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Abstract
When pollutants like petroleum hydrocarbons as one of the major origins of aquatic pollution, enter the environment, 
they alter the biological and/or physicochemical characteristics of the aforementioned sites due to their potential of 
bioaccumulation, biomagnification, and resistance against biodegradation besides its toxicity and carcinogenicity in 
nature. Thus, the importance of degradation, deterioration and remediation of these pollutants from environments such 
as aquatic environments via a green method such as bioremediation is undeniable. Biosurfactants as secondary metabo-
lites of microorganisms, enhance the bioremediation rate of petroleum hydrocarbons. Using oleophilic microorganisms 
with the capability of biosurfactant production which this paper calls "potential microorganisms" in a bioremediation 
system is promising. This article reviews the effective factors on bioremediation and the share of biosurfactants on the 
rate of bioremediation process, chemical surfactants and their limiting factors as biosurfactant’s chemical counterpart, 
the rising market of biosurfactant and its promising future, various types of biosurfactants, and the requirements to 
develop an optimized biosurfactant-base bioremediation system. Furthermore, this paper based on former studies sug-
gests a novel in-situ biosurfactant-based bioremediation system integrated with Biochar called “Potential Microorganisms 
Immobilized on Biochar system” (PMIBC system) as a cost-effective in-situ bioremediation system for decontamination of 
aquatic environments like groundwater, lakes, marshes, etc. from petroleum hydrocarbons and oil spills which requires 
further study.

Keywords  Petroleum hydrocarbons · Aquatic pollution · Bioremediation · Biosurfactant · Microbial Enhanced Oil 
Recovery (MEOR) · Biochar

1  Introduction

Environmental pollution due to its vast and adverse effects on public health, mental health, ecosystems, and socioeco-
nomic factors, requires prompt and proper measures to be restored and rehabilitated [1–3].

Investigates show the fact that approximately 2 million tons of oil enter aqueous environments per year based on 
sea-based activities [12]. After an oil spill occurrence, petroleum may remain in aquatic environments for a long time 
[13]. Petroleum hydrocarbon pollution may cause serious and harmful effects on the aforementioned ecosystems as well 
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as human security because of its potential of bioaccumulation, biomagnification, and resistance against biodegrada-
tion besides its toxicity and carcinogenicity in nature [12, 14, 15]. Petroleum is a multiplex combination of aromatics, 
heterocyclic hydrocarbons, and natural gases. Besides crude oil which is one of the most prevailing global sources of 
energy contains a complex and variable mixture of hydrocarbons mostly including alkanes, saturates, aromatics, resins, 
asphaltenes, naphthenes, etc. [11, 16, 17].

Bioremediation is a valuable biotechnology method that simply can be defined as the process of decontamination 
and mitigation of pollutants from the projected contaminated environment via microbial activities. Since biosurfactant 
is an eco-friendly and effective compound that has the properties of surfactants generated by some microorganisms, it 
can enhance the breaking of petroleum hydrocarbons by increasing the bioavailability of mentioned contaminations for 
oleophilic microorganisms existing in the polluted aquatic environments and by this mean the bioremediation process 
enhances. Therefore, biosurfactant is a crucial factor in an optimized bioremediation process [20–22].

The objective of the present review is to evaluate the biosurfactant-producing microorganisms and their potentiality 
in bioremediation of petroleum hydrocarbon in aquatic environments.

2 � The effects of petroleum hydrocarbons on marine environments

The marine environment is among the most significant aquatic environments as they are extremely valuable due to the 
existence of various useful and applicable ecosystems and natural resources. Marine pollution is alarming because when 
pollutants, especially oil spills or chemicals as the major cause of marine pollution enter to those environments, it can 
alter the biological and/or physicochemical characteristics of aquatic sites [4, 5]. Around 35 million petroleum barrels are 
conveyed by transoceanic travels annually and numerous ship accidents occur every year and most of the accidents lead 
to an extensive release of petroleum in marine environments. Usually, oil spill accidents in the marine sites are enormous 
and noxious [6]. Crude oil leakage and spillage may lead to disastrous damages to the aquatic environments. Fractions 
of oil can change population dynamics and derange structures and interactions of ecosystems related to contaminated 
sites and impact the population of most of the native organisms [12, 18]. As an example, several studies and experi-
ments confirmed the diminishing of Persian Gulf biodiversity triggered by the petroleum contamination [19]. Increasing 
industrial activities for use of energy and raw materials and large-scale release of various contaminating factors during 
oil drilling, transportation, and accidents results in environmental pollution, for instance, the collision and explosion 
accident of Sanchi ship in 2018 resulted in a vast oil spill in water [7, 8]. Petroleum is the most profitable source of energy 
and simultaneously is among the most prevalent and hazardous environmental pollutant factors which can lead to the 
contamination of terrestrial and aquatic environments and ecosystems like groundwater, surface water, and soil due to 
its qualities like toxicity and recalcitrant nature [9–11].

3 � Bioremediation of petroleum hydrocarbons and the effects of biosurfactant

Remediation of petroleum hydrocarbons is a vital procedure for environments and/or organisms. Besides, some reme-
diation strategies such as physical or chemical are not sufficient for decontamination of environments because of the 
unceasing entry of various pollutants throughout environments as a consequence of anthropogenic activities and also 
these methods mostly are costly and time-consuming. For this reason, bioremediation as a cost-effective, eco-friendly, 
non-toxic biotechnology method has been widely recommended [6, 23]. Bioremediation is the process of degradation, 
detoxification, mineralization, or transformation of a hazardous pollutant to a safe state relying on microorganisms’ 
activity and their enzymes [24]. Aquatic bacteria have a wide range of bioremediation applications like biodegradation 
and removal of petroleum, diesel, heavy metals, other recalcitrant, etc. [25]. Bioremediation of petroleum hydrocarbons 
depends on microbial metabolic activities in presence of factors that optimize the process which in some cases just 
requires the addition of some factors like nutrients, surfactants, etc. to the polluted media [26, 27]. The efficacy of petro-
leum hydrocarbon bioremediation strategies may depend on different factors in aimed sites (Fig. 1) which researchers 
must consider all these factors before starting a bioremediation process [14, 28]. Sufficient concentration of nutrients, 
oxygen, and also suitable temperature along with pH between 6 and 9 in aimed sites optimize the rate of growth and 
hydrocarbon biodegradation. Studies determine that the maximum rate of hydrocarbon degradation or in other words 
hydrocarbon degradation in marine environments and freshwater environments respectively are 15–20 °C and 20–30 °C 



Vol.:(0123456789)

Discover Water             (2022) 2:5  | https://doi.org/10.1007/s43832-022-00013-x	 Review

1 3

[29, 30]. The addition of nitrogen and phosphorous in bioremediation sites can enhance the biodegradation rate of 
petroleum [31].

Biosurfactants are amphiphilic molecules that have surface tension reduction abilities that can be used in environ-
mental, industrial, agricultural, therapeutic activities and can also enhance petroleum bioremediation [32–35]. As a 
secondary metabolite of microorganisms, biosurfactants can be processed by the cultivation of biosurfactant producing 
microorganisms in the stationary phase on many sorts of low-priced substrates like biochar, plant oils, carbohydrates, 
wastes and high-level production of biosurfactants can be controlled by regulation of environmental factors and growth 
circumstances [36, 37]. Cultivation of biosurfactant-producing microorganisms requires an appropriate media and some 
factors (Fig. 1). Important factors for biosurfactant production that should be taken into consideration include nitrogen 
source, carbon source, carbon to nitrogen ratio, minerals, vitamins, metabolic regulators, inhibitors, inducers, salinity, 
pH level, and water. For the best result of microbial growth on the media, researchers need data about the properties 
of the intended microorganism and its optimized media [38]. Based on Khan et al., an increase in nutrient availability 
and accessibility for microbial strains with the ability of hydrocarbon utilization and biosurfactant production, leads to 
an increase in biosurfactant production and eventually the rate of hydrocarbon bioremediation increases (Fig. 1) [39].

In-situ and ex-situ bioremediation techniques are respectively defined as bioremediation of pollutants at the contami-
nated site and out of the contaminated site. Usually, the ex-situ bioremediation techniques are more expensive rather 
in-situ techniques. Examples of ex-situ techniques are land farming, bioreactor, windrow, biopile and examples of in-situ 
bioremediation techniques include natural attenuation, phytoremediation, biosparging and, bioventing Additionally, 
biostimulation and bioaugmentation enhance the bioremediation process in both techniques. Nevertheless, researchers 
decide on ex-situ or in-situ bioremediation methods considering the location and type of pollutant [24, 40, 41].

Using indigenous bacteria which utilize hydrocarbons and produce biosurfactants, is a green and promising biore-
mediation method that ameliorates the efficiency of the bioremediation process by making petroleum hydrocarbons 
bioavailable and facilitating its degradation [42]. On exposure to petroleum, a major group of microorganisms that 
degrade hydrocarbons, also generate biosurfactants and bioemulsifires [43, 44]. Biosurfactants promote the surface 
area of hydrophobic water-insoluble substrates and following this phenomenon, hydrocarbon utilizing bacteria can 
utilize petroleum hydrocarbons more efficiently for its growth and logically, after all, rates of biodegradation, bioreme-
diation, and biocontrol are enhanced [45]. The biodegradation of petroleum hydrocarbons requires a wide spectrum 
of enzymatic action, therefore the use of microbial consortium or biofilm to remediate these hydrocarbons could be 
appropriate [46, 47]. The bioremediation process cannot be effective if there are no microorganisms with the ability of 
hydrocarbon degradation available in the contaminated site [31]. Dozens of bacteria can utilize petroleum hydrocarbons 
in the aquatic environments which some of the bacterial species that have a satisfying ability to tolerate high concen-
trations of petroleum hydrocarbons and degrade them, have been listed in (Table 1). Microorganisms that generate 
biosurfactants mostly simplify the utilization of petroleum by two common functions: (1) boosting the complexation 
and solubilization of apolar substrates which finally leads to an increase in bioavailability of petroleum and (2) enhanc-
ing the affinity between oil–water interface and cell surface through metabolic activities which leads to stimulation of 
oil–water interface film’s deformation [48].

4 � Chemical surfactants and dispersants

Dispersants are chemical mixtures containing surfactants and solvents. They decrease the surface tension between 
oil and water interfaces leading to the oil-microdroplets formation which is more biodegradable in the water column 
rather than large spills. This process is called emulsification [36, 61]. In the above-mentioned process, dispersed oil may 
become more bioavailable for the marine organisms [62]. Dispersants are applied world-widely and commonly as an 
urgent response to the oil spills in aquatic ecosystems, which results in the formation of oil-microdroplets and ultimately 
make it more bioavailable for both hydrocarbons utilizing microorganisms and other marine organisms [63, 64]. The use 
of chemical dispersants in case of oil spill leakages and accidents in aquatic environments may result in the change of 
activity and community composition of microorganisms including hydrocarbon-degrading microorganisms [59]. Besides, 
dispersants in turn can contain amounts of toxic and hazardous compounds. For instance, Corexit EC9500A and Corexit 
EC9527A both include hazardous components such as: Organic sulfonic acid salt (10–30% w/w), propylene glycol (15% 
w/w). Also, Corexit EC9500A and Corexit EC9527A contain hydrotreated light petroleum (10–30% w/w) and 2-butox-
yethanol (30–60% w/w) respectively [65]. Furthermore, information confirms that most of the industrial dispersants and 
chemical surfactants are petroleum based [42].



Vol:.(1234567890)

Review	 Discover Water             (2022) 2:5  | https://doi.org/10.1007/s43832-022-00013-x

1 3

Deepwater Horizon (DWH) occurred on April 20th, 2010, followed by an explosion on DWH drilling rig and led to oil 
and gas blowout [66, 67]. Statistics show that 74% of saturated hydrocarbons, 16% of aromatic hydrocarbons, and 10% 
of polar hydrocarbons formed the DWH oil spill [68]. Corexit EC9500A is an oil dispersant which was largely employed 
in the Gulf of Mexico after the aforementioned catastrophe both below water and at the surface. Studies after the 
DWH accident reveal that both Corexit 9500 and 9527 were genotoxic and cytotoxic for marine mammals. Meanwhile, 
Corexit 9500 was less genotoxic but more cytotoxic than Corexit 9527 [69]. Aquatic studies show this fact that this oil 
dispersant is low toxic for many crustaceans, corals, and fishes but is more toxic to planktons, daphnia, and many spe-
cies in the early stages of life [67]. After using 7 million liters of dispersants in DWH to stimulate crude oil degradation by 
microbial processes, oxidation rate measurements of alkanes and aromatic hydrocarbons revealed the fact that neither 
suppression nor stimulation of oil biodegradation process in presence of dispersants will change. Although further 
studies demonstrate that Corexit EC9500A affects some characteristics of Marinobacter sp. TT1 including metabolisms 
of hydrocarbon, formation of biofilm, and chemotactic motility, it also induces mechanisms of solvent tolerance in the 
mentioned bacterium [59, 66].

Table 1   bacteria with 
the ability of petroleum 
hydrocarbons utilization 
and toleration in aquatic 
environments

# Bacterial species Petroleum hydrocarbon compound References

1 Aeromonas [50]
2 Acinetobacter spp. Aliphatics, Monoaromatics, C5-C16 alkanes, C10-C30 alkanes [6, 49, 50]
3 Achromobacter Polyaromatics [6, 49]
4 Alcaligenes spp. [6, 51]
5 Alcanivorax spp. Aliphatics [49, 52]
6 Alkanindiges [6]
7 Alteromonas [50, 53]
8 Arthobacter [54]
9 Bacillus spp. Aliphatics, Monoaromatics, Polyaromatics [6, 49]
10 Brevibacterium Aliphatics [6, 49]
11 Burkholderia C5-C16 alkanes [6, 49]
12 Corynebacterium spp. [6]
13 Cycloclasticus Polyaromatics [49, 55]
14 Dietzia [50, 55]
15 Enterobacter [50]
16 flavobacterium spp. [6, 50]
17 Geobacillus [56]
18 Halomonas Monoaromatics, [49, 56]
19 Kocuria sp. [50, 57, 58]
20 Marinobacter sp. Aliphatics [49, 59]
21 Micrococcus roseus Aliphatics, [49, 59]
22 Mycobacterium Fatty acids, Cycloalkanes, Alkyl benzenes [6, 49]
23 Nocardia [60]
24 Oleiphilus [56]
25 Oleispira [55, 56]
26 Pseudomonas aeruginosa Aliphatics, Monoaromatics, Resins, C5-C16 alkanes [6, 49]
27 Pseudomonas fluorescens Aliphatics, Monoaromatics, Resins, C5-C16 alkanes [6, 49]
28 P. putida - [25]
29 Rhodococcus Aliphatics, Monoaromatics, Alkyl benzenes, Fatty acids [6, 49]
30 Sphingomonas Monoaromatics [6, 49]
31 Staphylococcus [6]
32 Streptomyces sp. [25]
33 Thallassolituus Aliphatics [49, 55]
34 Vibrio Polyaromatics [6, 49]
35 Xanthomonas sp. [55]
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After the DWH accident, some dispersants listed on the U.S. Environmental Protection Agency’s (EPA) National Contin-
gency Plan (NCP) were employed in the Gulf of Mexico [70]. Eight of these dispersants include Corexit 9500, Dispersit SPC 
1000, Jd-2000, Nokomis 3-AA, Nokomis 3-F4, Saf-Ron Gold, Sea Brat #4, and ZI-400. Over the past few years, acute toxicity 
tests were conducted on the mentioned dispersants and revealed their relative toxicity [71]. Nevertheless, various stud-
ies demonstrate that application of chemical surfactants can impede the process of biodegradation of some petroleum 
hydrocarbons for the particular reason that petroleum degrading microorganisms may utilize those applied surfactants 
rather than petroleum hydrocarbons as growing substrate [72]. The use of chemical dispersants, besides being relatively 
inefficient, can also result in the accumulation of its toxic compounds in the aquatic and any other environment [18].

Several studies demonstrate that there are some green and non-toxic chemical surfactants that can be used in a 
petroleum bioremediation process like choline laurate or choline alkylsulfates. Further studies, though, indicate that 
mixtures of a green surfactant and a biosurfactant can improve the rate of petroleum bioremediation more efficiently. 
Shah and his colleagues [73] suggested a new strategy in the remediation of crude oil. A binary mixture as a green dis-
persant including a glycolipid-type biosurfactant produced by Starmerella bombicola named lactonic sophorolipid, and 
a liquid and ionic surfactant named choline laurate were reported. At a 40:60 (w/w) ratio of choline laurate and lactonic 
sophorolipid with a dispersant to oil ratio of 1:25 (v/v), the efficiency of dispersion achieved 83%. This binary mixture is 
also classified as non-toxic agent [73, 74].

5 � The rising market of biosurfactant and its challenges

Biosurfactants do not process any secondary pollutants but a lot of chemical surfactants do [75]. Employment of these 
agents for remediating oil-contaminated sites is beneficial due to its characteristics, like biodegradability, specificity, 
activation at very low concentrations, high surface activity, the capability to reduce interfacial tension, environmentally 
safe, low toxicity, and efficacy in vast ranges of temperatures and pH [9, 76–80].

Based on former studies, the use of biosurfactants in a short period of time enhances the removal rate of petroleum 
hydrocarbons (achieving almost 80% removal rate within 1 week of biosurfactant cure) [81]. Compared to the chemical 
dispersants, biosurfactants appear more effective in bioremediation applications on oil-contaminated aquatic environ-
ments [82].

Regardless of the aforementioned advantages of using biosurfactants, these biological agents are not commercially 
common yet as their final production cost is approximately 12 times higher than chemical surfactants [83]. 70–75% of all 
common and synthetic surfactants used in industrial countries are based on petroleum, therefore developing economi-
cal processes and approaches to find a cost-effective biosurfactant is a critical key to expanding the petroleum hydro-
carbons bioremediation methods [42]. Some strategies have been developed to overcome the problem of large-scale 
biosurfactant production [84]. Some of the challenges along the commercialization process of biosurfactants include 
downstream processing, the requirements of pretreatment, large-scale production, and the availability of raw materi-
als as feedstock. Various wastes can be applied as feedstock for biosurfactant-producing microorganisms to lower the 
production price of biosurfactants, like agro-industrial waste, glycerol, and oily waste, fruit and vegetable waste, dairy 
industrial waste, municipal waste, and industrial waste [86].

The global demand for biosurfactants is growing each year and these biological agents form a major share of the sur-
factant market. Estimations indicate that revenue generation of the biosurfactant market is expected to reach 2.6 billion 
US dollars by 2023 from 1.8 billion US dollars in 2016 which indicates the global market tendency for the replacement 
of chemical surfactants with biosurfactants [85].

6 � Types and classifications of biosurfactants

Biosurfactants are amphipathic molecules with both hydrophilic and hydrophobic moieties. Hydrophobic moieties can 
include a fatty acid carbon chain with 10 to 18 atoms of carbon or a peptide, aprotein with a high portion of lipophilic 
side chains. Hydrophilic moieties can include carbohydrate, phosphate, carboxylate, or ester groups, an amino acid or 
similar compounds [87, 88].

Generally, biosurfactants include different types (Fig. 2) and Different types of biosurfactants also contain various sub-
divisions (Table 2) [89–92]. These biological surfactants can be extracted from certain kinds of plants, animals, bacteria, 
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filamentous fungi by fermentation, and yeast which can synthesize biosurfactants. Among all microorganisms, bacteria 
are the major biosurfactant producing group [79, 93, 94].

Numerous numbers of biosurfactants are produced by aerobic microorganisms in aqueous media using a carbon 
source [87]. Biosurfactants are divided into high molecular weight (HMW) and low molecular weight (LMW). HMW bio-
surfactants are known for their emulsifying properties and LMW biosurfactants are suitable for decreasing surface and 
interfacial tensions between oil and water. Altogether, biosurfactants with higher molecular mass are considered more 
effective as emulsification agents [102]. The significant classes of LMW surfactants usually are glycolipids (as rhamnolip-
ids), lipopeptides (as surfactin), and phospholipids, whereas HMW surfactants are polymeric [87, 103].

7 � Requirements to develop a novel and optimized biosurfactant‑base bioremediation 
system

A biosurfactant-based bioremediation system is an accelerated or engineered bioremediation technique in which the 
main focus is to increase microbial biosurfactant production by providing a suitable environment for the microbes [24, 
109]. Typically, microorganisms with biotechnological applications are chosen for industrial approaches [104]. Biosur-
factants considerably apply in various industrial applications, like in medicine, food, cosmetics, agriculture, petroleum. 
[105]. One of the major benefits of remediation of contaminated sites by the use of microbes is its high efficiency and 
low cost in a sustainable fashion [106]. due to the fact that a vast variety of microorganisms have the potential for bio-
surfactant production and they are ubiquitous in aqueous sites, The idea of using these biological agents in order to 
improve the bioremediation processes of petroleum in contaminated aquatic sites has become more promising. [79, 
107]. Studies and results declare the fact that a lot of biosurfactants are bio-compatible and have an acceptable applica-
tion to bioremediation of petroleum contaminated aquatic environments. Biosurfactants produced by microorganisms 
remarkably can reduce the surface tension of petroleum hydrocarbons and enhance the bioremediation rate of petro-
leum hydrocarbons [108].

The availability of a big volume of data (big data) on microorganisms’ behavior under various environmental stress 
levels, genetics, catabolic potentials, functional pathways, enzymes, metabolites like biosurfactants and their character-
istics, promise researchers a promising future of developing an optimized biosurfactant-based bioremediation system 
for bioremediation of pollutants like petroleum in the aquatic environments. Considering the fact that in-situ generation 
of biosurfactants is almost the most sustainable approach through bioremediation, the next generation biosurfactant-
base systems must be combined with sensors and genetically engineered microorganisms. based on available data of 
the biosurfactants producing microorganisms on the bioremediation process, researchers and engineers can develop a 
biosurfactant-base bioremediation system that constantly detects the number of pollutants, pH, temperature, salinity, 
availability of nutrients, and other effective factors on bioremediation via sensors for in-situ detection. Followed the 
detection, the system should provide the suitable condition for proper biosurfactant-producing microorganisms to 
enhance the bioremediation rate of petroleum and oil spills in aquatic environments as a sustainable clean-up technique 
using big data and sensors [23, 110–118]. The development of such an optimized biosurfactant-based bioremediation 
system requires at least two key factors besides having sufficient knowledge about the projected environment. First, is 
knowing about biosurfactant-producing microorganisms and choosing the most suitable microorganisms for the system 
and the second one is genome sequencing and genetic engineering of biosurfactant producers to optimization of the 
bioremediation system.

Table 2   subdivisions of biosurfactants

Biosurfactant classification: Subdivisions: References:

Glycolipids Rhamnolipids, di-rhamnolipids, sophorolipids, trehalolipids, Mannosylribitol lipid, 
Mannosylarabitol lipid, Mannosylmannitol lipid, Cellobiolipid, Xylolipid

[95–98]

Lipopeptides Surfactin, Lichenysin, Polymyxin, Psudofactin II, Fengycin, Iturin, Syringafactin, 
Amphisin, Kurstakin, Pumilacidin, Viscosin, Serrawettin, Subtilisin, Arthrofactin, Orni-
thine, Bacillomycin D, Fusaricidins,

[16, 97–99]

Polymeric surfactants Liposan, Alasan, Emulsan, Protein PA, Mannoprotein, Biodispersan, rufisan [90, 100, 101]
Phospholipids/Fatty acids/Neutral 

lipids
Phosphatidylethanolamine, Corynomycolic acid, Spiculisporic acid, Flavolipid, [98, 100]
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7.1 � Biosurfactant‑producing microorganisms

A bioremediation method including in-situ or ex-situ applications rely on microbial activity, therefore a major require-
ment to develop a biosurfactant-based bioremediation system is to thoroughly know about biosurfactant producing 
microorganisms’ qualities and characteristics [24].

A study suggests the use of biosurfactant-producing bacterium, from Enterobacter hormaechei species, to combat 
accidental marine oil spills.The produced lipoprotein biosurfactant is an anionic HMW biosurfactant (48 KDa) and has 
unique emulsification and surface activities. E. hormaechei, also, has the ability to degrade 85% of petroleum hydrocar-
bons of crude oil in 10 days of incubation [119].

A laboratory experiment was performed in 2018 to test the bioremediation rate of contaminated seawater with petro-
leum products (motor oil) using biosurfactant produced by Pseudomonas aeruginosa UCP 0992 that cultivated in indus-
trial wastes. After 30 days, the experiment recorded more than 90% rate of oil degradation [76]. Pseudomonas aeruginosa 
mostly produces rhamnolipids, surface-active compounds which belong to the class of glycolipid biosurfactants [120].

In another study, Bacillus cereus strain BCS0, a biosurfactant producer isolated from seawater and cultivated with dif-
ferent carbon and nitrogen sources, augmented to a motor oil-contaminated sample. Within 27 days, the degradation 
rates enhanced up to 96%. Besides, the biosurfactant remained stable in a vast range of temperatures (5–120 °C), pHs 
(2–10), and salinity (2–10%), which demonstrated the potential of mentioned microorganism and its biosurfactant in the 
bioremediation process of aquatic environments [121]. The biosurfactants produced by some species of the genus Bacil-
lus have also anticancer activity and non-pathogenic characteristics, therefore this genus has attracted a lot of attention 
in the biosurfactant industry [122, 123].

Acinetobacter baumannii OCB1, isolated from an aquatic site, grown in seawater contaminated with petroleum crude 
oil, and supplemented with glucose (1.0 g/L), demonstrated 69.69% C8-C14 hydrocarbons degradation. Plus, the addition 
of 0.05 g/L of yeast extract enhanced the degradation of C8-C14 hydrocarbons. Additionally, the lipopeptide biosurfactant 
produced by A. baumannii OCB1 remained completely stable in a wide spectrum of pHs (2–12) and NaCl concentrations 
(2–12%), meaning that it produces a halotolerant biosurfactant [43]. Lipopeptide biosurfactants can take action as the 
replacement of chemical surfactants if only the final cost of production of these biological agents become more reason-
able by developing new methods and strategies [99].

A study suggested the use of a biosurfactant/phenol system to improve Polycyclic Aromatic Hydrocarbons (PAHs) bio-
availability. Phenol in turn reduced the biosurfactant’s critical micelle concentration (CMC) and enlarged the dissolution 
of PAHs in biosurfactant solutions. After adding biosurfactant, the bioavailability of PAHs in sludge improved from 27.7% 
to 43.1% and after the addition of phenol, bioavailability reached 49.2%. Phenol also improved the bioremediation of 
PAHs in biosurfactant solutions [124]. While phenol enhances the rate of bioremediation, the use of biosurfactant/phenol 
system is not recommended in marine ecosystems due to the hazardous properties of phenol and phenolic compounds. 
Based on the discussed data, biosurfactants can also be used for the bioremediation of aromatic compounds such as 
phenol or phenolic derivatives [125].

Hydrocarbons’ degradation capability of Staphylococcus pasteuri CO100 as a halotolerant microorganism under high 
salinity, was studied. Results of the study demonstrate that Staphylococcus pasteuri CO100 degraded 72% of aliphatic 
hydrocarbons existing in crude oil, they can also grow on PAHs like pyrene, fluoranthene, and phenanthrene. The lipo-
peptide biosurfactant produced by Staphylococcus pasteuri CO100 can enhance oil degradation more efficiently than 
some synthetic surfactants. The biosurfactant-CO100 remained stable in a vast range of temperatures (4–121 °C), pHs 
(24.3–12), and salinities (0–300 g/L NaCl) [126].

Standing on various researches and studies on microbial strains, some of the potential and promising microbial strains 
which produce promising biosurfactants that can enhance the bioremediation rate of petroleum hydrocarbons in aquatic 
environments have listed (Table 3).

Based on the diversity of chemical components of petroleum, the use of bacterial consortiums, which produce biosur-
factants in order to biostimulate petroleum pollutants bioremediation rates, is recommended. A consortium of microor-
ganisms has a greater possibility of covering more spectrum of enzymatic actions rather than a single bacterium [100, 
106]. In an experiment, 5 marine bacteria candidates, where sampled from sediments of four different places to examine 
their potential of PAHs removal, The bacterial consortium consist of Ochrobactrum, Streptococcus, Pseudomonas sp., 
Pseudomonas aeruginosa and Achromobacter xylosoxidans demonstrated more than 90% removal of PAHs [144].

Chen et al. suggested the combination of two hydrocarbon-degrading microorganisms including Dietzia sp. CN-3 and 
Acinetobacter sp. HC8–3S as a consortium in which both microorganisms were isolated from petroleum-contaminated 
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marine sediments of Bohai Bay. The biosurfactant-producing bacterial consortium is recommended for the biodegrada-
tion of crude oil since this halotolerant and oil-degrading bacterial consortium reached 95.8% degradation capability of 
crude oil in 10 days. The mentioned bacterial consortium effectively degraded crude oil in a vast spectrum of salinities 
(0–120 g L−1) and pHs (4–10) [145].

For the very first time in 2020 in Isfahan, Iran, Achromobacter kerstersii LMG3441 was identified as a glycolipid biosur-
factant producer and hydrocarbon consumer. Results showed an extensive crude oil degradation capability (53%) of this 
strain. Besides, yeast strain Rhodotorula muciloginosa SKF2 produces sophorolipid biosurfactants and has the ability of 
crude oil degradation. This novel study suggests the use of these two mentioned strains as a microbial consortium due 
to their high potential for biosurfactant production and crude oil biodegradation [127].

7.2 � Genome sequencing and genetic engineering of biosurfactant producers

Increasing progressions in genomic data and genome sequencing of microorganisms with the capability of hydro-
carbon degradation and biosurfactant production, provide researchers opportunities to develop promising methods 
and approaches for the bioremediation of petroleum in the aquatic environments [146]. The use of microbial enzymes 
involved in the process of bioremediation such as oxidoreductase, lyases, peroxidases, hydrolase, dehalogenases, etc. 
is a secure, effective, and cost-effective bioremediation method. The new and promising genetic engineering methods 
such as clustered regularly interspaced short palindromic repeat—CRISPR associated proteins (CRISPR-Cas) technol-
ogy give scientists a suitable approach to increase the production of enzymes and biosurfactants by transferring the 
coded genes of enzymes and biosurfactants into another microbial host with desired characteristics or knocking-out 
some impediment genes [98, 147–150]. Due to the significant advances in molecular biology and available data about 
DNA sequences of biosurfactant-producing microorganisms, it is achievable to overproduce recombinant strains with 
more efficient biosurfactant production and hydrocarbon utilization rather than wild-type strains which can be used in 
a bioremediation system and increase the rate of the petroleum hydrocarbon bioremediation [123]. Table 4 represent 
genomic data of some hydrocarbon utilizing and biosurfactant producing bacterial strains which have been completely 
sequenced in recent years.

To show the potential of genetic engineering of biosurfactant-producing strains for the development of a cost-effective 
bioremediation system, Wu et al., established a systematical genetic engineering approach in which 53 genes of Bacil-
lus subtilis 168 were modified for the biosynthesis of surfactin biosurfactant. Five major steps have been taken in their 
systematical experiment to the goal of a rise in the surfactin titer. First, they resorted to the biosynthetic activity of the 
biosurfactant by the combination of the whole sfp gene into Bacillus subtilis 168. In the second step, they tried to decrease 
competition by deletion of 3.8% of the whole genome of the intended strain which was responsible for biofilm forma-
tion and pathways of polyketide synthase. The third step of the experiment includes potential self-resistance-associated 
protein overexpression which results in tolerance amelioration of the cell to the surfactin biosurfactant. In the fourth 
step, by the branched-chain fatty acid biosynthesis pathway engineering, they increased the precursor branched-chain 
fatty acids supply. In the last step, they improved the srfA transcription which resulted in the diversion of Acetyl-CoA from 
the process of cell growth to the biosynthesis of surfactin as a green microbial biosurfactant. What encodes surfactin 
biosynthesis in the Bacillus subtilis 168 is the srfA operon. In this experimentation, biosurfactant titer reached a maximum 
value of 12.8 g/l which indicated the great potential of genetic engineering methods and the principal role of genome 
sequencing for developing an optimized biosurfactant-base bioremediation system [151].

8 � Prospective of a biosurfactant‑based bioremediation system integrated with Biochar

Biochar (BC) is a stable solid, porous, carbonaceous material obtained from biomass via hydrothermal and thermo-
chemical processes like pyrolysis or gasification [160–162]. BC can preserve the organoleptic properties of water and 
moreover can remove biological, chemical, and physical pollutant factors in the aquatic systems [164,165). Owing to the 
carbonaceous and porous structure of BC, this material can remove various pollutants including organics and inorganics 
via the process of biosorption. Additionally, BC by providing solid support as a sustainable source of nutrients for the 
growth of hydrocarbon degrader microorganisms can be used as an aquatic oil spill recovery method besides fortify-
ing the hydrocarbon biodegradation process [164, 165]. Microorganisms that utilize petroleum hydrocarbons and, in 
some cases, produce biosurfactants, can also be immobilized on BC [166, 167]. In a study, crude oil sorption capacity 
of BC derived from peat (BP) and its oil removal efficiency examined and the results after contact of BP and crude oil in 
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Table 4   Genomic data of some hydrocarbon degrading and biosurfactant producing bacterial strains, which can be applied to produce 
recombinant strains, and can be useful in the process of bioremediation of petroleum hydrocarbons

# Strain name/ references Feature Value/count NCBI Gene Bank accession no

1 Achromobacter sp. HZ01 / [146] Genome size (bp) 5,532,918 LWKV00000000
G + C content (%) 68.1
Total genes 5,162
Gene length (bp) 5,108,407
Gene average length (bp) 990
Pseudogenes 31
rRNAs 4
tRNAs 54

2 Rhodococcus erythropolis B7g / [152] Genome size (bp) 7,175,690 LQWU00000000
G + C content (%) 62.4
Protein coding genes 7,153
Gene average length (bp) 901
Coding percentage (%) 89.8
Pseudogenes -
rRNAs 16
tRNAs 53

3 Bacillus sp. AKBS9 / [153] Genome size (bp) 1,330,614,215 POYG00000000.1
Total genes 5,253
Gene average length (bp) 83,613

4 Acinetobacter sp. AKBS16 / [153] Genome size (bp) 1,175,940,239 POYH00000000.1
Total genes 3,656
Gene average length (bp) 91,744

5 Bacillus subtilis UMX-103 / [154] Genome size (bp) 4,234,627 -
Total genes 4,399
Protein coding genes 4,301
RNA genes 98
Genes involve in biosur-

factant production
25

6 Bacillus aquimaris SAMM MCC 3014 / [155] Genome size (bp) 4,414,932 MINN00000000.1
G + C content (%) 44.8
Total genes 4,370
Protein coding genes 4,247
RNA genes 123
rRNAs 32
tRNAs 86
ncRNAs 5
Pseudogenes 153

7 Acinetobacter indicus UBT1 / [156] Genome size (Mb) 2.97 JABFOI000000000
G + C content (%) 45.9
Total genes 2,863
Total CDS 2,789
RNA genes 74
Complete rRNA 1, 1 (5S, 16S)
rRNAs 1, 1 (5S, 16S)
tRNAs 68
ncRNAs 4
Pseudogenes 68
CRISPR arrays 1
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70 min at 45 °C respectively demonstrate 32.5 g of crude oil per 1 g of adsorbent material and 91.2% which means BP 
can be used for cleaning up oil spills in aquatic environments [168]. In an experiment, rhizospheric microorganisms in 
BC-amended soil were isolated to screening biosurfactant production. Psuedomonas and Bacillus spp. were the major 
isolates. Biosurfactant derived from Psuedomonas putida in turn showed the potential of hydrocarbon degradation over 
10 days [161]. Wei et al. investigated the merged application of BC, rhamnolipid biosurfactant, and nitrogen on remedia-
tion of petroleum hydrocarbons in a microcosm study where wetland soils were artificially contaminated with crude oil. 
In the study, BC + rhamnolipid biosurfactant, BC + nitrogen, and BC + rhamnolipid biosurfactant + nitrogen respectively 

Table 4   (continued)

# Strain name/ references Feature Value/count NCBI Gene Bank accession no

8 Bacillus sp. AM 13 / [157] Genome size (bp) 3,734,657 LKCP00000000.1

G + C content (%) 41.6

Total genes 3,791

Total CDS 3,481

Complete rRNAs 9, 4, 5 (5S, 16S, 23S)

Partial rRNAs 3, 3 (16S, 23S)

rRNAs 9, 7, 8 (5S, 16S, 23S)

tRNAs 84

ncRNAs 0

Pseudogenes 202
9 Planococcus maritimus SAMP / [158] Genome size (bp) 3,216,408 MINM00000000

G + C content (%) 47.2
Total genes 3,234
Total CDS 3,141
RNA genes 93
rRNAs 8, 8, 10 (5S, 16S, 23S)
Complete rRNAs 8, 1 (5S, 23S)
Partial rRNAs 8, 9 (16S, 23S)
tRNAs 63
ncRNAs 4
Pseudogenes 30

10 Halomonas desertis G11 / [159] Genome size (bp) 3,963,288 LYXG00000000
G + C content (%) 57.82
Protein coding genes 3,639
RNA genes 76
rRNAs 8
tRNAs 58
DNA scaffolds 44

11 Bacillus cereus NWUAB01 / [104] Genome size (bp) 5,989,415 QNGD00000000.3
G + C content (%) 35.01
Total genes 6,306
Total CDS 6,191
RNA genes 115
rRNAs 11, 4, 8 (5S, 16S, 23S)
Complete rRNAs 7 (5S)
Partial rRNAs 4, 4, 8 (5S, 16S, 23S)
tRNAs 87
ncRNAs 5
Pseudogenes 280
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Fig. 1   Diagram of the optimization process of petroleum hydrocarbon bioremediation via regulation of effective factors in water

Fig. 2   classification of biosur-
factants
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decreased 32.3%, 73.2%, and 80.9% of total petroleum hydrocarbons (TPHs). BC improved adsorption of aromatic com-
pounds and rhamnolipid biosurfactant plus nitrogen increased remediation rate of heavy and light aliphatic compounds 
and decreased diversity of the microbial community and respectively shifted it to the greater abundance of Proteobacteria 
and Bacteroidetes. Results show that plants can tolerate an extra amount of rhamnolipids in association with BC and this 
association leads to amelioration of petroleum remediation rate [169, 170]. The combination of BC and rhamnolipids 
can accelerate the rate of petroleum hydrocarbons bioremediation in support of phytoremediation [171]. Magnetic BC 
is also potent for adsorption and removal of contaminants including petroleum hydrocarbons in aqueous media and in 
recent years widely used [172, 173]. Since hybridization of different bioremediation approaches may lead to an optimized 
and promising bioremediation method and based on former studies, this paper suggests a new bioremediation system 
integrated with a potential BC as a nutrient source for microorganisms to thrive on, crude oil adsorbent, and a material 
that potential microorganisms can immobilize on and calls it “potential-microorganisms-immobilized-on-biochar sys-
tem” (PMIBC system) which its theory elucidated in the following figure by the authors (Fig. 3) [174]. This system can be 
categorized as a microbial enhanced oil recovery (MEOR) method integrating with biosurfactant in which biosurfactant 
production will be in-situ and make the bioremediation process more cost-effective compared to the ex-situ produc-
tion of biosurfactants. Using PMIBC system saves biosurfactant production, purification, and transportation expenses 
and make bioremediation of hydrocarbons including petroleum hydrocarbons more economical and can be used in the 
decontamination of groundwater, lakes, marshes, etc. [163, 175].

9 � Conclusion

Biosurfactants have various industrial applications like in medicine, food, cosmetics, agriculture, bioremediation, and 
they are more biodegradable, less toxic, and in some cases more effective rather than their chemical counterparts, still 
the gap between the final cost of biosurfactants and chemical surfactants generation is considerable, as the statistics 
demonstrate the final production cost of biosurfactants is approximately 12 times higher than chemical surfactants. To 
overcome this enormous gap to the goal of popularizing the use of biosurfactants in the bioremediation of petroleum 
in various environments such as aquatic environments, researchers must develop new and effective biosurfactant-based 
bioremediation systems and solutions to achieve a cost-effective bioremediation method. As the best bioremediation 
method is the in-situ bioremediation and the most effective and productive biosurfactant producers are microorganisms, 

Fig. 3   Illustration of PMIBC 
system mainstream: A: 
immobilization of poten-
tial microorganisms on BC 
as a sustainable source of 
energy and porous media, 
B biosurfactants produced 
by potential microorgan-
isms transform large oil slick 
to oil-microdroplets and 
make it more bioavailable 
for potential microorganisms 
(emulsification), C: BC absorbs 
oil-microdroplets and poten-
tial microorganisms utilize 
these bioavailable petroleum 
hydrocarbons which lead to 
the greater growth of poten-
tial microorganisms. This 
cycle between steps B and C 
remains until the bioremedia-
tion and biodegradation rate 
of the intended polluted envi-
ronment reaches a satisfying 
level. (1): oil slick before the 
effect of PMIBC system, (2): oil 
slick after the effect of PMIBC 
system
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the ideal biosurfactant-based bioremediation systems are in-situ and dependent upon microorganisms’ activity with an 
appropriate and stable source of energy, which, as an example, this article based on former studies suggested PMIBC 
system. Hence, this article deduces that the most potent microorganisms in bioremediation of petroleum, which can be 
used in bioremediation systems, are biosurfactant producing and hydrocarbon utilizing microorganisms that the article 
listed as "potential microorganisms". Since an increase in biosurfactant production will lead to an increase in the rate 
of petroleum hydrocarbon bioremediation, progression in the development of the mentioned bioremediation systems 
requires further studies based on earlier data about potential microorganisms. Also, great headways in molecular biol-
ogy, genetic engineering like CRISPR-Cas systems, bioinformatics, and big data about the genome sequence of potential 
microorganisms and their enzymatic pathways connected to petroleum degradation and biosurfactant production, 
promise researchers to overproduce recombinant strains more efficient rather than wild-type strains to use them in their 
designed biosurfactant-based bioremediation systems.
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