9.37 19.65
 Iron Average 21.23 21.72 14.41 20.95 19.45 37.33 10.24 22.62 30.24 7.15
 Maximum Nitrites 42.45 41.31 34.13 38.89 42.02 40.00 35.50 40.86 73.95 37.71
 Nitrites Average 88.84 88.39 89.09 88.49 88.52 88.89 89.23 88.60 93.43 89.17
 Maximum Odor 53.15 52.25 40.46 50.78 52.15 51.69 42.35 52.91 42.11 49.81
 Odor Average 45.27 46.24 36.83 43.45 43.46 44.16 36.49 45.74 30.74 0.94
 Maximum Taste 48.86 48.74 39.56 47.58 48.79 48.25 40.03 49.19 35.96 42.67
 Taste Average 45.06 45.71 38.48 41.59 42.35 42.75 39.17 45.34 27.95 11.62
 Maximum Sulfates 22.76 22.84 9.59 21.22 20.57 22.97 12.44 23.84 14.45 18.72
 Sulfates Average 21.95 22.35 9.43 19.99 19.66 25.82 10.19 23.73 11.53 15.65

Bold values indicate to the best performance escenario for variable and machine learning method used, respectively
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a s :  Alkalinity Average = 3.2125 + (0.7751) × (Hardness Average) + (−120.4619) × (Nitrites Average) + (−0.3692)

×(Sulfates Average) + (0.0355) × (Conductivity Average).
2. The TOC content is found to be related to the levels of Nitrites Average and Total Iron. The relationship is represented 

by the equation: TOC Average = 2.7807 + (81.7279) × (Iron Average) + (−329.3762) × (Nitrites Average) , with a coef-
ficient of determination of R2 = 0.540.

3. The subjective parameters, such as Odor Average, Apparent Color Average, and Turbidity Average, demon-
strate a significant relationship with certain chemical and organic properties. The relationship can be expressed 
a s :  Odor Average = 0.0140 + (0.9536) × (Taste Average) + (−0.0008) × (Aparent Color Average) + (−0.0010)

×(Turbinity Average) , with a high coefficient of determination of R2 = 0.985.

These relationships highlight the dependencies and interactions between different water quality parameters, provid-
ing valuable insights into the dataset and improving our understanding of the underlying processes.

Finally, a model for predicting the water quality index in terms of various parameters exhibits a high correlation 
with a high coefficient of determination of R2 = 0.834:

Fig. 5  The average value of some imputed variables (TOC, Odor, Nitrites and Sulfates Averages) is shown in reference to the year in which 
they were taken for the various machine learning algorithms implemented

Fig. 6  Distribution of the measured values for the evaluation metrics in each of the models due to the imputed parameters
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This scenario for a statistical regression model for the prediction of the water quality index using the imputed variables 
can be compared with another scenario in which the same regression has been done using the original data. For this case:

achieving a coefficient of determination of R2 = 0.095 . In this case the number of instances that have been used for the 
development of the last regression has been 80% of the number of instances in the regression with imputed values due 
to the missing values contained in the data.

For the calculation of the coefficient of determination, it is understood, of course, that this statistic will be calculated 
for the degree of relationship between observed and predicted variables in the relationships previously found. In the 
case of the first three relationships, the data corresponding to the data that have been imputed are used, so that there 
is a one-to-one correspondence between the predicted and predicted related data. For the case of the IRCA calculation 
in terms of the global predictor variables the same applies as above, however in the case of the relationship with the 
original non-imputed data the relationship is obtained by removing from the dataset (not taking into account) the vari-
ables with missing data.

4  Conclusions

This study analyzed the performance of ten imputation methods for biological, chemical, and physical parameters in 
surface water samples intended for human consumption. The objective was to observe their impact on water quality 
indices for surface samples in reservoirs and streams. While it is always preferable to minimize non-response in surveys, 
the reality is that many parameters are often not measured due to various reasons.

The study found that imputation techniques based on field-collected information generated the best results and 
preserved data distribution. Machine Learning approaches, with their ability to minimize error and randomness, proved 
to be effective. The use of bootstrapping techniques and multiple estimators further improved predictions.

The analysis was performed without an a priori choice of imputation method, focusing on generating robust estima-
tors that satisfy water quality indicator predictions. None of the methods considered the sample design structure. The 
objective was to minimize distortion in the distribution of intervening variables.

The results demonstrated that by considering 56 water quality measurement parameters and employing ten machine 
learning-based imputation methodologies, it was possible to predict missing values accurately. The imputed data also 
improved the determination of empirical relationships. For example, the relationship between Alkalinity and variables 
such as Hardness, Nitrite content, Electrical Conductivity, and average Sulfate content exhibited a high coefficient of 
determination ( R2 = 0.840 ). The local water quality index prediction in Colombia also showed a high coefficient of deter-
mination ( R2 = 0.834 ) using the most important parameters.

Based on the evaluation metrics, Bayesian Ridge, Gradient Boosting, Ridge, Support Vector Machine, and Theil-Sen 
regressors were identified as the most efficient algorithms, producing better results in terms of PBIAS and KGEss. While 
no method was ideal for all parameters, these algorithms demonstrated precise estimation for individual parameters 
related to water quality.

(4)

IRCA(imputed)
=29.5554 + (−0.0076) × (Alkalinity Average)

(−0.0581) × (Hardness Average)

+ (0.0395) × (Sulfates Average)

(−13.0703) × (Total Residual Cloride)

+ (−0.0166) × (E.Coli Average)

(0.0271) × (Coliforms Average).

(5)

IRCA(no_imputed)
=97.2615 + (0.0236) × (Alkalinity Average)

(−0.0285) × (Hardness Average)

+ (0.0602) × (Sulfates Average)

(−0.4076) × (Total Residual Cloride)

+ (−0.0018) × (E.Coli Average)

(0.0012) × (Coliforms Average),
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This approach differs from a previous study [23] in several ways. Firstly, boosting variables or helper parameters were 
not used for imputation but instead, imputation was performed over the entire dataset. Secondly, in addition to the five 
algorithms tested in the previous study, five more algorithms using ensemble methods and linear regression were evalu-
ated, demonstrating the superiority of the newly considered algorithms. Finally, this study utilized additional information 
on the maximum measurement and number of samples for each parameter, which helped to improve the imputation 
process and reduce data variance.

Overall, the findings highlight the effectiveness of the proposed approach in imputing missing data and improving 
the estimation of water quality parameters.
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