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Abstract 

Forecasting travel demand is a classic problem in transportation planning. The models made for this purpose take 
the socioeconomic characteristics of a subset of a population to estimate the total demand, mainly using random 
utility models. However, with machine learning algorithms fast becoming key instruments in many transportation 
applications, the past decade has seen the rapid development of such models for travel demand forecasting. As these 
algorithms are independent of assumptions, have high pattern recognition ability, and often offer promising results, 
they can be effective alternatives to discrete choice models for forecasting trip patterns. This paper aimed to predict 
mandatory and non-mandatory trip patterns using a Deep Neural Network (DNN) algorithm. A dataset containing 
Metropolitan Washington Council of Government Transportation Planning Board (MWCGTPB) 2007–2008 survey data 
and a dataset containing traffic analysis zones’ characteristics (TAZ) were prepared to extract and predict these pat-
terns. After the modeling phase, the models were evaluated based on accuracy and Cohen’s kappa coefficient. The 
estimates of mandatory and non-mandatory trips were found to have an accuracy of 70.87% and 50.02%, respectively. 
The results showed that a DNN could find the relationship between socioeconomic factors and trip patterns. This can 
be helpful for transportation planners when they are trying to predict travel demand.

Keywords: Deep learning, Trip pattern prediction, Socioeconomic characteristics, Neural network, Mandatory 
patterns, Non-mandatory patterns
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1 Introduction
The trip pattern of individuals is based on demo-
graphic characteristics and environmental factors, 
e.g., accessibility (Srinivasan & Ferreira, 2002). These 
data are collected mainly for a small percentage of an 
area, which enables transportation modelers to iden-
tify similar patterns and estimate the trip demand of a 

wider population. There is an unambiguous relationship 
between demographic characteristics, activity participa-
tion, and travel behavior (Cheng et  al., 2019). Trip pat-
tern choice is a function of the need for participation in 
dispersive activities in the urban environment and indi-
vidual and house characteristics, including a set of alter-
natives and limitations. Accessibility also plays a crucial 
role in such pattern recognition since the generation of 
work and other trips are sensitive to accessibility (Cord-
era et  al., 2017; Currans et  al., 2020; Næss et  al., 2018; 
Pitombo et al., 2011; Stead, 2001).
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Random utility models (RUMs) are the primary tool 
for travel demand prediction. While these models allow 
interpretability, they are not as complex as deep learning 
models. This is important because their understanding 
of the traveler’s choices might be inefficient as the travel 
behavior pattern formation is complex in essence, and 
they can contain intra-household complexity substrates 
affected by the built environment (Yang et al., 2019).

Either machine learning models or random utility 
models are chosen, there is a trade-off between higher 
accuracy and interpretability (Ali et  al., 2021; Derrible 
& Pereira, n.d.; García-García et  al., 2022). The higher 
complexity of machine learning models allows them to 
identify non-linear relationships between the input and 
designated outputs to a higher degree than random util-
ity models. This grants us with more accurate prediction. 
Despite the advantageous prediction capability, machine 
learning models divest the modeler of the interpretability 
and statistical tools that random utility models provide. 
This means the mechanism operating in a choice proce-
dure and the significance to which each element serves a 
function that leads to a final decision is unknown when 
using a machine learning model. Regardless, due to sim-
plicity, random utility models often prove computation-
ally expensive, or even infeasible, when fed with a large 
volume of data (Wang et al., 2021).

There is substantial evidence that people with similar 
socioeconomic backgrounds show comparable travel 
behaviors (Carlsson-Kanyama & Linden, 1999; Li et  al., 
2018). Males, for instance, tend to engage in more busi-
ness and work-related activities, whilst women engage 
in more leisure activities such as visiting family or see-
ing friends (Collins & Tisdell, 2002). Women prefer to 
commute over shorter distances, at off-peak hours, or 
by using flexible modes of transport (Ng & Acker, 2018). 
Income is another element that influences travel behav-
ior; income level may change travel behavior habits such 
as distance (Jain & Tiwari, 2019). Because there has 
shown to be a causal relationship between travel patterns 
and mobility across demographic groups, travel patterns 
can be inferred and calculated using socioeconomic data.

A number of researchers have sought to explore 
essential variables in the formation of household travel 
behaviors. Bhat et al., 2013 proposed a household activ-
ity production model in Southern California to find 
how all individuals in a household make their deci-
sions about activity participation. The daily trips of an 
individual can also be classified into distinct patterns. 
In that regard, Hedau & Sanghai, 2014 classified daily 
trips into five patterns to develop an activity-trip choice 
model using multiple variables. Molla et al., 2017 intro-
duced a probabilistic activity-based travel generation 
model, which could infer the actual number of trip 

generations. They assumed that small organizations in 
an urban area could create activity-based models based 
on traditional trip surveys. In all of these studies, socio-
economic characteristics were considered significant in 
generating activity-based trips.

With such a relationship in place, some studies have 
investigated the derivation of socioeconomic char-
acteristics from travel patterns. Zhu et  al., 2017 pre-
dicted people’s sociodemographic variables such as 
work status, age, gender, and income based on GPS 
data, training SVM, and logistic regression. Among 
the most important differentiating characteristics 
they utilized for categorization were variables linked 
to the spatiotemporal variability of tours. Temporal-
spatial data obtained from public transit smart cards 
may also be utilized to study trip patterns (Yang et al., 
2018). Li et al., 2019 used large-scale data across three 
age groups to lessen the usage of survey data in the 
design of human-centered public transportation. The 
study concentrated on predicting age groups based on 
travel to various “points of interest” retrieved from trip 
destinations. Among the ML approaches trained and 
compared, the neural network (NN) produced the best 
results. Zhang & Chen, 2018 estimated vehicle owner-
ship, age, gender, and income using extracted attributes 
from smart card data. After testing multiple supervised 
ML algorithms, they concluded that the NN produced 
the best results. While this study manually collected 
characteristics from the data before feeding it to ML 
models, Zhang, Cheng, & Sari Aslam, 2019  used a 
convolutional neural network (CNN) to undertake the 
same investigation without the requirement for fea-
ture extractions. CNN’s are extensively utilized in cut-
ting-edge image processing models, but they may also 
be trained to recognize hidden patterns in non-image 
data. Similarly, after training and comparing many ML 
models, Zhang & Cheng, 2019 predicted job status 
from London’s public transportation smart card data 
and discovered that CNN performed the best in their 
scenario.

Whether traffic analysis zone (TAZ) parameters are 
incorporated into a model or not can influence trip pat-
terns and, consequently, travel demand forecasts. Some 
researchers highlight this fact. For example, an urban 
accessibility relative index (UARI) was developed to inte-
grate the collected multi-mode transportation big data 
(related to the taxis, buses, and subways) to quantify, 
visualize and understand the spatiotemporal patterns of 
accessibility in urban areas (Jiang et  al., 2021). Neglect-
ing an accessibility characteristic could lead to incorrect 
interpretations of travel demand forecasting for non-
mandatory trips when modes other than private cars 
are used, or mandatory trips are made by private cars 
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(Cordera et al., 2017). In addition, population density can 
affect trip generation (Zhang, Clifton, et al., 2019).

Machine learning algorithms have eliminated many 
practical limitations because of the abundance of mobil-
ity data and pattern recognition. They are widely used in 
the forecasting and analysis of travel behavior in activity-
travel patterns, including supervised (e.g., neural net-
works and support vector machines) and unsupervised 
(e.g., K-means clustering) learning (Koushik et al., 2020). 
These algorithms can find complex travel behavior pat-
terns through the relationship between Spatio-temporal 
and socioeconomic characteristics and estimate trip pat-
terns. Despite this benefit, such techniques have rarely 
been employed in activity-based modeling and trip fore-
casting. For example, a support vector machine (SVM) 
was employed to recognize and forecast daily activity 
sequences (Allahviranloo & Recker, 2013). Furthermore, 
using a hybrid logit-SVM model, Yang et al., 2016 consid-
ered the role of the head of household in forecasting the 
number of household trips.

Despite the indispensable strength of great pattern rec-
ognition, machine learning algorithms are primarily non-
interpretable, meaning that the process through which 
the final output is produced is unknown to the modeler. 
For this reason, these models are often referred to as the 
“black box.” Nevertheless, sometimes a combination of 
unsupervised (e.g., clustering algorithms) and supervised 
algorithms (e.g., decision trees) can enable interpretabil-
ity. Pitombo et al., 2011 used this modeling approach to 
analyze the pattern-travel relationship involving activity, 
land use, and socioeconomic characteristics. In the same 
vein, Hafezi et  al., 2019 proposed a model to identify 
activity patterns by combining K-means clustering and 
the classification and regression trees (CART) algorithm. 
After recognizing homogeneous patterns, they developed 
the CART model to allow a more in-depth analysis.

This study proposes a novel deep learning method to 
predict the future travel demand based on how popula-
tion distribution—that is, according to designated demo-
graphic traits (e.g., age, gender, income)—changes over 
time. The proposed deep learning model will predict 
future travel demand more accurately than conventional 
random utility models. A DNN model is developed to 
predict trip patterns in two categories: mandatory and 
non-mandatory. For this purpose, the socioeconomic 
characteristics coupled with characteristics of TAZs of 
people residing in the Washington metropolitan area 
were used.

2  Data
The socioeconomic characteristics extracted from 
the Metropolitan Washington Council of Govern-
ment Transportation Planning Board (MWCOGTPB) 

2007–2008 survey data were used to train a trip-pattern-
predicting model. This data set contains travel behavior 
and demographics of 11,000 households in the Washing-
ton metropolitan area, including Northern Virginia and 
some parts of Maryland. The Transportation Planning 
Board (TPB) periodically conducts the survey to evalu-
ate the transportation system’s effectiveness with respect 
to the transportation demand of the households. The 
participants responded to a one-day questionnaire on a 
detailed travel diary from February 2007 to March 2008. 
Although the data is collected for 24 hours, it is collected 
from different days of the week, which provides a com-
plete picture of the travel behavior in the area. Moreover, 
the mandatory and non-mandatory patterns are expected 
to continue in a recurring manner throughout the week, 
especially given the inflexible nature of non-mandatory 
trips. Therefore, the results can be confidently general-
ized to the area’s population.

Although more recent data would have been preferable, 
it was essential to incorporate the characteristics of each 
transportation analysis zone to improve the results and 
reduce bias, and such data was only available from 2007. 
As the infrastructural condition of the area has developed 
since then, we needed to match the collection timeline of 
the two data. Nonetheless, TPB data is one of the most 
comprehensive survey data available, and we focused our 
attention mainly on the algorithm, which can be trained 
on any data from any year.

A set of distinct variables typically available in travel 
surveys and census data were selected for inclusion in 
the model. As with any data, this data also had to be pre-
processed before the machine learning model training. 
Once the data was prepared, it consisted of TAZ charac-
teristics and the socioeconomic characteristics of indi-
viduals, which are shown in Table  1 and Table  2. Three 
types of features used to train the model included con-
tinuous, categorical, and binary variables. The categori-
cal data were organized as dummy variables, while the 
continuous variables were scaled in the range of 0–1. This 
allowed faster model convergence (lower computational 
cost), resulting from a lower variance of each feature.

There are a total of 3722 TAZs in the Washington 
metropolitan area, which differ in urban infrastructures 
depending on whether they are in- or out-of-city zones. 
This study included TAZs features such as public trans-
portation access, population density, and employment 
density. The spatial distribution of the participants at the 
scale of TAZ is shown in Fig. 1.

Table  3 represents the mandatory and non-mandatory 
trip patterns and their share of data. Mandatory trips were 
defined based on the following assumption. Mandatory 
trips are inflexible, meaning they must take place at a spe-
cific time and last for a predefined amount of time. They 
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are not made on a voluntary basis, nor is there a choice for 
the time of their occurrence. Some trips, such as grocery 
shopping, are necessary for the household, but they are 
not counted as mandatory based on this assumption.

Mandatory trip patterns were divided into seven groups 
based on the number of work, educational, and school 
trips, and one group was also considered for those with 
no mandatory trips. On the other hand, the remainder of 

Table 1 Location and TAZ-related features

Feature Description Feature Type Value Description

Mean Std. Max Min

The zonal percent-walk-to-transit (PWT) within a short (0.5 mile) walk of Metrorail or the light rail transit 
(LRT) service

Numerical 5.41 16.83 100 0

The zonal percent-walk-to-transit (PWT) within a long (1.0 mile) walk of Metrorail or the LRT service Numerical 16.70 33.30 100 0

The zonal percent-walk-to-transit (PWT) within a short (0.5 mile) walk of any transit service (including 
Metrorail and LRT) in the AM peak period

Numerical 62.80 37.0 100 0

The zonal percent-walk-to-transit (PWT) within a long (1 mile) walk of any transit service (including 
Metrorail and LRT) in the AM peak period

Numerical 81.50 32.95 100 0

The zonal percent-walk-to-transit (PWT) within a short (0.5 mile) walk of any transit service (including 
Metrorail and LRT) in the off-peak period

Numerical 57.71 40.14 100 0

The zonal percent-walk-to-transit (PWT) within a long (1 mile) walk of any transit service (including 
Metrorail and LRT) in the off-peak period

Numerical 74.25 38.93 100 0

Population density Numerical 5.12 6.43 76.48 0

Employment density Numerical 6.44 22.41 409.74 0

Table 2 Socioeconomic features

Features Feature Type Description

Mean Std. Max Min

Number of workers in the individual’s household Numerical 1.49 0.85 6 0

The percentile of trips with public transport Numerical 0.082 0.24 100 0

The percentile of trips with private car Numerical 0.78 0.36 100 0

The percentile of trips with other transportation modes Numerical 0.13 0.28 100 0

The average number of vehicle ownership in the household Numerical 0.80 0.45 8 0

If the respondent is a full-time worker 1 else 0 Binary 0 or 1

If the respondent is a university/college student 1 else 0 Binary 0 or 1

If the respondent is a 5 to 15 years old student 1 else 0 Binary 0 or 1

If the respondent is 16 years old or older student 1 else 0 Binary 0 or 1

The individual’s age group Categorical 0 to 17 years old

18 to 24 years old

25 to 34 years old

35 to 50 years old

50 to 65 years old

65 and older

The individual’s income group Categorical Less than 10,000 $ to 50,000 $ (Low)

50,000 $ to 100,000 $ (Mid)

100,000 to 150,000 $ (Up-mid)

More than 150,000 (High)

Relationship to the reference person Categorical Parent

Child

Reference person

Other

The individual’s gender Categorical Male

Female
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the trip purposes were labeled as non-mandatory (e.g., 
shopping trips, visiting relatives, and recreational trips). 
These were classified into five groups based on the num-
ber of their occurrences. Since the number of individuals 
with no non-mandatory trips was tiny (0.2%), they were 
excluded from the modeling. The mandatory-trip model 
predicts a combination of trip purposes as categorical 
classes; for example, “1 work and 1 education” is a single 
class. School trips refer to trips made for the purpose of 

formal education—that is, school, university, and col-
lege—while educational trips refer to trips made for other 
educational activities, such as learning music or language.

3  Methodology
A deep neural network algorithm was used to train the 
developed model. While a shallow neural network typi-
cally consists of a small number of hidden layers, deep 

Fig. 1 The spatial distribution of the participants at the scale of TAZ

Table 3 Mandatory and non-mandatory trips

Pattern Variable Description Percentage 
of total

Mandatory trips none The respondent had no mandatory trips 36%

1_work The respondent had 1 work trip 36.50%

2_work The respondent had 2 work trips 9.60%

3_work The respondent had 3 work trips 4%

1_edu The respondent had 1 education trip 1.40%

1_work_1_edu The respondent had 1 work trip and 1 education trip 0.55%

1_sch_1_edu The respondent had 1 school trip and 1 education trip 0.58%

1_sch The respondent had 1 school trip 11.20%

Non-mandatory trips The respondent had no non-mandatory trips 0.20%

The respondent had 1 non-mandatory trip 25.69%

The respondent had 2 non-mandatory trips 21.35%

The respondent had 3 non-mandatory trips 17.57%

The respondent had 4 non-mandatory trips or more 35.08%
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neural networks are created by stacking many hidden 
layers on top of each other. This makes the model big-
ger and more complex. Although training deeper models 
means longer training time (higher computational cost), 
it should be noted that the deeper a neural network, the 
more likely it is to identify and pick up more complex and 
non-linear patterns from the dataset.

A node in an NN is a processing unit with a weight and 
a sum function. A weight w is a mathematical value rep-
resenting the relative power of connections to transfer 
data from one layer to another, while a sum function y 
calculates the total weight of all input variables in a pro-
cessing unit. The performance signal appearing in the 
output of neuron j is calculated as:

where m is the number of variables introduced to neu-
ron j, xi is a group of variables in neuron j, yj is the out-
put of neuron j, wji is the calculated weight from neuron 
i to neuron j, and bj is the bias term. The activation func-
tion is typically required for a non-linear introduction to 
the neural network. It defines a non-linear relationship 
between the input and output of a node and a network. 
The present study adopted the softmax activation func-
tion in the output layer:

where y is the input vector and k is the number of classes 
in multiclass classification.

We scaled each variable in the range of 0–1. Scaling 
speeds up the gradient descent—a step-wise optimiza-
tion algorithm of a neural network—which works hand 
in hand with back-propagation. Starting from randomly 
assigned weights to each variable, the algorithm takes 
small or big steps (depending on the learning rate) to 
minimize a cost function. This works based on calcu-
lating an error term on each step and then taking the 
derivatives of the activation function and adjusting the 
weights based on that. Constraining the variance of each 
variable within a limited range prevents the algorithms 
from taking large derivatives with each update of the 
gradient descent, hence reducing each consecutive com-
putation time and, consequently, the total training time. 
Scaling also helps better the performance and stability of 
the optimization process (Bishop, 1995).

The sample was collected from a random subset of the 
population. Sample bias and data imbalance have always 
been challenging in such cases. The dominant groups are 
prone to overshadow less frequent observations while 

(1)yj =

m
∑

i=1

xiwji + bj

(2)g(y) =
exp yi
K
j=1 exp yj

training the machine learning algorithm. This means 
DNNs can perform decently when dealing with uni-
formly distributed datasets, while their performance on 
datasets of an unbalanced distribution cannot be ensured 
(Wang et al., 2016). One way of dealing with the imbal-
ance problem is to augment marginalized categories; 
however, this disturbs the authenticity of the distribution 
of the randomly sampled data, so the data will longer rep-
resent the actual population. Instead of a synthesization 
that would have undermined the validity of our analysis, 
we used class weighing during the training phase of the 
deep learning models, penalizing the error—using the 
cost function—commensurate with the share of samples 
in the data.

The prediction of mandatory and non-mandatory trip 
patterns through socioeconomic characteristics were 
both formulated as classification problems. Python pro-
gramming language was used to implement the preproc-
essing and modeling of this paper.

3.1  The evaluation criteria
3.1.1  Accuracy, precision, recall, F1‑score
The classification could be evaluated through the true 
positives (TP) as the number of correctly included 
classes, true negatives (TN) as the number of correctly 
excluded classes, false positives (FP) as the number of 
wrongly included classes, and false negatives (FN) as the 
number of wrongly excluded classes. These four criteria 
form a confusion matrix for the classification (Sokolova 
& Lapalme, 2009). In this respect, accuracy, precision, 
recall, and F1-score can be calculated as:

The accuracy of an ML model indicates how many 
times it was accurate overall, while precision measures 
how well a model predicts a specific category. Precision is 
an excellent metric when the costs of FPs are high. When 
a considerable cost is associated with FNs, we will utilize 
recall as the measure to choose our best model. F1-score 

(3)Total observations = (TP + FP + TN + FN )

(4)Accuracy =
TP + TN

(Total observations)

(5)Precision =
TP

(TP + FP)

(6)Recall =
TP

(TP + FN )

(7)F1− score = 2×
Precision× Recall

(Precision+ Recall)
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is helpful while attempting to seek a balance between 
precision and recall. It may also be appropriate when 
there is an uneven class distribution. A collective consid-
eration of the aeformentioned criteria was the best way 
to choose the final model, because every aspects of the 
model performance was clear for us.

3.1.2  Kappa coefficient
Cohen’s kappa coefficient helps solve multiclass classifi-
cation problems with non-normal distributions. This cri-
terion measures the agreement between classified data 
(Landis & Koch, 1977). Because our data was of an imbal-
ance nature, the kappa coefficient was calculated along 
with the other evaluation indices to measure the model’s 
performance effectively. This coefficient is expressed by 
Eq. (7) as follows:

where p0 denotes real relative agreement between two 
datasets, while pe is the probability of random agreement 
between the datasets. It is required to define boundaries 
for the calculated coefficients to perform the evaluation. 
Although different performance levels have been sug-
gested for the number that the kappa coefficient pro-
vides, the scoring system proposed by Landis and Koch 
was adopted (Table 4). The kappa coefficient varies from 
0 to 1 at six evaluation levels. A larger kappa coefficient 
represents the higher efficiency and effectiveness of a 
model.

4  Results
The mandatory and non-mandatory trip patterns in the 
Washington metropolitan area were estimated in this 
study. The socioeconomic characteristics were extracted 
from the MWCGTPB 2007–2008 data, and TAZ charac-
teristics were included. Then, a DNN algorithm was for-
mulated to predict trip patterns.

Figure 2 displays the mandatory trip pattern estimates 
as a confusion matrix. The vertical axis represents the 
real values (correct labels), and the horizontal axis repre-
sents the estimates. The color of each square represents 
the probability of correct estimations—Table  5 reports 
each class’s accuracy, precision, recall, and F-score.

(8)p0 =
TP + TN

Total observations

(9)
pe =

(

TP + FP

Total observations

)

×

(

TP + FN

Total observations

)

+

(

FN + TN

Total observations

)

×

(

FP + TN

Total observations

)

(10)κ = (p0 − pe)/(1− pe)

A total of seven classes were predicted for manda-
tory trips, including “no mandatory trip.” The estimation 
accuracy of mandatory trips was 70.87%, implying its 
promising performance. Given the high recall and preci-
sion scores, the model mostly predicted the individuals 
with no mandatory trips more accurately. Most of the 
mandatory trip groups with “1 work trip” and “1 school 
trip” were predicted inaccurately, while the individuals 
with “1 work trip” were estimated with high accuracy.

Individuals with work trips were rarely confused with 
individuals who had educational trips. This distinction 
could be attributed to their socioeconomic characteris-
tics, e.g., age and occupational-educational position. In 
other words, individuals aged 0 to 18 are mostly students, 
so they are not expected to generate work trips. In many 
cases, individuals with two work trips were wrongly pre-
dicted as those with one work trip, but the model could 
differentiate the work from educational trips. In addition, 
the class of three work trips was mainly confused with 
other groups of work trips, suggesting that the model was 
relatively inefficient in recognizing the number of work 
trips.

Educational trips were the second group of mandatory 
trips. The pattern of one educational trip was predicted 
with reasonable accuracy; however, this pattern was con-
fused with the “no mandatory trip” pattern and was rarely 
predicted as a work trip pattern. The patterns of “one 
work trip and one educational trip” and “one educational 
trip and one school trip” (patterns combining multiple 
purposes) had low estimation accuracies. The former was 
mostly confused with work trips, while the latter was rec-
ognized as school trips. Finally, the “one school trip” pat-
tern had high accuracy.

Apart from the outputs of mandatory trip patterns, 
Table  6 and Fig.  3 represent the estimation results of 
non-mandatory trips. The model yielded an overall pre-
diction accuracy of 50.02% for non-mandatory trips. 
The pattern of “one non-mandatory trip” and “four or 
more non-mandatory trips” had the highest estimation 
accuracy, followed by the “two non-mandatory trip” 

Table 4 Agreement Kappa statistic measures for categorical 
data (Landis & Koch, 1977)

Kappa Statistic Strength of Agreement

0.00 Poor

0.00–0.20 Slight

0.21–0.40 Fair

0.41–0.60 Moderate

0.61–0.80 Substantial

0.81–1.00 Almost perfect
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pattern. In contrast, the “three non-mandatory trips” 
pattern had the lowest accuracy. This performance 
seems acceptable since non-mandatory trips involve a 
wide range of trip purposes, from buying gas to visiting 
relatives and recreation.

As presented in Table  7, the kappa coefficient was 
calculated to be 0.5853 for mandatory trips, which is a 
medium coefficient, while non-mandatory trips had a 
kappa coefficient of 0.3014, suggesting a fair value with 

an accuracy of 50.02. This implies acceptable perfor-
mance for both mandatory and non-mandatory trips.

5  Discussion
This study presents a novel deep learning framework 
for forecasting future travel demand. A DNN model 
was used to discover a meaningful relationship between 
socioeconomic characteristics and accessibility measures 
on one side, and trip patterns on the other side. The pro-
posed model is expected to outperform traditional ran-
dom utility models in predicting future travel demand. 
The prediction ability of this model can be deployed on 
census data to generalize and synthesize the trip behavior 

Fig. 2 The confusion matrix of the mandatory trips generation

Table 5 The evaluation metrics of mandatory trips pattern 
generation

Mandatory trip pattern Precision Recall F1-score Accuracy

None 79.40% 74.42% 0.768294 70.87%
1 work 69.67% 80.85% 0.748448

2 work 45.01% 30.45% 0.363253

3 works 27.90% 4% 0.069969

1 education 51.21% 62.37% 0.562417

1 work 1 education 25.92% 17.07% 0.205841

1 school 1 education 18.18% 4.87% 0.076821

1 school 72.12% 93.87% 0.768294

Table 6 The evaluation metrics of non-mandatory trips pattern 
generation

Non-
mandatory trip

Precision Recall F1-score Accuracy

1 trip 50.63% 69.43% 0.585581 50.02%
2 trips 42.26% 25.53% 0.318306

3 trips 36.10% 18.29% 0.242791

4 trips ≥ 54.83% 66.23% 0.599932



Page 9 of 11Mirzahossein et al. Computational Urban Science            (2022) 2:35  

of the area’s entire population. In other words, the pre-
dicted patterns can be aggregated on a specific geospa-
tial scale (for example, TAZ) to estimate trip production 
and attractions as population distribution—demographic 
attributes (e.g., age, gender, income)—and urban accessi-
bility changes over time. This will help in outlining plan-
ning and policy measures.

Given the accuracy gap between mandatory and non-
mandatory patterns’ prediction results, it is apparent that 
the separated modeling of mandatory and non-manda-
tory trips helped the deep learning model map socioeco-
nomics to trip patterns in a more distinguishable manner, 
owing to the nature of each trip category and its relation 
to socioeconomics. The relation between socioeconomics 
and spatial features was more recognizable for manda-
tory trip patterns, which could be attributed to the role of 
each individual in the household. Socioeconomics such 
as age, income, and gender define this role, hence affect-
ing the creation of mandatory trips, with each category 
dependent directly and distinctly on the assigned role. 

Additionally, mandatory trips are inflexible, meaning 
they are not conducted voluntarily. Therefore, the ques-
tion of what pattern an individual has as a routine part 
of his transportation diary is easier to answer because 
there is less flexibility and thus more certainty about their 
occurrence.

A similar analogy can be drawn for non-mandatory 
trips, however, adopting the reverse reasoning. This cat-
egory of trips could be made under less strict circum-
stances. They can assume an arbitrary form and are not 
necessarily based on a predefined or recurring schedule. 
This means, even though socioeconomics plays a key role 
in the formation of trip patterns, they might not be as 
influential for the creation of non-mandatory trips. The 
when and if of the occurrence of non-mandatory trips are 
harder to relate to the socioeconomics, so there is much 
less certainty regarding this category. This justifies the 
lower performance accuracy of non-mandatory trips.

Based on the literature, adding land use data to the 
input of similar machine learning models often improves 
the results. Because land-use and socioeconomic charac-
teristics are the main impetus for creating trips. Unfor-
tunately, we could not access the land use information 
of the area, and trained the models on related features 
extractable from the data at hand (travel survey and 
accessibility measures). Thus, future work could use a 
more comprehensive set of inputs to improve the results.

With the rapid growth of big data technologies, 
especially GPS (Global Positioning System) data, the 

Fig. 3 The confusion matrix of non-mandatory trip pattern generation

Table 7 Cohen’s kappa score for mandatory and non-
mandatory trips

Trip class Cohen’s 
kappa 
score

Mandatory trips 0.5853

Non-mandatory trips 0.3014
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inference of socio-economic information also seems a 
promising direction for future work. Socioeconomic 
information is one of the main inputs of travel demand 
models, and relating these data, which are continually 
and passively collected via censors in our cellphones and 
cars, can reduce the survey data collection cost as well as 
help transportations modelers and policy designers draw 
more meaningful conclusions on how mobility is linked 
to socioeconomic characteristics. Future studies could 
use state-of-the-art deep learning models to find such 
linkage.

6  Conclusion
The present study aimed to forecast trip patterns based 
on socioeconomic and TAZ characteristics. Once the 
mandatory and non-mandatory trip patterns and soci-
oeconomic characteristics were extracted from the 
MWCGTPB 2007–2008 survey data, a DNN was trained 
to classify these patterns. Mandatory trips included 
work, education, school, or a combination of such trips, 
while non-mandatory trips involved the remaining trips 
of the individuals. The model had an estimation accuracy 
of 70.87% for mandatory trips (seven groups of trips) and 
50.02% for non-mandatory trips (four trip groups). The 
estimates of mandatory and non-mandatory trips were 
observed to be significantly different. Mandatory trip pat-
terns with a single trip type were forecasted more accu-
rately than combined mandatory trips, regardless of the 
number of trips. In addition to accuracy, Cohen’s kappa 
coefficient was calculated to validate the model’s predic-
tive performance. The results of this study showed that 
a deep learning algorithm could effectively recognize the 
correlation between socioeconomic features and trip pat-
tern formation. The prediction results of this model can 
then be aggregated on a larger geospatial scale to esti-
mate trip production and attractions as population dis-
tribution and urban accessibility change over time. This 
provides transportation modelers with a more accurate 
tool in the process of travel demand forecasting.
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