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Abstract 

Understanding thermal gradients is essential for sustainability of built-up ecosystems, biodiversity conservation, 
and human health. Urbanized environments in the tropics have received little attention on underlying factors and 
processes governing thermal variability as compared to temperate environments, despite the worsening heat stress 
exposure from global warming. This study characterized near surface air temperature (NST) and land surface tempera-
ture (LST) profiles across Kenyatta University, main campus, located in the peri-urban using in situ traverse tempera-
ture measurements and satellite remote sensing methods respectively. The study sought to; (i) find out if the use of 
fixed and mobile temperature sensors in time-synchronized in situ traverses can yield statistically significant tempera-
ture gradients (ΔT) attributable to landscape features, (ii) find out how time of the day influences NST gradients, (iii) 
determine how NST clusters compare to LST values derived from analysis of ‘cloud-free’ Landsat 8 OLI (Operational 
Land Imager) satellite image, and (iv) determine how NST and LST values are related to biophysical properties of land 
cover features.. The Getis–Ord Gi* statistics of ΔT values indicate statistically significant clustering hot and cold spots, 
especially in the afternoon (3–5 PM). NST ‘hot spots’ and ‘cold spots’ coincide with hot and cold regions of Landsat-
based LST map. Ordinary Least Square Regression (OLS) indicate statistically significant (p < 0.01) coefficients of 
MNDWI and NDBI explaining 15% of ΔT variation, and albedo, MNDWI, and NDBI explaining 46% of the variations in 
LST patterns. These findings demonstrate that under clear sky, late afternoon walking traverses records spatial variabil-
ity in NST within tropical peri-urban environments during dry season. This study approach may be enhanced through 
collecting biophysical attributes and NST records simultaneously to improve reliability of regression models for urban 
thermal ecology.
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1 � Introduction / background
Tropical ecosystems are undergoing rapid land use and 
land cover (LULC) changes from increased pressures 
for agricultural land expansion and human settlement 
(FAO, 2019). The human population is projected to reach 
9.5 billion, where more than half will be living in cities 

by the year 2050 (Arof et  al., 2020). Expanding urban 
settlements create novel microclimates (1–104 m2) that 
often differ significantly from the regional climatic means 
(Lembrechts et  al., 2020; Zhou et  al., 2020). Moreover, 
the synoptic conditions recorded in a standard meteor-
ological station may be unrepresentative of the range of 
microclimates within an area (Zellweger et al., 2019).

Predictions show that all African capital cities are likely 
to experience unusually hot days (heat waves) in the 
future with respect to the rest of the world (Ceccherini 
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et  al., 2017). The combination of local and regional 
warming trends, attributed to changes in land surface 
physics and effects of greenhouse gas emissions respec-
tively, have significantly altered ecosystem processes and 
weather patterns (Shukla et al., 2019; Thorne et al., 2018), 
and threaten food production systems that millions of 
people depend on (Myers et al., 2017). One of the major 
impacts of global warming in Africa is increased frequen-
cies of heat waves, that not only impair food produc-
tion systems but also affect the health of urban residents 
(Ceccherini et al., 2017).

Urban heat island (UHI) is undesirable property in 
tropical areas since the cooling energy expenditures 
could be exorbitant and unaffordable to many of the 
residents (Wonorahardjo et al., 2020). The UHI intensity, 
the temperature difference of each urban cell relative to 
measurement from the rural reference station, can be 
attributed to differences in thermal mass (the thermal 
properties such as heat capacity) (Zhou et  al., 2020). 
Moreover, the biogeophysical attributes that contributes 
to UHI include extent of built-up environment on sensi-
ble and latent heat flux, and other ecosystem processes 
such as evapotranspiration (Vlassova et  al., 2014). For 
instance, the skin temperature of exposed surface soils 
may be significantly different from that of an adjacent 
vegetated surface (Zhou et  al., 2020). The patterns, bio-
geophysical properties and extent of use of motorised 
transport tend to make urban areas warmer (UHI) than 
rural areas (Wonorahardjo et  al., 2020). Although the 
Fifth Assessment Report of the Intergovernmental Panel 
on Climate Change concludes that there is unequivocal 
evidence of global warming (Pachauri et al., 2014), accu-
rate characterization of conditions under which weather 
records are obtained is needed to improve reliability of 
future climate predictions (Thorne et  al., 2018). Moreo-
ver, the use of temperature data derived from urban 
weather stations to assess historical climate series attrib-
utable to global warming may present a warm bias since 
temperatures are usually elevated in urban areas (Stewart 
and Oke, 2012).

Majority of literature on urban heat island studies fail 
to give quantitative metadata of site exposure or land 
cover and instead rely on the so-called urban and rural 
qualifiers to describe the local landscapes of their meas-
urements (Stewart and Oke, 2012). However, Stewart and 
Oke (2012) developed a classification scheme of urban 
and rural field sites based on logical division for heat 
island assessment using quantifiable physiographic prop-
erties that can be related to surface thermal climate at the 
local scale (i.e., hundreds of meters to several kilometers). 
Within this classification scheme, the surface structure 
(height and spacing of buildings and trees) and surface 
cover (pervious or impervious) is considered because 

of its influence on NST (screen-height temperature). In 
addition, the surface structure also modifies local climate 
through changes in airflow, atmospheric heat transport, 
and shortwave and longwave radiation balances. On the 
other hand, surface cover modifies the albedo, moisture 
availability, and heating/cooling potential of the ground. 
The clustering of these properties tends to create spatially 
distinctive microclimates (hereafter referred to as ‘local 
climate zones’). Oke and Stewart (2012) define local cli-
mate zones (LCZs) as regions of uniform surface cover, 
structure, material, and human activity that span hun-
dreds of meters to several kilometers in horizontal scale. 
Further, this classification scheme presents quantifiable 
physiographic attributes such as; geometric and surface 
cover properties (i.e. sky view factor, aspect ratio, build-
ing surface fraction, impervious surface fraction, pervi-
ous surface fraction, height of roughness elements, and 
terrain roughness class), and thermal, radiative, and met-
abolic properties (i.e. surface admittance, surface albedo, 
anthropogenic heat output) that can be related to NST 
temperature observations.

The relationship between satellite land surface tem-
perature (LST) and near surface temperature (NST) 
is essential in estimating NST measurements, espe-
cially in areas where meteorological stations are absent 
(Good et  al., 2017). However, uncertainties in generat-
ing climate predictions result from a number of factors 
including reliability of weather instruments, locations 
of weather stations, land use attributes (e.g., degree of 
urbanization), and non-standard approaches in weather 
records (Thorne et  al., 2018). When weather stations 
are scarcely distributed, interpolating temperature val-
ues between them creates large uncertainties because of 
heterogeneities created by biophysical attributes of land-
scape features (Zellweger et  al., 2019). Satellite-based 
LST estimates can fill the gaps in temperature data in 
absence of weather stations, although satellite-based 
LSTs incorporate temperatures of both the ground sur-
face as well as above surface that includes; the uppermost 
parts of trees and buildings (Good et al., 2017). Addition-
ally, time-synchronized fixed site and in situ traverse air 
temperature measurements are gaining popularity as 
accurate methods of characterizing micro-environments 
(Tsin et  al., 2016; Zhou et  al., 2020). Traverse walk or 
vehicular traverse measurements have proved reliable in 
obtaining spatial trends in near-surface air temperature 
patterns within urbanized environments (Zhou et  al., 
2020). Moreover, these traverse measurements can act 
as ‘ground truth’ data for validating satellite-based tem-
perature observations, and also provide base data for 
generating projections of future surface and near-sur-
face temperature estimates (Zhou et  al., 2020). In fact, 
air temperatures alone are inadequate in explaining the 
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higher temperatures encountered in urban areas com-
pared to the adjacent rural areas (Koopmans et al., 2020). 
Since the thermal source area for a temperature measure-
ment ("foot print" or "circle of influence") is a function of 
instrument height, surface geometry, and boundary layer 
wind and stability conditions (Stewart and Oke, 2012), 
ancillary variables describing the local environment 
are required. In this regard, biophysical attributes (e.g., 
topography, vegetation cover, and surface characteristics) 
contribute to the offset between land surface tempera-
ture (LST) and near-surface atmospheric temperature 
particularly during the day through differential solar 
heating, vegetation transpiration, and surface turbulence 
(Aalto et  al., 2018). Therefore, the relationship between 
LST, NST, and biophysical variables are needed in order 
to exploit satellite-based LST estimates. Moreover, land 
cover, vegetation fraction, and elevation had a significant 
influence on ΔT (LST-T2m) values.

Given that urban environments in arid/semi-arid 
regions contain more than one third of the world’s 
human population mapping urban microclimate patterns 
is essential in thermal conditions that urbanized resi-
dents are exposed to (Zhou et al. 2020). This study sought 
to; explore the microclimatic patterns in a tropical peri-
urban environment and determine the biogeophysical 
factors driving the observed patterns. The specific objec-
tives of the study were; (i) figure out if the use of fixed 
and mobile temperature sensors in time-synchronized 
in situ traverses can yield statistically significant tempera-
ture gradients (ΔT) attributable to landscape features, 
(ii) find out how time of the day influences NST gradi-
ents, (iii) determine how NST clusters compare to LST 
values derived from analysis of ‘cloud-free’ Landsat 8 OLI 
(Operational Land Imager) satellite image, and (iv) deter-
mine how NST and LST values are related to biophysi-
cal properties of land cover features. This study sought 
to find out how diurnal NST temperature gradients are 
related to properties of land surface features during the 
dry season and what time of the day yields the most sig-
nificant temperature gradients. This paper serves as a 
baseline on evaluating future changes in LST and NST 
attributable to changes in urban development and global 
climate change.

2 � Methodology
2.1 � Study area
This study was conducted at a section of Kenyatta Uni-
versity Main Campus located between 36.20° to 36.96° 
East and -1.72° to -1.19° South, covering an area of about 
10.6 ha (Fig. 1). The campus occurs within a peri-urban 
area with a humid highland sub-tropical climate with 
distinct dry and wet seasons. The bimodal rainfall occurs 
between March and May, and October and December, 

intervened by dry seasons. The aggregate annual pre-
cipitation and the mean annual temperature are about 
1065  mm and 18.9 ℃, respectively. The maximum tem-
perature averages at about 24.9 ℃, occurring in January 
to February, while the minimum temperature averages at 
about 13.0 ℃ occurring in July to August. The study area 
has a wide range of landcover and land use types that 
together with other physiographic attributes potentially 
contain a wide range of microclimates.

2.2 � Near‑surface air temperature measurements
The temperature records were obtained from a fixed 
HOBO Pendant® Temp/Light 8  K loggers (UA-002–64, 
Onset Computer Corporation, MA, USA) with a reso-
lution of 0.14  °C and accuracy of ± 0.53  °C during the 
dry season when soils are dry, sky clear, and winds are 
minimum. In order to assess the reliability of air tem-
perature measurements using the loggers, an experiment 
was set up to determine the effectiveness of solar radia-
tion shields on diurnal air temperature variations within 
the weather station. Four air temperature records were 
obtained from four sensors (Table 1) as shown in Fig. 2.

2.3 � Traverse walk
We used HOBO Pendant loggers to record air tem-
peratures in the weather station (fixed logger) (located 
at 1.183761° S, 36.928603° E, 1545  m mean sea level 
[MSL]) and across the traverse (mobile logger) at 30  s 
intervals. For the traverse walks, we chose the days with 
clear weather condition (no overcast conditions) and 
dry weather conditions. We conducted the first in  situ 
traverse walk on 8th January 2018 in the late afternoon 
(between 4:06  pm and 5:35  pm) and the second in  situ 
traverse walk on 18th February 2021 in the morning 
(between 10:00 am and 10:47 am) (Fig.  3). During the 
walks, the logger was suspended on a string within a 
fabricated radiation shield (see Fig. 4). We also took sev-
eral photos to help in interpreting the results. During 
the walk, Garmin GPSMAP® 64S (Garmin Ltd.) Global 
Positioning System (GPS) receiver was used to collect the 
geographical coordinates along the traverse, whereupon 
the time-stamps of the GPS records and Hobo Pendant 
logger records were used to produce time-synchronized 
geographical coordinates and temperature records, 
respectively. The walk traverse was designed to pass 
through various cover types (tarmac road, concrete pave-
ments, earthen field, forests, etc.). An attempt was made 
to maintain a constant speed during the walk to avoid 
temperature fluctuations caused by stagnation, given our 
interest in the spatial rather than temporal variability of 
air temperature.
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2.4 � Temperature data analysis
2.4.1 � Evaluating the effectiveness of solar radiation shield 

on air temperature records
To evaluate the effectiveness of fabricated shield in con-
trolling for solar radiation, comparative temperature 

data was generated from all the four sensors (i.e. 
unshielded logger, and shielded logger in a fabricated 
radiation shield, logger inside the Stevenson screen, 
and Envilog GP5W-Shell logger in the automatic 
weather station).

Fig. 1  The study area map showing the road networks downloaded from OpenStreetMap (https://​www.​opens​treet​map.​org/) and buildings 
digitized from Google Earth® Imagery

https://www.openstreetmap.org/
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2.4.2 � Evaluating the spatial profiles in air temperature 
records across the traverses

The temperature difference (ΔT) was computed from 
time-synchronized temperature records of the fixed 
sensor positioned inside a Stevenson’s screen and the 
mobile sensor used in traverse walk on study area 
(Eq. 1):

where ΔT is the difference in the temperature read-
ings of mobile (TMAir) and fixed (TFAir) logger, respec-
tively. In this case, negative ΔT values would indicate 
fixed logger had recorded a higher air temperature than 
that of the mobile logger. The converse is also true.

(1)�T = TMair − TFair

Table 1  Description of the sensors used in recording temperatures

Sensor Description Position 
above the 
ground

i) a Hobo Pendant sensor housed within fabricated solar radiation shield 2 m

ii) an unshielded Hobo Pendant sensor 2 m

iii) a Hobo Pendant sensor housed within Stevenson’s screen 2 m

iv) an automatic weather station (model Envilog GP5W-Shell sensor, ecoTech, Germany 2 m

Fig. 2  The experimental set-up at Kenyatta University weather station; a – unshielded and shielded (in a fabricated radiation shield), b – a HOBO 
Pendant logger inside the Stevenson screen, and c – automatic weather station (model Envilog GP5W-Shell sensor, ecoTech, Germany). The HOBO 
Pendant logger are indicated by the red circle
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2.5 � Hotspot analysis
Hotspot analysis of ΔT values was used to identify thermal 
hot and cold spots for the study region using Arc GIS 10.8® 

(ESRI Inc.). Getis–Ord Gi*, a geostatistical tool was used 
for identifying statistically significant hot and cold spot 
concentration using Eqs. 2, 3 and 4 (Daramola et al., 2018).

Fig. 3  Part of Kenyatta University Main Campus (study area) showing the background Google Earth ® image (dated 31st January 2020). In situ 
traverses used to collect air temperature data on are illustrated. The first in situ traverse walk (8th January 2018) and second in situ traverse walk (18th 
February 2021) is shown on the top and bottom map respectively
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where xj is the ΔT values for feature j, wi,j is the spatial 
weight between feature i and j, n is the total number of 
sample points.
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2.6 � Retrieving Land Surface Temperatures (LST) 
and landscape metrics from Landsat 8 OLI

Cloud-free Landsat 8 OLI Collection 2 Level-2 imagery 
was downloaded from USGS-Earth Explorer on 30th 
December 2020. The details of the Landsat scene are 
shown in Table 2.

LST was retrieved from the thermal infrared band of 
Landsat 8 OLI/TIRS (band 10) using ENVI 5.3 software. 
The procedure for retrieving the LST involved, convert-
ing the digital number (DN).

into top-of-atmosphere (TOA) radiance, converting 
radiance values to brightness temperature (BT) values, and 
then modifying the BT values through integration of the 
emissivity of different land covers as outlined in Fig. 5.

2.6.1 � Top of atmospheric spectral radiance
Thermal infrared Band 10 was used to retrieve the top 
of atmospheric (TOA) spectral radiance (Lλ) as given in 
Eq. 5 (Barsi et al., 2014):

where ML represents the band-specific multiplicative 
rescaling factor, Qcal is the Band 10 image, AL is the band-
specific additive rescaling factor, and Oi is the correction 
for Band 10 (Table 3).

For OLI bands, Radiometric correction of Multispectral 
and Thermal bands was performed using Model-Based 
(FLAASH—Fast Line-of-sight Atmospheric Analysis of 
Spectral Hypercubes) in ENVI 5.3 software using mono 
window algorithm as per Eq. 6.

where; DN is the digital number of each pixel, LMAX 
and LMIN are calibration constants, QCALMAX and 
QCALMIN are the highest and lowest range of values for 
rescaled radiance in DN obtained from the metadata.

2.6.2 � Conversion of radiance to at‑sensor temperature
After the digital numbers (DNs) are converted to 
reflection, the TIRS band data should be converted 
from spectral radiance to BT (also known as blackbody 
temperatures) which is derived from Plank’s law (Dash 
et  al., 2002) using the thermal constants provided in 

(5)L� = ML ∗ Qcal + AL − Oi

(6)

L
�
=

(

LMAX − LMIN

QCALMAX − QCALMIN

)

∗

(

DN − QCALMIN

)

+ LMIN

Fig. 4  A fabricated (‘rocket type’) radiation shield containing the 
Hobo Pendant temperature logger that was used in traverse walk 
around campus. The radiation shield was developed from 160 mm 
PVC pipe and white melamine bowls

Table 2  Details of Landsat bands used in radiometric correction

Satellite/sensor/path/row Level of Product Bands used Resolution (m) Time Date of Image Cloud cover (%)

Landsat 8 OLI (path/row: 168/61) L2T 2 – 7 30 07:43:21 2017–12-28 0.26

10, 11 30b (100)
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the metadata file. The conversion of reflectance to BT 
is shown in Eq. 7:

where:
BT – at satellite brightness temperature (Kelvin);
Lλ – top-of-atmosphere (TOA) spectral radiance;
K1 – Band-specific thermal conversion constant;
K2—Band-specific thermal conversion constant (from 

the metadata).
The values for Landsat 8 were as follows, band 

10: K1 = 774.89, K2 = 1321.08; band 11: K1 = 480.89, 
K2 = 1201.14.

Lλ is the spectral radiance for the thermal band. LST 
in Kelvin and therefore was converted to Celsius. The 

(7)BT =
K2

ln(K1

L�
+ 1)

+ 273.15 parameters used in this calculation were obtained from 
Landsat 8 OLI Metadata file (Table  4) while the con-
version formulations may be obtained from Landsat 8 
(Landsat N.A.S.A 2019).

2.7 � Normalized Difference Vegetation Index (NDVI) 
method for emissivity correction

Landsat visible and near-infrared bands were used for 
calculating the Normal Difference.

Vegetation Index (NDVI) (Eq.  8). NDVI is needed in 
calculating emissivity because, the proportion of the 
vegetation (PV) is highly related emissivity (ε) should be 
calculated:

Fig. 5  Methodological flow chart of retrieving LST from Landsat 8 OLI

Table 3  Metadata of the satellite images

Thermal Constant, Band 10 (Wm−2 sr−1 µm−1)

K1 774.8853

K2 1321.079

Rescaling factor, Band 10

ML 0.000342

AL 0.1

Correction, Band 10

Oi 0.29

Table 4  Landsat 8 OLI parameters from metadata file

Input parameters Value/ description

Single scale factor 1.000000

Sensor type Landsat 8

Sensor Altitude (km) 705

Scene centre location Lat: -1.4483225 Lon: 37.07972

Ground Elevation (km) 0.219

Flight date 2017–12-28 –- (December 12TH 2017)

Flight time (HH:MM:SS) 07:43:21

Atmosphere type Tropical

Aerosol model Tropospheric

Kaufman-Tanre Aerosol Retrieval Based on Retrieval Conditions Over-
land Retrieval Standard 660 – 200 nm
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where pNIR and pRed represent the surface reflectance 
values of the near-infrared (corresponding to Band 5 of 
Landsat 8 OLI) and the red wavelengths (corresponds to 
band 4 of Landsat 8 OLI), respectively.

Proportion of NDVI (PVNDVI) is then computed 
to adjust emissivity for different land cover features, 
whereby pixels with NDVI less than 0.2 are considered 
as bare soil or rock, pixels with values between 0.2 and 
0.5 are considered a mixture of bare soil and vegeta-
tion, and pixels with values greater than 0.5 are con-
sidered fully vegetated (Sekertekin and Bonafoni, 2020; 
Urmambetova, 2017) (Eq. 9).

where NDVIV and NDVIs, are NDVI values for vegeta-
tion that are equal to 0.5 and 0.2 respectively. Thus, the 
emissivity (ελ) of bare soil or rock is considered to be 
0.966 while that of a fully vegetated pixel is considered 
0.986 (Urmambetova, 2017).

(8)NDVI =
pNIR − pRed

pNIR + pRed

(9)PvNDVI =

(

NDVI − NDVIs

NDVIv − NDVIs

)

2.8 � Mapping Land Use and Land Cover (LULC)
LULC was generated through manual digitalization over 
Google Earth images (Fig.  6) and resulting KML files 
imported into Arc GIS 10.8 ® (ESRI Inc.).

2.9 � Selection of explanatory biophysical variables
In examining the relationship between the spectral 
indices and LST as well as NST, Normalized Difference 
Built-up Index (NDBI), Modified Normalized Differ-
ence Water Index (MNDWI), Albedo, and Normalized 
Difference Vegetation index (NDVI) were selected as 
ancillary biophysical variable (Table  5). These spec-
tral indices were selected based on their reported per-
formance in other studies (e.g., Daramola et  al., 2018). 
NDBI highlights urban areas with high reflectance 
of short-wave radiation, and is based on reflectance 
measurements in the red and mid-infrared (MIR) por-
tion of the spectrum (Liu and Zhang, 2011). MNDWI 
enhances water features and improves contrast between 
the built-up land and water (Xu, 2006). NDVI highlights 
areas covered by vegetation, with high values signify-
ing high vegetation cover (Tucker, 1979). Albedo high-
lights differences in reflectivity between features within 

Fig. 6  Detailed illustrations of a section of the study area indicating how tree canopies (left) and buildings (right) were extracted from Google 
Earth® image. Other features (i.e. roads, parking lots, bare soils, and grass cover) was obtained in a similar way

Table 5  Spectral indices selected as explanatory variables of LST and NST

Variables Description Formulation References

NDBI Normalized Difference Built-up Index ρSWIR1
−ρNIR

ρSWIR1+ρNIR
(McFeeters, 1996)

MNDWI Modified Normalized Difference Water Index ρGreen−ρSWIR

ρGreen+ρSWIR

Xu, 2006

NDVI Normalized Difference Vegetative Index ρNIR−ρRed

ρNIR+ρRed
Tucker, 1979

Albedo See Eq. 8 Liang, 2000
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the visible electromagnetic spectrum. The short-wave 
albedo was estimated with an empirical formula (Eq. 8) 
previously developed for the Landsat Thematic Mapper/
Enhanced Thematic Mapper Plus (TM/ETM +) sensor 
(Liang  2000):

where α1,α2, α3 , α4 , and α5 , correspond to the Top of 
Atmosphere (TOA) reflectance in Landsat‐8 spectral 
bands 2 (0.45–0.515  μm), 3 (0.525–0. 60  μm), 4 (0.63–
0.68  μm), 5 (0.845–0.885  μm), 6 (1.560–1.660  μm), and 
7 (2.1–2.3 μm), respectively. The average albedo values of 
each 90 m grid cell were found to range from 0.11 to 0.53. 
Albedo ranges between 0 and 1.

2.10 � Evaluating statistical relationships between LST 
and biophysical variables

In order LST, NST, and spectral indices for statisti-
cal analysis, to samples A fishnet corresponding to the 
study area was created in ArcGIS with a spatial resolu-
tion of 30  m × 30  m to match the resolution of Land-
sat 8 OLI image. Then, ΔT values of the traverse were 
obtained using spatial join tool of ArcGIS overlay tool-
box. Similarly, spectral indices (Albedo, MNDWI, NDBI, 
and NDVI) were also obtained using values for statistical 
analysis.

Ordinary Least Square (OLS) regression analysis was 
done using Spatial analysis Toolbox in ArcGIS 10.8® 
(ESRI Inc.) to determine how Albedo, MNDWI, NDBI, 
and NDVI account for the observed LST and ΔT patterns. 
OLS is a global regression that assumes spatial stationarity 

(10)
�short = 0.356�1 + 0.13�2 + 0.373�3

+ 0.085�4 + 0.072�5 − 0.0018

(i.e., the processes triggering the observed patterns in 
temperature are spatially invariable such that the selected 
predictors trigger the same response throughout the study 
area) (Chen et al., 2020; Li et al., 2020; Wang et al., 2020). 
The coefficient of determination (R2), the global Moran’s 
I of the residuals, and the Akaike Information Criterion 
(AIC), were used to evaluate the performances of global 
regression models with respect to the goodness-of-fit and 
residual spatial autocorrelation.

We then performed an Ordinary Least Square regres-
sion between the NST (dependent variable) and the inde-
pendent variables selected (Albedo, MNDWI, NDBI, and 
NDVI). All assumptions of least square regression were 
checked, including spatial autocorrelation.

In examining the relationship between the spectral 
indices and land surface temperature, statistical analysis 
was performed.

Fig. 7  Land Use Land Cover Map of Kenyatta University, manually digitized from Google Earth Imagery dated 31st January 2020

Table 6  The proportion of various land cover classes in the 
study area

Source: The cover estimates are based on mapped land cover types

based on Google Earth® image (January 2020)

Land Cover class Area (m2) % cover

Water 13,762 0.65

Concrete pavement 44,895 2.13

Bare soil 79,519 3.78

Asphalt roads & parking lots 465,039 22.10

Grass 531,085 25.23

Trees 788,116 37.45

Buildings 182,242 8.66
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Fig. 8  The Getis–Ord Gi* statistics of ΔT values of the in situ traverse showing statistically significant hot and cold spot categorized into confidence 
level bin in ± 3 bins, ± 2 bins, and ± 1 bins corresponding to 99 percent, 95 percent, and 90 percent confidence level (Gi_Bin). The cold spots and 
hot spots for the late afternoon traverse walk (8th January 2018) and morning traverse walk (18th February 2021) is shown on the top and bottom 
map respectively
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3 � Results
There were seven (7) major land use land cover (LULC) 
classes in the study area (Fig. 7). land cover classes were 
generally Among the land cover classes, tree cover had 
the largest proportion (37%) while water had the least 
proportion (0.7%) (Table 6).

3.1 � Clustering patterns of NST records in relation 
to landscape features

The Getis–Ord Gi* statistics of ΔT values of the in situ 
traverse show spatial clustering with statistically sig-
nificant hot and cold spot (Fig. 7). The results indicate 
spatial clustering, with statistically significant spa-
tial clusters of high values (hot spots) and low values 
(cold spots). The higher (or lower) the z-score, the 
more intense the clustering. There is a correspondence 
between high temperature regions and low tempera-
ture regions in LST (Fig.  6) to the ‘hot spot’ and ‘cold 
spot’ regions observed from the temperature traverse 
(Fig. 8).

3.2 � How time of the day influenced NST gradients
The experimental data evaluating effect of solar radia-
tion on NST measurements reveals the fabricated shield 
did not significantly block solar radiation and showed 
that shielded HOBO Pendant logger recorded tempera-
ture variations were comparable to the unshielded sensor 
(Fig.  9). On the other hand, the HOBO Pendant logger 

situated inside the Stevenson screen and Envilog GP5W-
Shell logger in the automatic weather station) showed 
comparable results, that were significantly lower than 
temperature records of HOBO Pendant logger in the fab-
ricated shield and the unshielded sensor.

There were significant differences in temperature gra-
dients (ΔT) between morning and evening measure-
ments (Fig.  10). Considering ΔT profiles as a function 
of distance from the start of the traverse, the late after-
noon in  situ traverse walk (8th January 2018) showed a 
greater range in ΔT values and more significant peaks 
that morning in  situ traverse walk (18th February 2021). 
Furthermore, the clustering patterns of ΔT values for the 
morning traverse yielded anomalous clusters that cov-
ered several land cover classes (Fig. 7).

Based on ground-truth observations, the combination 
of landscape elements (e.g., tree cover, paved surfaces, 
building heights, etc.) create a suite of microclimates 
that generate temperature gradients observed in this 
study. However, the significant ‘hot-spots’ and ‘cold spots’ 
(Figs.  11 and 12) can be attributed to three land cover 
classes as illustrated in Table 7.

The LST maps (Fig.  12) shows that areas with a high 
tree cover and close to the stream have low surface tem-
peratures, while built up areas of low tree cover have high 
surface temperatures. The spectral indices (NDBI, NDVI, 
NDWI, and albedo) that were generated as explana-
tory biophysical variables for LST and NST patterns are 
shown in Fig. 13.

Fig. 9  Air temperature time-trends gathered from Hobo Pendant sensors (in Outdoor shield, Open air – unshielded, and in Stevenson’s screen) 
and an Envilog GP5W-Shell sensor (ecoTech, Germany) indicating differences in daytime sensor temperature records on 12/10/2020 between 6:00 
AM to 6:00 PM. Temperature measured by unshaded HOBO Pendant (red line), shaded HOBO Pendant using fabricated radiation shield (green 
line), shaded HOBO Pendant using Stevenson’s screen (blue line), and shaded using Envilog GP5W-Shell radiation shield (brown line) over the 
experimental period
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Fig. 10  Histograms of NST record and the corresponding traverse profile for the first in situ traverse walk (8th January 2018) (top panel) and the 
second in situ traverse walk (18th February 2021) (bottom panel) respectively. The late afternoon traverse (8th January 2018) showed a greater 
variability in ΔT values that followed a relatively normal distribution than the evening traverse (18th February 2021)

Fig. 11  Temperature differences between fixed and mobile sensor (ΔT) for the late afternoon traverse undertaken on 5th January 2018. The various 
land cover types encountered are represented in red lines numbered 1 – 3. The corresponding description the landscape features are shown in 
Table 7
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3.3 � Results of ordinary linear regression
NDVI was found to have a high VIF (> 7.5) and was 
removed from the regression model. The resulting OLS 
regression model indicates that ΔT values are positively 
correlated with MNDWI, and NDBI but negatively cor-
related with albedo. Probability and Robust Probability 
(Robust_Pr) indicates a coefficient of MNDWI and NDBI 
are statistically significant (p < 0.01) (Table  8). However, 
these explanatory variables were only able to explain 15% 
of the variation in the observed ΔT patterns (Multiple 
R-Squared = 0.15).

4 � Discussion
Proper shielding is critical for NST measurements, given 
the potentially large variations observed in daytime tem-
perature records among the sensors (Fig.  9). The early 
morning and early evening temperature records are com-
parable across all the temperature sensors indicating that 
solar radiation is the main driver of the observed differ-
ences in daytime temperature records of the sensors. The 
use of ‘rocket-type’ fabricated shield did not significantly 
reduce the radiative effect (total and reflected radiation) 
on NST records (i.e. the day-time NST records of sensors 

Fig. 12  LST Map of the study area showing areas of low temperature (in blue and cyan) and areas of high temperature (in red and yellow) and late 
afternoon in situ traverse, as well as the location of weather station where the fixed temperature sensor was located are indicated. The location 
of significant ΔT clusters coinciding with cold and hots spots are illustrated in enclosed boxes with numbers coinciding with landcover classes 
described in Table 7
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inside the fabricated shield relatively similar to those of 
the shielded sensor) (Fig. 9). Since the fabricated sensor 
was passively ventilated, poor air circulation, and albedo 
effect of the white PVC material housing the sensor are 
known to contribute to poor performance of radiation 
shields (Tarara and Hoheisel, 2007). On the other hand, 
the day-time temperature records of the sensor inside 
Stevenson’s screen were comparable to that of the Envilog 
GP5W-Shell® sensor (ecoTech, Germany), which were 
significantly lower than those of unshielded and sensor 
in fabricated shield (Fig.  9). The experimental data on 
temperature sensors therefore indicate that the Steven-
son’s screen and radiation shield of Envilog GP5W-Shell® 
sensor were effective in blocking solar radiation, hence 
providing reference values (‘true values’) of near-surface 
temperature. However, low-cost fabricated solar radia-
tion shields are still necessary given that the-state-of-the 
art shielded temperature sensors are still largely unavail-
able in most poor developed countries such as Kenya.

Comparisons between mobile and fixed site air tem-
peratures indicated that mobile measurements were 
generally higher than time-synchronized fixed site meas-
urements. The delay in temperature response with time 
(‘memory effect’) was assumed to be negligible (not 
evaluated) given the steady walking pace and 30  s time 
interval used to record NST that we considered suffi-
cient to reduce the effect of such micro‐scale turbulence. 
However, this ‘memory effect’ is known to vary from 
sensor to sensor, with a potential to lose spatial detail 
(Burt and Podesta, 2020). Unlike vehicular traverses 
(e.g., Zhou et al., 2020), walking traverse is not limited to 
paved roads. Rather, walking traverse allows one to navi-
gate through a wider variety of land cover types and also 
provides for adequate response time for the sensors to 
capture and record the temperature including transient 
turbulence.

It is evident that there is an effect of time on the ΔT 
values (Fig.  9). Histogram of evening records showed 

Table 7  Description of land cover features encountered during the traverse walks
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relatively normal distribution and greater range in ΔT 
values compared to the morning records. Given that the 
coldest time of the day occurs at sunrise (6:00 to 6:30 
AM) when the interference of solar radiation on NST and 
LST patterns would be minimal (Fig. 10), the differences 
in ΔT values may be attributed to effects of both direct 

and diffuse solar radiation as well as ground heating. 
Moreover, hot and cold regions of Landsat-based LST 
map (Fig. 10) are suggestive of thermal properties of the 
surface features, owing to the fact that the Landsat image 
was acquired in the morning (07:43:21 AM) (Table  4) 
when radiation effects are minimal. Since surfaces 

Fig. 13  Spectral indices of biophysical variables (NDBI, NDVI, NDWI, and albedo) used to explain LST and NST patterns

Table 8  Summary of ordinary least square regression of ΔT (dependent variable) and Albedo, MNDWI, and NDBI (independent 
variables) results. Asterisk (*) indicates a coefficient is statistically significant (p < 0.01)

NDVI was found to have a high VIF (> 7.5) and was removed from the regression model. The resulting OLS regression model indicates that LST values are positively 
correlated with albedo, MNDWI, and NDBI. Probability and Robust Probability (Robust_Pr) indicates a coefficient of NDVI, MNDWI, and NDBI are statistically significant 
(p < 0.01) (Table 8). These explanatory variables were only able to explain 46% of the variation in the observed LST patterns (Multiple R-Squared = 0.46)

Variable Coefficient StdError t-Statistic Probability Robust_SE Robust_t Robust_Pr VIF

Intercept 5.0 0.92 5.45 0.000000* 1.00 4.96 0.000003* ––––

Albedo -7.20 4.50 -1.560 0.111859 4.01 -1.797338 0.074353 1.02

MNDWI 2.88 1.19 2.41 0.016971* 1.04 2.776425 0.006216* 1.17

NDBI 2.14 0.77 2.78 0.006069* 0.64 3.356202 0.001017* 1.15
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radiates heat throughout the night, those surfaces that 
have high heat capacity would retain more thermal 
energy than those with lower heat capacity. Indeed, the 
clustering of ΔT values of the in situ traverse (cold spots 
and hot spots) for the late afternoon traverse walk (8th 
January 2018) are more significant than the morning 
traverse walk (18th February 2021) (Fig. 8). Consequently, 
in a clear sunny day, NST records collected in the after-
noons would be more appropriate for characterizing spa-
tial temperature variability as opposed to those collected 
in the morning.

The temperature difference between NST ‘cold spots’ 
and ‘hot spot’ in the study area (Fig. 11) may be attributed 
to a suite of thermal properties and aerodynamic con-
ditions created by the landscape elements (e.g., tarmac, 
bare soil, buildings, pavements, and grasslands, etc.), 
although these were not evaluated in this study. The loca-
tion of significant ΔT clusters coincide with cold and hots 
spots (Fig.  11) coincide with landcover classes (dense 
trees lightly built areas with tall and relatively dense tree 
cover, and paved areas made up of asphalt with no tree 
cover) (Table 7). The statistically significant coefficient of 
MNDWI, and NDBI (p < 0.01) (Table 8) can only explain 
15% of the variation in the observed ΔT patterns. On 
the other hand, the coefficients of albedo, MNDWI, and 
NDBI could explain 46% of the variations in LST patterns 
(Table 9). On examination of the MNDWI spectral grid 
(Fig.  13), water bodies were over-estimated especially 
in areas that appear dark such as roads and pavements 
made up of asphalt (Fig. 7), an observation that has been 
made by other workers (e.g., Yang et al. 2018). Such arti-
facts may partially account for the poor performance of 
spectral indices in explaining the ΔT patterns. Simulta-
neous measurements of biophysical variables and NST 
records should be considered in future studies to capture 
the thermal source area for a temperature measurement 
("foot print") and enhance reliability of the predictor vari-
ables. Indeed, biogeophysical variables (e.g., soil moisture 
or vegetation state) are ephemeral (can vary seasonally) 
and have been shown to contribute to the soil-atmos-
phere temperature offset (ΔT) (Aalto et  al., 2018).and 
Studies show that tree cover control microclimates 
through shading (the difference between outside-forest 

radiation and within-canopy radiation), cooling and 
humidifying effects that significantly differ from synop-
tic weather conditions (Lindén et  al., 2016; Wang et  al., 
2018). Humidifying effects occur through transpira-
tion whereby, trees transfer sensible heat to latent heat, 
thereby leading to cooling effect and buffering of diurnal 
amplitude of air temperature (Lindén et al., 2016). Con-
sidering that many landscapes in tropical environments 
are physically heterogeneous, accurate characterizations 
of spatial variability in temperature conditions, may help 
identify microenvironments that significantly differ from 
synoptic weather conditions and evaluate the causes of 
such variations. Given the worsening conditions cre-
ated by anthropogenic climate change and urban devel-
opment, more ground-based peri-urban microclimate 
monitoring campaigns are needed to enrich our under-
standing of the complex land surface‐atmosphere inter-
action, for proper adaptive and mitigation measures.

5 � Conclusion
The study established that; (i) the use of fixed and mobile 
temperature sensors in time-synchronized in  situ trav-
erses under clear sky during the dry season can yield 
statistically significant temperature gradients (ΔT) attrib-
utable to landscape features, (ii) late afternoons (3:00 
–5:00 PM local solar time) yield the most statistically sig-
nificant ΔT (LST-T2m) clusters (hot spots and cold spots), 
(iii) only statistically significant NST clusters (hot spots 
and cold spots) compared to LST estimates from ‘cloud-
free’ Landsat 8 OLI (Operational Land Imager) satellite 
image, and (iv) the selected satellite indices of surface 
properties (MNDWI and NDBI) can explain 15% of ΔT 
variation, while albedo, MNDWI, and NDBI can explain 
46% of the variations in LST patterns. Our results suggest 
that under clear sky, Landsat-based LST and late after-
noon NST values relate to spatial arrangement of land-
scape elements and their properties during dry season. 
Simultaneous characterization of biophysical attributes 
of sites along the traverse may provide additional explan-
atory variables for evaluate the contribution of various 
landscape elements on thermal variability, therefore 
improve regression models for urban thermal ecology.

Table 9  Table Summary of ordinary least square regression of LST (dependent variable) and Albedo, MNDWI, and NDBI (independent 
variables) results

Variable Coefficient StdError t-Statistic Probability Robust_SE Robust_t Robust_Pr VIF

Intercept 30.10 0.24 125.78 0.000000* 0.26 114.68 0.000000* ––––

Albedo 9.72 1.08 8.97 0.000000* 1.31 7.42 0.000000* 1.0

MNDWI 3.30 0.28 11.78 0.000000* 0.31 10.48 0.000000* 1.2

NDBI 6.31 0.20 31.29 0.000000* 0.21 30.14 0.000000* 1.2
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