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Digitizing cities for urban weather: 
representing realistic cities for weather 
and climate simulations using computer 
graphics and artificial intelligence
Daniel Aliaga1*   and Dev Niyogi2 

Abstract 

Due to their importance in weather and climate assessments, there is significant interest to represent cities in numeri-
cal prediction models. However, getting high resolution multi-faceted data about a city has been a challenge. Further, 
even when the data were available the integration into a model is even more of a challenge due to the parametric 
needs, and the data volumes. Further, even if this is achieved, the cities themselves continually evolve rendering 
the data obsolete, thus necessitating a fast and repeatable data capture mechanism. We have shown that by using AI/
graphics community advances we can create a seamless opportunity for high resolution models. Instead of assum-
ing every physical and behavioral detail is sensed, a generative and procedural approach seeks to computationally 
infer a fully detailed 3D fit-for-purpose model of an urban space. We present a perspective building on recent success 
results of this generative approach applied to urban design and planning at different scales, for different components 
of the urban landscape, and related applications. The opportunities now possible with such a generative model 
for urban modeling open a wide range of opportunities as this becomes mainstream.
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Extreme weather and climate impacts are on the rise 
and often disproportionately affect cities more than 
rural areas. The C-40 group has outlined that cities lose 
about $200 billion annually from climate stressors. Cli-
mate impacts for the cities can be from 1.4% to 10.9% 
of its GDP by 2100 (Estrada et al., 2017). Further, rising 
global temperatures and climatic extremes have a dis-
proportionately stronger effect on cities due to the urban 

infrastructure and the ‘urban heat island’ effect. Thus, the 
combination of changing climate and growing cities will 
likely foment heat spells and extreme weather events with 
urban areas being at the epicenter. Consequently, there is 
significant interest to represent cities in advanced envi-
ronmental simulation models and to successfully simu-
late the urban-environment interaction in order to design 
new cities, evolve current cities, and provide what-if tools 
for a more sustainable urban infrastructure.

Representing cities within a region, nation, or globe 
in extreme weather and climate models is therefore an 
emergent computational challenge. Historically, cities 
have been treated as a sub-grid scale process because 
of their small geographical footprint. Recently, different 
large-scale community-based (Ching et  al., 2018) and 
sensor-based efforts are underway to improve urban rep-
resentation and the physics-based models (Chen et  al., 
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2011), along with sophisticated large-scale field experi-
ments and programs. One recent example is the $100 M 
initiative through the US Department of Energy to form 
collaborations called Urban Integrated Field Labs that 
will focus on improving our understanding of urban sys-
tems (Cho, 2021).

The computational modeling of large-scale urban-
environment interaction via the use of weather and cli-
mate simulation models necessitates providing a variety 
of detailed information about the urban space, including 
the aspect ratio of street canyons and/or building spac-
ing, building surface fraction, and impervious and pervi-
ous surface fractions. Such urban morphological features 
are translated into the model’s representation of aerody-
namic roughness that affects winds, surface emissivity 
and surface albedo that determines the radiative balance 
and thermodynamic environmental, vegetation, and 
anthropogenic heat sources. These morphological factors 
of the urban form, therefore also have direct linkage to 
environmental functions such as surface energy balance, 
radiative processes, boundary layer development, and 
dynamics which alters storms characteristics, cloud for-
mation, and temperature and wind evolution.

Satellite-based measurements (e.g., LandSat, World-
View, or Planet Labs) provide some land-cover infor-
mation and other orbiting LIDAR products yield some 
potential of height information at scale (e.g., ICESat, 

GEDI). City-sponsored and crowd-sourced efforts, such 
as OpenStreetMap, provide some cadastral data. How-
ever, aside from a few well-studied megacities (e.g., New 
York, Paris, Beijing, Tokyo) by far current data and sen-
sors yield relatively incomplete descriptions of most 
cities. As such, they are difficult to integrate within simu-
lation models, have limited resolutions, and hinder cru-
cial what-if scenario creation.

One key observation is that computer graphics and 
artificial-intelligence (AI) based visual computing have 
been extremely successful in generating 2D images and 
3D geometric models, including very detailed and plausi-
ble urban environments (e.g., Nishida et al., 2018, Zhang 
et al., 2021, He et al., 2023b, ESRI’s CityEngine software). 
Thus, the capability to model urban environments with 
both highly meticulous form and function is clearly 
possible.

Therefore, instead of relying on an edge computing/
sensor-based observation of all aspects of urban environ-
ments, we look to advances in graphics and AI to enable 
digital city generation producing realistic detailed urban 
form and function (Fig. 1). In particular, the combination 
of urban procedural modeling, stemming from computer 
graphics (and computer vision), with urban environ-
mental modeling, all within a procedural generation 
framework, provides an efficient fit-for-purpose scal-
able approach. Instead of assuming every physical and 

Fig. 1 Digitizing cities for urban weather. (left) Given only partial incomplete urban data, deep generative modeling enables generation (right) of 
complete building, neighborhood, and city models for urban extreme weather and climate predection planning, and mitigation
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behavioral detail is sensed, a generative approach seeks 
to infer a fully detailed 3D fit-for-purpose model of an 
urban space effectively inferring the unseen.

We are already observing early demonstrations of this 
alternative generative approach applied to computational 
urban design and planning at different scales, for differ-
ent components of the urban landscape, and for several 
applications. For example, at building scale generative 
modeling has been combined with deep learning to auto-
matically create complete parameterized buildings from 
only a single ground/aerial photograph (Nishida et  al., 
2018). Despite not capturing all sides of the buildings, 
the resulting building envelopes have > 90% accuracy of 
building mass and facades. In other work, a generative 
approach exploited the relatively constrained space of 
roof shapes in order to automatically produce complete 
roofs from a single satellite image, yielding > 90% in roof 
shapes. Further, generative models have combined sat-
ellite imagery with spatial information on population, 
vegetation, and elevation (He et al., 2023a) to automati-
cally create high-resolution synthetic building footprints, 
despite occlusions, noise, and limited resolution. Such a 
generative approach from heterogeneous data outper-
forms leading segmentation and super-resolution works 
by 43% on average for test cities worldwide (e.g., Chicago, 
Austin, Kitsap, Vienna, Tyrol) or large regions (e.g., 5000 
square kilometers in Belgium).

At the neighborhood scale, generative methods have 
also had significant initial success. For example, a graph 
neural network is able to reproduce the neighborhood 
layouts in at least 28 well populated cities across North 
America, yielding over two million building footprints. A 
user study indicates this approach is preferred by at least 
86.7% over prior approaches and performing better in 5 
of the 6 typically used metrics (He et al., 2023b).

At city-scale, Zhang et al. (2021) has developed a fully 
automatic methodology for producing a 3D approxima-
tion of an urban area given satellite imagery, road net-
works, spatial population, and satellite-based elevation 
data. Hence, by analyzing heterogeneous data a synthetic 
approximation of a city can be generated at scale (e.g., 
Dublin, Hong Kong, Jacksonville, New Orleans, Paris, 
San Francisco, Chicago, and Toulouse producing per city 
almost 100,000 buildings, spanning 150  km2, and with 
less than 1% error in parcel and building areas in the best 
case, and 5.8% error on average). A generative approach 
can also exploit spatio-temporal data and infer urban 
management rules to generate individual tree locations 
and counts despite individual trees not necessarily being 
visible from satellite due to occlusion and resolution limi-
tations (Firoze et  al., 2022). Analysis with four diverse 
cities (e.g., Austin, Indianapolis, Chicago, and Lagos, 
Nigeria), containing up to 225  km2 and 144,788 trees per 

city region, yields accuracies of 87–97%. In a similar fash-
ion, trees can be localized and segmented in dense forests 
surrounding urban locations (Firoze et al., 2023).

Generating complete and parameterized urban models 
has proven to better environmental modeling and plan-
ning applications. In particular, initial efforts were based 
on a mixture of crowd-sourced efforts and deep local cli-
mate zone (LCZ) generation methods (Zhu et al., 2022). 
For example, such LCZ generation was used to study the 
effect of green roofs over the Mumbai, India area and to 
improve heatwave prediction (for the June 8–25, 2017 
European heatwave event) which is critical since urban 
dwellers are highly susceptible to heat waves with a fatal-
ity risk increasing by 4.5% for every 1 °C increase in heat 
wave intensity (Patel et  al., 2022). Extreme rainfall fore-
casting and preemptive planning was improved by LCZ 
generation over Chinese megacities as well (Hu et  al., 
2023). An alternative generation approach is computing 
LCZ information automatically from geographical and 
socio-economical databases as has been done in France 
(Masson et al. 2020) and other European cities.

The further incorporation of detailed automatic urban 
generation at building, neighborhood and/or city scale 
has already been shown to be beneficial to local weather 
forecasting. Using a popular model (Chen et al., 2011), in 
comparison to a control run (using a national dataset of 
44 city-scale LIDAR datasets captured by a large national 
project, NUDAPT) and to a run based on the crowd-
sourced effort of the World Urban Database and Access 
Portal Tools (WUDAPT) initiative (Ching et  al., 2018), 
the generative model approach equals or outperforms the 
crowd-sourced effort and almost matches the LIDAR-
based model but of course without requiring a city-scale 
LIDAR capture! (Patel et al., 2023). Generative modeling 
has also shown to benefit flooding mitigation. Recently, 
there is a shift in focus from hard flood controls to 
increasing resilience by bettering the urban design pro-
cess. In Mustafa et al. (2018), city models (Liege, Frank-
furt, Paris, Brussels, Embourg, New York City) were 
used to study the influence of urban geometry (e.g., road 
width, orientation, curvature, etc.) on flow properties 
during flooding. The parameterized and generated urban 
model enabled studying what urban design rules produce 
a passive barrier against natural floods.

Going forward, these powerful computational gen-
eration methods can be fed into the growing Digital 
Twin efforts. For example, Destination Earth (DestinE) 
is a flagship initiative of the European Commission to 
develop a digital model of Earth at global scale (Bauer 
et al. 2021). This model can help monitor and predict nat-
ural phenomena as well as the urban-environment inter-
face. NVIDIA has also announced the desire to create an 
Earth-scale realistic environment, making use of their 
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Omniverse platform. The described urban generative 
methods will also play a crucial role in developing these 
Earth-scale simulation and metaverse environments.

While measurements, and data processing of satellite 
products is critical to advance the field, complementary 
efforts such a from video gaming, regenerative tools and 
AI/ML based urban imagery can also directly benefit 
computational science modeling for real life urban deci-
sions – and not just in a metaworld.
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