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Abstract
Both the total amount of precipitation falling on Earth’s surface and the fraction of the surface area on which it falls 
represent two key global climate indicators for Earth’s global hydrological cycle. We show that the fraction of Earth’s 
surface area receiving daily precipitation is closely connected to the global statistics of local wet-day frequency and 
mean precipitation intensity, based on the ERA5 reanalysis. Our analysis of the global statistical distribution of local 
temporal mean precipitation intensity � revealed a close link between (1) its global spatial average ⟨�⟩ and (2) the total 
daily precipitation falling on Earth’s surface divided by the global surface area fraction on which it falls. This correlation 
highlights an important connection, since the wet-day frequency and the mean precipitation intensity represent two 
key parameters that may be used to approximately infer the probability of heavy rainfall on local scales. We also found 
a close match between the global mean surface temperature and both the total mass of 24-h precipitation falling 
on Earth’s surface as well as surface area receiving 24-h precipitation in the ERA5 data, highlighting the dependency 
between the greenhouse effect and the global hydrological cycle. Moreover, the total planetary precipitation and the 
daily precipitation area represent links between the global warming and extreme precipitation amounts that tradition-
ally have not been included in sets of essential climate indicators. A simple back-of-the-envelope calculation suggests 
that half of Δ⟨�⟩∕ΔT = 0.47mm∕day can be explained by increased 24-h precipitation and half by a reduced fractional 
area of 24-h precipitation.

Keywords Global hydrological cycle · Precipitation surface area · Mean precipitation intensity · Extreme precipitation

1 Introduction

Global warming caused by the strengthening of the greenhouse effect is expected to lead to more extreme weather events 
[1, 2], and one explanation for more extreme rainfall is that higher temperatures near Earth’s surface and in the air favour 
higher rates of evaporation and an increase in the moisture holding capacity of the air according to the Clausius–Clapeyron 
equation [3, 4]. We can refer to the connection between water vapour and temperature as the ‘thermodynamic effect’ of 
climate on the hydrological cycle.
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Allan et al. provides a comprehensive literature review on the status of current knowledge regarding precipitation and 
hydrology [5], and an additional overview is provided in the sixth assessment report from the Intergovernmental Panel on 
Climate Change [2]. Both give an account of an increasingly detailed picture with advanced levels of complex interactions. 
However, neither discuss the fraction of Earth’s surface receiving precipitation on a daily basis, although they do delve into 
fast adjustments that scale with radiative forcing and slow temperature-driven responses to radiative forcing. Here we take a 
more heuristic approach in order to unveil how global physical aspects, such as the fraction of Earth’s surface receiving 24-h 
precipitation and the total global 24-h precipitation, are linked to both global warming and rainfall pattern characteristics.

Increased concentrations of greenhouse gases inhibit the transmission of longwave radiation from the planetary surface, 
a branch of the energy flow from Earth’s surface to the top of the atmosphere. An increased constraint in the vertical radia-
tive energy flow may result in an increased atmospheric overturning rate with an increased latent heat flow through deep 
convection to compensate for the reduced radiative energy flow. The latent heat transport connects the energy flow and 
the circulation of H2O (water, vapour, ice), and in a long-term steady-state global hydrological cycle, the total mass of water 
evaporated (E) in a closed system, such as Earth’s climate system, equals the total global precipitation (P) when integrated 
over the Earth’s surface area ( A ≈ 4�r2

e
 , where re = 6371 km is Earth’s radius). We use the upper-case notation P for global 

spatial statistics and lower-case p for local data (i.e. grid point values), moreover the notation ⟨⋅⟩ stands for the spatial aver-
age, while ⋅ is for the temporal average. Then, we can write E = ∫

A
e dA and P = ∫

A
p dA , such that E = −P over a sufficiently 

long time period when Earth’s global hydrological cycle is in a steady state. However, neither evaporation nor precipitation 
are uniform in time or space, and evaporation takes place over a different planetary surface area (Ae) than the surface area 
on which precipitation falls on a daily basis (Ap) . For instance, evaporation takes place continuously over wet surfaces such as 
the world oceans (cover about 70% of Earth’s surface area), albeit with a dependence on temperature and wind. In contrast, 
it doesn’t rain everywhere or all the time. We use the expression A�

p
= Ap∕A to denote the fraction of the global surface area 

receiving 24-h precipitation.
In previous studies it has been assumed that a decrease in the precipitation area Ap can explain more extreme daily rainfall 

amounts and reduced frequency of wet days (fw) [6], but this has to the best of our knowledge not yet been demonstrated 
through the analysis of observational data or reanalyses. The connection between a global index, such as A′

p
 , and local rain-

fall statistics is expected to involve the global average of the mean precipitation intensity ⟨�⟩ estimated for all grid-boxes. 
Moreover, a shift in the global statistical distribution is expected to be linked to the changes in local precipitation intensities 
� around the globe. Here, the global mean precipitation intensity ⟨�⟩ should be interpreted as a parameter describing the 
statistical distribution of local � , and we can expect the entire distribution to shift to greater values with an increase in ⟨�⟩.

Both the local precipitation intensity � and wet-day frequency fw appear to be two key parameters when it comes to 
estimating the probability of local precipitation amount above a given threshold level x [7]:

This simplified expression describes an approximated estimate for the probability of 24-h precipitation above a thresh-
old x, based on data from 9817 daily rain gauge records world-wide [7]. It provides a rule-of-thumb for moderately high 
magnitudes, but not for the most extreme cases far out in the tails of the distribution. If the local � increases as a result of 
a change in ⟨�⟩ and a corresponding shift in its spatial statistical distribution, then the probability for heavy rainfall also 
increases, all else being equal. If we can find a direct connection between the fractional surface with 24-h precipitation 
A′
p
 and total global precipitation P, as well as between global mean precipitation intensity ⟨�⟩ and wet-day frequency 

⟨fw⟩ , we can then derive generalized rule-of-thumb statements. These would explain the combined impact on both the 
fractional surface area receiving daily precipitation and total global daily precipitation on the global statistics for local 
extreme rainfall events. Our objective is therefore to test the assumption that a reduced fractional area with daily rainfall 
A′
p
 can be linked to reduced wet-day frequency statistics ⟨fw⟩ and increased mean precipitation intensity statistics ⟨�⟩ . We 

also briefly examine the connection between the global mean temperature anomaly T and A′
p
 as well as P.

2  Results

Figure 1 shows that there is a perfect match between the global mean of the annual wet-day frequency and the 
annual mean of the daily surface area fraction with precipitation if we take into account how the surface area of the 
grid-boxes vary with latitude, hence ⟨fw⟩ = A�

p
 . These two quantities were estimated through different approaches 

(1)Pr(X > x) ≈ fw exp

(

−
x

𝜇

)

.
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(see “Methods” section), and the colour coding of the data points refers to their chronology. The data points are all 
from the same reanalysis and are expected to be internally consistent, even if changes in the assimilation over time 
can shift the model solutions in different directions. However, the distribution of the data points reveals a tendency 
of having two clusters, which may involve a spurious change over time due to changing input used in the data 
assimilation.

The close match between ⟨fw⟩ and A′
p
 in Fig. 1 is not unexpected since it doesn’t matter if the aggregation is first done 

for the temporal and then in the spatial dimension or vice versa. The same analysis also reveals some discrepancies if 
we compare the pure average grid-box values of fw with Ap without grid-box area weighting. If we don’t account for the 
grid-box surface area, then the wet-day frequencies at high latitudes are weighted too high and fw at low latitudes are 
weighted too low, resulting a global mean wet-day frequency that is lower than the estimate accounting for the grid-box 
area. This result also indicates that the wet-day frequencies at high latitudes are lower than at low latitudes.

Figure 2 presents a scatter plot between the global mean precipitation intensity ⟨�⟩ and the inverse of the fractional 
surface area with 24-h precipitation 1∕A�

p
 aggregated on an annual basis. The data points scatter around two clusters but 

nevertheless indicate a connection between the global precipitation area and the global mean precipitation intensity. 
A regression analysis between ⟨�⟩ and 1∕A�

p
 indicates that they are connected on a statistically significant level (p-value 

< 2 × 10−16 ). The Pearson correlation between them is 0.86, with a 95% confidence interval spanning 0.79 to − 0.91. In 
other words, the correlation implies that mean annual precipitation intensity is higher when the annual mean of the 
daily surface area fraction with precipitation (A�

p
) is smaller.

The two quantities ⟨�⟩ and P∕A�
p
 were derived in different ways, as explained in “Methods” section, and since we also 

expect that ⟨�⟩ = P∕A�
p
 , we plotted ⟨�⟩ against P∕A�

p
 in Fig. 3. The results indicate a strong connection between the two 

sides of the equation (correlation: 0.98), albeit with a systematic bias with higher estimates of annual P∕A�
p
 in the ERA5 

data. An ordinary linear regression analysis gave a best fit with ⟨�⟩ = 0.53 + 0.78P∕A�
p
 , which is not quite consistent with 

the expression ⟨�⟩ = P∕Ap . In this case, P had been estimated for both wet and dry days whereas days with less than 
1 mm/day had been excluded in the estimation of ⟨�⟩ . Hence the two quantities in this case were not exactly the same. 
A global sum of precipitation estimated only for grid-boxes with more than 1 mm/day also gave a high correlation, but 
had a different bias when comparing Pwet∕A�

p
 with ⟨�⟩ (not shown).

Figure 4 shows a scatter plot with the annual and global mean temperature anomaly T  along the x-axis and the surface 
area fraction with precipitation (threshold 1mm∕day ) along the y-axis. The grey dashed line shows a best-fit according 
to an ordinary linear regression. The data points show a high correlation (− 0.78) and a statistically significant depend-
ency according to the regression analysis, implying that one degree global warming is associated with reduction in the 
global surface area Ap with daily precipitation by − 9.7 million square km (− 4.5%/K).

Fig. 1  The global annual mean 

wet-day frequencies estimated 

over the days of each year 

for all ERA5 area-weighted 

grid-boxes ⟨fw⟩ (circles) show a 

perfect match with the annual 

mean fractional surface area 

with daily precipitation, here 

shown as A′
p
 . The same analysis 

reveals some discrepancies if 

the grid-box surface area is not 

accounted for (crosses)
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Figure 5 shows a similar analysis as Fig. 4, but for the annual mean of total daily mass of H2O falling on Earth’s surface in 
terms of percentages of the reference period 1991–2020. In this case, we repeated the analysis described in [5], compar-
ing the percentage of total global precipitation with the global mean temperature. These results too indicated a strong 
relationship between the total precipitation mass and T, and the ordinary linear regression gave 62 gigatons/K (4 %/K or 
0.1 mm/day per K) increase in the typical global mass of daily precipitation for each degree global warming for present 
global climatic conditions. We refer to the total mass here, as well as mm/day and percentage change, as the mass of 
water is proportional to the heat loss through latent heat of evaporation for H2O.

A change in global mean temperature is expected to have an effect on the precipitation intensity ⟨�⟩ = P∕Ap , as both 
P and Ap depend on T according to the analysis presented in Figs. 4, 5. The change in ⟨�⟩ linked to a one-degree global 

Fig. 2  The global mean 

precipitation intensity ⟨�⟩ 

shows a dependency on 

the fractional surface area 

with daily precipitation, here 

shown as 1∕A�
p

 . Dashed grey 

line shows a best-fit based 

on ordinary linear regression 

with y = −1.8 + 3.3x , with 

a p-value < 2 × 10−16 and a 

correlation of 0.86 (95% confi-

dence interval: 0.79 to − 0.91)

Fig. 3  There is a close rela-

tionship between the global 

mean precipitation intensity 

estimated through temporal 

aggregation and P∕A�
p
 , albeit 

with a constant bias. Dashed 

grey line shows the expected 

one-to-one relationship and 

an ordinary linear regression 

with ⟨�⟩ = 0.53 + 0.78P∕A�
p
 

mm/day, with a p-value 

< 2 × 10−16 for the slope 

estimate and a correlation of 

0.98 (95% confidence interval: 

0.97 to − 0.99)
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warming was estimated to be 0.47 mm/day (8%/K) and was based on an expression for a derivation product rule that 
included both P and Ap (see “Methods” section). Based on this derivation and the mean precipitation over the period 
1950–2020, we estimated that 48.2% of the change in ⟨�⟩ could be attributed to a change in P and 51.8% to a change 
in Ap . In other words, the effect of a global warming on the precipitation intensity can be explained in terms of both 
changing thermodynamics as well as dynamical changes involving a reduction in Ap that are about equally important.

These results suggest that both � and fw respond to changes in the global mean temperature through changes in Ap and 
P. They may be representative for real-world precipitation if the precipitation simulated by ERA5 provide a good representa-
tion of measurements from rain gauges (see supporting material for details).

Fig. 4  There is a close 

connection between the 

fractional surface area with 

daily precipitation A′
p

 and the 

global mean surface tempera-

ture T, where the fractional 

area decreases with higher 

temperature. Dashed grey 

line shows a best-fit based 

on ordinary linear regression 

with A�
p
= 0.70 − 0.02T  , with 

a p-value = 2 × 10−15 and a 

correlation of − 0.78 (95% 

confidence interval: − 0.85 

to − 0.66)

Fig. 5  The global total precipi-

tation mass P is dependent 

on the global mean surface 

temperature anomaly T, as 

expected through changed 

rate of evaporation (Clau-

sius–Clapeyron). Dashed grey 

line shows a best-fit based on 

ordinary linear regression with 

P = 98.7 + 4.2ΔT  [ ΔP = 62T  

(units: gigatons); ΔP = 0.1ΔT  

(units: mm/day)], with a 

p-value < 2.0 × 10−16 and a 

correlation of 0.82 (95% con-

fidence interval: 0.73–0.89). 

The global mean precipitation 

for ‘wet’ grid-boxes with more 

than 1 mm/day precipitation 

⟨Pwet⟩ is also shown (crosses)
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3  Methods

We can express the total precipitation falling on Earth’s surface in terms of the average precipitation and Earth’s surface area 
according to the expression P = ∫

A
p dA = ⟨p⟩A , where ⟨p⟩ is the spatial average of the 24-h precipitation falling on Earth. 

Since there are regions with zero 24-h precipitation on a daily basis, it is also possible to relate the amount of 24-h precipita-
tion falling on Earth to the area on which it falls, Ap , and its mean intensity over this area ∫

A
p dA = Ap⟨�⟩ , where ⟨�⟩ is the 

average daily precipitation amount only aggregated over the surface area with 24-h precipitation Ap , or the mean precipita-
tion intensity for ’wet’ (with 1 mm/day or more) grid-boxes in the ERA5 reanalysis estimated over space.

The precipitation area is the sum of the area of the wet grid-boxes: Ap =
∑n

i=1
H(pi − p0)ai where H is the Heaviside 

function, ai is the area of grid-box i and n is the number of grid-boxes. The threshold p0 for a ‘wet day’ was in our case set to 
1 mm/day, and all parameters presented here were estimated for each grid-box of the ERA5 reanalysis [8, 9] and used as a 
basis for analysing the spatial distributions of fw and � respectively, aggregated on an annual basis. The mean precipitation 
intensity ⟨�⟩ was estimated by taking the area-weighted average over all grid-boxes: ⟨�⟩ = 1∕Ap

∑n

i=1
ai�i , where �i is the 

wet-day mean precipitation for grid-box i. The global sum of total precipitation was estimated P =
∑n

i=1
aipi for both wet 

and dry grid-boxes. The data period was 1940–2022.
We also derived local statistics aggregated over time, such as the local mean precipitation intensity � (also referred to 

as the wet-day mean precipitation), the wet-day frequency fw , and p which is the average of local precipitation p over time. 
The subscript pt is used for a random variable at time t so that the mean precipitation and the mean precipitation intensity 
are related according to p = (1∕n)

∑n

t=1
pt = (nw∕n)

�∑n

t=1
pt
�
∕nw = fw� , where nw is the number of wet days, n is the total 

number of days with observations, � =
∑n

t=1
pt∕nw , and fw = nw∕n . Hence the mean precipitation amount is the product 

between the wet-day frequency fw and the wet-day mean precipitation �.
We used a ordinary linear regression (OLR) analysis to estimate best-fit coefficients for the equations P = P0 + �T + � 

(expressing the precipitation in terms of percentages [5]) and Ap = A0 + �T + � , where T is the global mean temperature 
anomaly, whereas � and � are noise terms. Because the mean precipitation intensity was expected to depend on both the 
precipitation area and total precipitation according to ⟨�⟩ = ⟨�0⟩ + �P∕Ap , we used the analyses presented in Fig. 3 (taking 
the bias into account) and Fig. 4, as both P and Ap were found to be sensitive to a 1K global warming. Hence, we explored 
the effect of ΔT  on ⟨�⟩ for the present climate based on the expression:

where � = 0.78 (from Fig. 3), � =
dPglob

dT
= 0.122 (in units of mm/day from Fig. 5) and � =

dAp

dT
= −0.019 (from Fig. 4) are the 

slope estimates from ordinary linear regression analyses. Equation 2 is a standard mathematical differentiation following 
the product rule, and was used to estimate the fractional contribution of increased total global precipitation and change 
in surface area, due to a one degree global warming from present state, to an increase in ⟨�⟩.

The analysis presented here was carried out in the R-environment [10] and all the necessary data and method are provided 
as an R-markdown script in the supplementary material (https:// doi. org/ 10. 6084/ m9. figsh are. 23735 619. v2), in addition to 
a PDF-file with the output of the analysis. Hence, the supporting material provides complete transparency for this analysis 
and the results presented here

4  Discussion

A review of previous studies reveals comprehensive knowledge about Earth’s global hydrological cycle with fast and slow 
responses in precipitation [5]. Such a review also reveals missing knowledge, such as the implication of the fractional 
surface area receiving precipitation on a daily basis [6]. Furthermore, advances in our understanding tend to delve into 
further details and increasingly complex processes, however, it’s also useful to synthesise our understanding into simple 

(2)

d⟨�⟩

dT
= �

d(P∕Ap)

dT

= �

�
1

Ap

dP

dT
−

P

A2
p

dAp

dT

�

=
�

Ap

�

� −
P�

Ap

�

,

https://doi.org/10.6084/m9.figshare.23735619.v2
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conceptual models, based on state-of-the-art data. This paper tries to provide a simple and representative heuristic 
description of how a global warming is connected to precipitation statistics.

The ERA5 reanalysis data reveals a link between the global surface area receiving daily precipitation Ap and the wet-
day frequency ⟨fw⟩ as well as the global mean precipitation intensity ⟨�⟩ . Additional analysis of the data (supporting 
material) also suggest that the fraction of surface area with heavy precipitation (exceeding 20 mm/day and 50 mm/day) 
also has increased between 1940 and 2020 in a consistent way with the results obtained for ⟨fw⟩ and ⟨�⟩ which can be 
interpreted as parameters that indicate a shift in the global statistics of local precipitation.

With the established relationships between the global hydro-climatological indicators P and Ap and statistical param-
eters describing the distribution for local precipitation, as well as the global mean temperature T, we can provide a 
crude rule-of-thumb estimate for the effect of 1K global warming ΔT  on statistical parameters such as � and fw in terms 
of a change in the fractional surface area receiving daily precipitation and a change in the total mass of H2O falling on 
Earth’s surface. For example, a back-of-the-envelope calculation of the probability of receiving more than 30 mm/day 
for an ‘average’ situation, based on Eq. 1, estimates that a one-degree global warming changes Pr(X > 30mm∕day) from 
0.25 to 0.32% if we use the global averages ⟨�⟩ and ⟨fw⟩ . These results also reveal a connection between space and time 
through the way Ap is linked with ⟨fw⟩ , and our results suggest that P∕Ap corresponds well with the global mean of local ⟨�⟩ 
aggregated over time. In other words, time and space appear to be linked when it comes to daily precipitation statistics.

One caveat of this analysis is its reliance on just one reanalysis, in this case ERA5. A comparison between annually 
aggregated precipitation statistics derived from Norwegian rain gauges and corresponding quantities derived from 
ERA5 data interpolated to same locations gave a correlation of 0.87 for � and 0.80 for fw (supporting material). A recent 
evaluation of ERA5 over the Alps, the Carpathians and Fennoscandia, using high-quality regional datasets derived from 
dense rain-gauge data from these European sub-regions as reference, also has shown that ERA5 agrees qualitatively well 
with the reference datasets and that major mesoscale patterns in the climatology (mean, wet-day frequency, 95% quan-
tile) are reproduced [11]. Moreover, Lavers et al. evaluated the ERA5 precipitation on a global scale and concluded that 
ERA5 precipitation is a better proxy for observed precipitation in extra-tropical areas than in the Tropics, though visual 
inspection of precipitation patterns from ERA5 and the observations broadly agrees for the extreme events they have 
studied [12]. Hence, the ERA5 data appear to give a representative picture of the annual rainfall statistics over Europe at 
least, and the results derived here can be interpreted as having some validity in terms of Earth’s global hydrological cycle.

Data from the Tropical Rain Measurement mission (TRMM) suggest that the typical daily precipitation area Ap between 
50° S and 50° N decreased over the period 1998–2016 [13], and a similar analysis on a global basis based on ERA5 reanaly-
sis data also found a downward trend in the surface area receiving daily precipitation [6]. Furthermore, the analysis of the 
ERA5 data suggested that the reduction in surface area receiving 24-h precipitation mainly took place within the 50° S 
and 50 ° N latitude band [6]. There is a caveat with satellite and reanalysis data that potentially may lead to misleading 
long-term trends due to the introduction of new observational inputs over time, e.g. connected with the launch of new 
satellite missions. Nevertheless, there are multiple lines of evidence indicating that the surface area with daily precipita-
tion has been shrinking over time while the total precipitation amount has increased [6, 14].

Both P and Ap turn out to be important global climate indicators, but have traditionally not been included in global 
sets of indicators within the meteorological community, and are not included in those currently provided by either the 
WMO GCOS1 or Copernicus C3S.2 Both are straight-forward to compute when we have reanalyses such as ERA5, and the 
demonstration provided here suggest they are linked to extreme rainfall amounts. Furthermore, both fw and Ap influence 
the degree of dryness and aridness, and may potentially be linked to droughts [14] although this aspect is beyond the 
scope of present analysis. There are also some indications that � and fw may be linked to sub-daily amounts, e.g. through 
intensity–duration–frequency (IDF) curves.

The Clausius–Clapeyron equation predicts a 7% increase in water vapour for a +1K increase in temperature, however, 
the regression analysis herein gave a slope estimate of 4% for the increase in total precipitation amount due to a +1K 
global warming. According to the sixth assessment report of the IPCC [2], increases in global mean precipitation are a 
robust response to global surface temperature that very likely is within the range of 2–3%/K. The discrepancy between 
the estimates from our regression analysis and those published previously may indicate a presence of inhomogeneities 
in ERA5 or be sensitive to the analysed time period, such as those reported by Lavers et al. [12] and Douville et al. [15], 
that also may explain the two clusters of data points seen in Fig. 2. Hence, there is a caveat with these results that may 

1 https:// gcos. wmo. int/ en/ global- clima te- indic ators.
2 https:// clima te. coper nicus. eu/ clima te- indic ators.

https://gcos.wmo.int/en/global-climate-indicators
https://climate.copernicus.eu/climate-indicators
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be related to a potentially spurious step changes in Ap between 1980 and 1990 and after 2015 [6]. This caveat may affect 
the trend in Ap presented here and its dependency on the global mean temperature.

An increased rate of atmospheric overturning with more vertical displacement, which we can brand as a ‘dynamic 
effect’ of a global warming on the hydrological cycle, implies changes in the cloud structure and rainfall patterns as well 
as changes in Ap . This notion is supported by the observations of higher cloud tops [16] and a deeper atmosphere and 
may be connected with the fast precipitation response [5]. Higher cloud tops with a deeper vertical cloud structure also 
favour more intense rainfall since the raindrops fall over a longer vertical distance where they can collect moisture and 
smaller cloud drops [17]. There have also been suggested other explanations for changes in extreme rainfall amounts, as 
Ombadi et al. proposed that the rainfall extremes in high-elevation regions of the Northern Hemisphere have increased 
by 15% per degree K of warming, double the rate expected from increases in atmospheric water vapour, which they 
attributed to a warming-induced shift from snow to rain [18]. Another factor may be a slow-down in storm movement, 
which means that the same spot receives more of the precipitation that otherwise would have been spread over a larger 
area [19]. None of these mechanisms exclude each other and all may be valid in different settings and locations.

5  Conclusion

Based on the ERA5 reanalysis, we demonstrate that both the daily total global amount of precipitation (P) and the part 
of Earth’s surface area on which 24-h precipitation falls (Ap) , contribute to the global mean precipitation intensity ⟨�⟩ and 
frequency ⟨fw⟩ . These statistical parameters describe the shape of the statistical distribution of local mean precipitation 
intensity and frequency, and a general shift in their distribution towards greater values can explain some of the increased 
frequency of heavy precipitation events. We estimated that a one-degree warming from present climate corresponds 
to an increase in the global mean precipitation intensity ⟨�⟩ by 0.47 mm/day through an ordinary linear regression 
analysis, for which changes in P contributes to about half of the increase and changes in Ap to the other half. Hence, both 
global total mass of precipitation P and the global surface area Ap are connected to the probability of heavy daily rainfall 
amounts. These results highlight the importance of including both the daily total global amount of precipitation and the 
fractional of Earth’s surface area with 24-h precipitation in the list of essential global climate indicators.
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