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Abstract

Effectively monitoring the dynamics of human mobility is of great importance in urban management, especially
during the COVID-19 pandemic. Traditionally, the human mobility data is collected by roadside sensors, which have
limited spatial coverage and are insufficient in large-scale studies. With the maturing of mobile sensing and Internet
of Things (IoT) technologies, various crowdsourced data sources are emerging, paving the way for monitoring and
characterizing human mobility during the pandemic. This paper presents the authors’ opinions on three types of
emerging mobility data sources, including mobile device data, social media data, and connected vehicle data. We
first introduce each data source’s main features and summarize their current applications within the context of
tracking mobility dynamics during the COVID-19 pandemic. Then, we discuss the challenges associated with using
these data sources. Based on the authors’ research experience, we argue that data uncertainty, big data processing
problems, data privacy, and theory-guided data analytics are the most common challenges in using these
emerging mobility data sources. Last, we share experiences and opinions on potential solutions to address these
challenges and possible research directions associated with acquiring, discovering, managing, and analyzing big
mobility data.
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1 Introduction
In December 2019, the coronavirus disease 2019
(COVID-19) was first detected in human beings, which
quickly developed into a global pandemic. As of June 11,
2021, the ongoing pandemic has reached 220 countries
and territories, causing over 175 million cases and 3.8
million deaths globally, and the number is still increasing
(Pettersson et al., 2021). To contain the spread of the
disease, different epidemic control measures have been
undertaken globally to reduce the transmission rate of
COVID-19, such as accelerating the large-scale testing,
enhancing clinical management, conducting rapid isola-
tion of confirmed and suspected cases, performing con-
tact tracing, and more importantly, controlling human

movement (Bisanzio et al., 2020; Huang et al., 2020;
Yechezkel et al., 2021).
Many studies have demonstrated that human mobility

is an essential component of respiratory infectious dis-
ease transmission, especially in the COVID-19 pan-
demic. Performing restrictions on human mobility can
effectively reduce the transmission rate and protect
people from this threat (Kraemer et al., 2020; Pan et al.,
2020). Since the pandemic began, various mobility con-
trol measures and policies have been implemented at
different scales, such as global and national travel bans,
regional lockdown and stay-at-home orders, as well as
individual-level quarantine, self-isolation, and social dis-
tancing. Although these movement-controlling measures
worked effectively to mitigate the spread of COVID-19,
they also posed significant negative influences on the
economy and society (Nouvellet et al., 2021). Studies
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have shown that massive lockdown measures not only
lead to a significant decline in the economy with numer-
ous job losses but also potentially cause pervasive phys-
ical and mental health problems for human beings,
especially in the vulnerable population groups. The
World Health Organization (WHO) also suggests that
countries and health authorities should implement tar-
geted movement-controlling interventions based on the
local situation when and where needed. While the whole
world is looking forward to going back to normal life, it
is becoming important to advance the understanding of
the relationship between the dynamics of human mobil-
ity and the spread of COVID-19. Studies have demon-
strated that effectively monitoring the human mobility
dynamics during the pandemic could not only benefit
modeling the spread and size of epidemics, assessing the
effectiveness of ongoing movement-controlling mea-
sures, but more importantly, help the government and
health authorities to decide whether ease or tighten the
mobility restrictions.
Although monitoring human mobility dynamics shows

a great importance in fighting against COVID-19, what
mobility data sources are available and how well they
can reflect the relationship between human mobility and
virus transmission still need further investigation. With
the advancement of data acquisition and transmission
techniques, unprecedented amounts of human mobility
data are continually being generated and collected from
various data sources, such as social media, roadside sen-
sors, cellular signaling data, GPS-enabled smartphones,
and connected vehicles (CVs), among others. These
emerging mobility datasets are usually massive in size,
spatiotemporally fine-scaled, and high dimensional (e.g.,
multivariate and multivalued), providing researchers
with a rich source of information to monitor the human
movements in response to the COVID-19 pandemic. It
is worth noting that, although these emerging mobility
data sources are promising, they usually show different
data characteristics and therefore lead to different appli-
cations and limitations, which need to be discussed and
documented.
This opinion paper is intended to facilitate the discus-

sion on the utilization of emerging geo-data sources to
reveal human mobility dynamics during the COVID-19
pandemic. Although some researchers have provided
systemic reviews on the available human mobility data
sources in the COVID-19 research (Hu et al., 2021), a
more in-depth review and discussion are still needed to
further assess the applications of some representative
data sources during the pandemic. This paper supple-
ments the existing literature by providing reviews specif-
ically focused on three promising mobility data sources:
mobile device data, social media data, and CV data. We
selected a representative data source from each type of

mobility data (SafeGraph, Twitter, and Wejo) and shared
our technical and methodological experiences to utilize
them in COVID-19 related research. The opinions on
using these data sources are based on the authors’ pub-
lished and ongoing research works as well as the find-
ings from discussions held in the Symposium on Human
Dynamics Research at the American Association of Ge-
ographers Annual Meeting 2021. This paper aims to
help governments and researchers easily identify avail-
able data sources, point out their strengths and limita-
tions in monitoring human movements during the
pandemic, as well as share experiences on the applica-
tions of emerging geoinformatics technologies to address
the technological challenges associated with the acquisi-
tion, discovery, management, and analysis of big geospa-
tial data.

2 Emerging data sources
To track dynamic human mobility patterns, a prerequis-
ite for measuring human response to the pandemic is
the availability of fine-resolution datasets. While enter-
ing the “social big data era”, a series of intertwining con-
cepts that include “Web 2.0”, “Citizen as Sensors”, and
“Volunteered Geographic Information” lead to the grow-
ing popularity of crowdsourced data sources, largely fa-
cilitating human mobility monitoring from wider
audiences. This section introduces three promising
crowdsourced mobility data: mobile device data, social
media data, and CV data. We first summarized the most
recent COVD-19 related research works based on each
type of data. Then, we selected three specific data exam-
ples (SafeGraph, Twitter, and Wejo) for each data type
to illustrate their generalized data processing flow. Last,
we summarized their appropriate applications and limi-
tations in COVID-related studies.

2.1 Mobile device data
As a necessity of people in today’s world, smartphones
have served as sensors in capturing data and play key
roles in combatting the COVID-19. Companies such as
Google, Facebook, Baidu, Apple, Cuebiq, Descartes Labs,
and SafeGraph have released their open datasets col-
lected from millions of mobile devices in monitoring hu-
man mobility patterns as well as behaviors (e.g., social
distancing, shelter-in-place orders). Thanks to their high
penetration rates, such records are generally with high
representativeness, thus becoming a preferred data
source for various COVID-19 studies that demand ac-
curate human spatial interactions (Chang et al., 2021, b;
Glaeser et al., 2020). In addition, researchers have also
released a series of open-source mobility datasets de-
rived from mobile devices, such as multiscale mobility
patterns in the U.S. (Kang et al., 2020), mobility changes
in Italy (Pepe et al., 2020), mobility and COVID-19
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infections in China (Xu, Gutierrez, et al., 2020). These
datasets provide abundant resources that help decipher
global human mobility patterns at multiple scales (such
as country, state, county, and even census tract/neigh-
borhood) in a frequently updated manner. Several online
platforms were built using the aforementioned datasets.
One notable effort is by Li et al. (2021, b), who designed
an ODT FLOW platform with the capacity to extract,
analyze, and share SafeGraph mobility records in re-
sponse to the soaring needs of human mobility data, es-
pecially during disaster events such as the COVID-19
pandemic we are facing. In collaboration with Descartes
Labs, Gao et al. (2020) designed a dashboard to present
mobility dynamics at the U.S. county-level using mobil-
ity records from Descartes Labs.
Taking the SafeGraph data as an example, mobility re-

cords from SafeGraph are derived via a panel of GPS
points from 45 million anonymous mobile devices
(about 10% of mobile devices in the U.S.). SafeGraph
provides the mobile phone location data in the CSV for-
mat files, convenient for data processing and analysis. By
performing clustering algorithms (e.g., density-based
spatial clustering of applications with noise [DBSCAN])
on the mobile phone location data, the users’ home loca-
tions as well as their visits to various points of interest
(POIs) and places can be obtained. Typically, only a
cluster of points with a duration of at least 1 min can be
retained as a “visit” for each user. By spatially joining the
users’ home locations and visiting places to different
geographical units (e.g., census tract, county, state), we
could obtain the aggregated mobility patterns (origin
and destination [OD] pairs) at different spatial scales.
Mobility patterns at different spatial scales derived

from mobile devices play a significant role in tracking
the dynamics of human mobility and have been used to
support government policy decision-making during the
pandemic. Researchers have constructed human mobility
flow networks for examination in countries such as
China, Japan, Italy, France, Chile, and U.K. (Gatto et al.,
2020; Jia et al., 2020; Pullano et al., 2020; Yabe et al.,
2020), to understand the effect of different lockdown
strategies and intervention scenarios in containing the
virus spread. In addition, algorithms have been devel-
oped to model and simulate disease spread by augment-
ing human mobility patterns for future infection
predictions. For example, Benzell et al. (2020) evaluated
the transmission risk of multiple categories of POIs and
provided reopening guidelines. Hou et al. (2021) and
Thomas et al. (2020) took advantage of fine-scale human
mobility datasets and discovered the spatial heterogen-
eity patterns, largely benefiting the governmental
decision-making process. It’s worth noting that the
individual-level human trajectory with such details has
raised ethical concerns on whether sharing or utilizing

them is appropriate, even in a time of crisis. To protect
user privacy, most mobile device data are aggregated to
the neighborhood level when releasing, so that individual
records cannot be traced. The accuracy of the geoloca-
tions collected from mobile devices with different GPS
quality becomes another concern during the analysis of
many mobile datasets. Meanwhile, although SafeGraph’s
sampling is highly representative given its high correl-
ation with the actual U.S. census data in various demo-
graphic and socioeconomic dimensions (Huang, Lu,
et al., 2021), the sampling rates in rural areas and under-
served communities are obviously lower than the urban
areas. This sampling bias may influence the performance
of SafeGraph’s data in tracking underserved communi-
ties’ mobility dynamics.

2.2 Social media data
Social media represents the emergence of virtual com-
munities and networks where different users could cre-
ate, share, and exchange various information. The vast
sensing network composed of millions of active social
media users serves as a new venue where timely human
spatial interactions can be collected, stored, shared,
mined, analyzed, and visualized in a rapid manner
(Dekel & Shamir, 2009). The valuable user-generated in-
formation from social media platforms (often large in
volume), when coupled with geo-information, allows hu-
man mobility dynamics to be monitored in an active,
near-real-time, and less privacy-concerning manner
(Huang et al., 2020). Social media has many unique fea-
tures. Compared to passively collected GPS positions
from mobile devices, social media data are less abundant
spatiotemporally (owing to their active sharing charac-
teristics) but are less intrusive, more accessible, and
more harmonized (Li, Huang, Ye, et al., 2021). The less
privacy-concerning nature of social media can be attrib-
uted to the user sharing settings. Popular social media
platforms include Twitter, WhatsApp, Messenger, Insta-
gram, Facebook, WeChat, Weibo, QQ, Tik Tok, to list a
few. However, not all of them open-source their data-
base or permit information mining unless a certain
agreement is met.
To retrieve social media records for mobility observa-

tion purposes, scholars can either establish connections
with companies to obtain their tailored mobility records
or use the provided downloading portals, in many cases
the Application Programming Interfaces (APIs). How-
ever, given the large volume of social media data, special
handling approaches are often needed, such as cluster
storage, database management, cloud/parallel comput-
ing, and multi-thread aggregation. Twitter, for instance,
gives privacy control to users, as it allows them to deter-
mine whether to share content to the public, whether to
reveal locations, and what levels of locational accuracy
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to be revealed. In addition, Twitter posts provide rich
and diverse data sources, including texts, pictures, and
videos. Researchers can mine the contextual knowledge
and information from Twitter posts through different
natural language processing and image segmentation al-
gorithms, benefiting our understanding of stories be-
hinds these trips (e.g., users’ emotional change, social
network change).
Mobility records mined from social media platforms

have been proved to be one of the important mobility
data sources that benefit our understanding of human
mobility dynamics during the COVID-19 pandemic. For
example, Y. Li et al. (2020) analyzed the mobility pattern
during the initial stage of the COVID-19 outbreak in
China using the Tencent mobility database derived from
various Tencent media platforms. In collaboration with
Facebook Data for Good, Chang, Kahn, et al. (2021)
adopted Facebook colocation data and Facebook move-
ment data to understand movement patterns and built
meta-population models that incorporate human move-
ment data to access the potential effects of local travel
restrictions in Taiwan. Zarei et al. (2020) constructed
the first Instagram dataset on COVID-19 that involves
locational information as one of the features to assist
communities in better understanding the mobility and
sentimental dynamics. Among all social media platforms
that allow mobility data mining, Twitter has become the
most popular and the largest source, thanks to its free
access to about 1% of its total content (Martín et al.,
2020). In early 2021, Twitter released a new academic-
oriented Application Programming Interface (API) that
grants free access to full-archive search for researchers
to obtain more precise, complete, and unbiased data
(Twitter, 2021), greatly benefitting future Twitter-based
human mobility investigations. Numerous efforts have
been made to harvest the geospatial contexts from Twit-
ter posts. One notably effort is by Huang et al. (2020),
who harnessed 580 million geotagged tweets worldwide
to shed light on the geographically varying difference in
policy implementations and discrepancies in policy com-
pliance. Similarly, Bisanzio et al. (2020) took advantage
of geospatial contexts from geotagged tweets, aiming to
predict the spatiotemporal spread of worldwide reported
COVID-19 cases at the initial stage of the COVID-19
outbreak. Xu et al. (2020, b) designed a Twitter social
mobility index that measures social distancing compli-
ance and users’ travel behaviors on a weekly basis.
Huang, Li, et al. (2021) compared mobility records de-
rived from Twitter with the ones from Google (Google
location history service), Apple (Apple map), and Des-
cartes Labs (GPS from mobile devices). Their results re-
veal a high similarity in mobility dynamics among
different data sources at the U.S. county level during the
COVID-19 pandemic, suggesting that Twitter data can,

to a certain extent, substitute or supplement mobility re-
cords collected from other sources. Despite these advan-
tages, several notable issues in social media derived
mobility that deserve to be recognized. First, although
social media are mode-free (not restricted to certain
travel means), the representativeness of social media de-
rived mobility needs further investigation, as studies
have shown that they tend to be biassed towards certain
age or racial groups and such biases are not
geographically-constant (Culotta, 2014; Jiang et al.,
2019). Second, social media records are usually with ra-
ther sparse spatiotemporal granularity, leading to great
difficulty in reconstructing individuals’ detailed trajector-
ies. Thus, certain levels of aggregation are necessary to
mitigate the data sparsity (Martín et al., 2021). Third,
unlike mobility records derived from GPS pings, the ac-
curacy of geo-information from social media can largely
vary and greatly depends on users’ specific settings, pos-
ing challenges for comparing and summarizing mobility
records with different levels of accuracy.

2.3 Connected vehicle data
CVs are rapidly becoming the new paradigm of road
transport, which has been widely believed to influence
transportation safety, efficiency, and sustainability posi-
tively. CVs represent the unification of various connect-
ivity technologies, enabling the vehicles to communicate
with other vehicles (V2V), transportation infrastructures
(V2I), and the “Cloud” (V2C) for achieving the goal of
“self-driving” (Hoseinzadeh et al., 2020; Talebpour &
Mahmassani, 2016). Although most commercially avail-
able vehicles are still far from completely automating the
driving task, most of them already could monitor the
driving environment and vehicle movements through ve-
hicular sensors. Many world-leading auto manufacturers,
like Toyota, GM, BMW, Tesla, among others, have
ramped up the production of CVs, which could access
and transmit vehicular sensors’ data to the cloud (Miles,
2019). Meanwhile, many automotive data companies
also emerged to facilitate the utilization of CV data. Like
Wejo, Otonomo, Smartcar, Vinili, and CarAlgo, these
data companies bridge the data providers—auto manu-
facturers with data users by ingesting, aggregating, and
normalizing the raw CV data and delivering the enriched
and organized datasets to end-users (Miles, 2019).
Unlike the aforementioned data sources, the CV data

is collected from vehicles, directly reflecting the dynam-
ics of traffic mobility. For example, Wejo, as a leading
CV data start-up, provides high-sampling and multi-
dimensional vehicle movements and driving event (e.g.,
hard braking, hard acceleration, speeding) data. This
data platform has currently partnered with multiple
world-leading auto manufacturers and collected data
from millions of vehicles with a sampling rate of 3 s per
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waypoint. Each waypoint describes the timestamp, lo-
cation, and movement-related information (e.g., speed,
heading) of a vehicle’s trajectory. Wejo claims that
their CV data products could access over 90 different
vehicular sensors and cover 95% of road networks in
the U.S., with about 12 billion data points collected
every day at a best temporal resolution of every 3 s.
Our preliminary studies in Texas also demonstrated
that Wejo data has good spatiotemporal coverage in
both urban and rural regions of Texas. CV data
shows great superiority in data quality, volume,
consistency, and richness compared to traditional mo-
bility data sources, making it a promising data source
for monitoring urban mobility dynamics. The CV data
is pre-processed by Wejo and delivered to the cloud
storage platforms (e.g., Microsoft Azure, AWS Could
Storage Services), organized in the Apache Parquet
format. The online big data analytic platforms (e.g.,
Azure Databricks and AWS Databricks) are suitable
for processing the big CV dataset. For example, Azure
Databricks supports the latest versions of Apache
Spark, allowing its users to seamlessly integrate with
any open-source libraries and quickly establish a fully
managed Apache Spark environment. The clustering
computing frameworks for processing large-scale
spatial data (e.g., Apache Sedona, GeoMesa) are
needed to load, partition, analyze, and visualize the
large dataset.
However, to the best of our knowledge, studies on the

application and utilization of CV data in mobility moni-
toring are still underexplored, especially for the mobility
changes caused by COVID-19. Wejo’s data science team
has utilized their CV data to capture the traffic change
across the U.S. since the pandemic began, indicating that
the pandemic has led to a 40.7% average decrease of
trips in the U.S. since the stay-at-home order came into
effect (Wejo, 2021). However, how to comprehensively
evaluate the effectiveness of the CV data in response to
disease management, as well as how to systemically
utilize the CV data in different movement-controlling
measures assessment and disease transmission modeling,
still need to be further explored. It is worth noting that
the CV shows exponentially greater requirements in data
storage and computation due to its massive data size.
For example, our data evaluation shows the one-month
CV movement data in Texas contains 108.19 million
trips collected from more than 1 million vehicles with a
size of around three terabytes. Therefore, advanced data
storage and computing techniques (e.g., cloud comput-
ing, distributed computing, and serverless computing)
are needed for effectively managing and manipulating
this emerging mobility big data. Meanwhile, although
directly collecting data from vehicles can ensure data
purity and quality, it also limits the application of this

data only to vehicle movements, thus the mobility of ac-
tive transportation (e.g., biking, walking) cannot be mon-
itored through this data.

3 From emerging mobility data to GeoInformatics:
challenges and potential solutions
The emergence of these crowdsourced mobility data
sources marks the evolution of the geospatial research
paradigm into a new era of geoinformatics. With the re-
cent proliferation of the Internet of Things (IoT), Internet
of Everything (IoE), and Information and Communica-
tions Technology (ICT), various big data sources are be-
coming available, which enable situational awareness and
informed simulations to generate holistic understanding,
hypothesis testing, and data-driven insights into the vari-
ous social demands, behaviors, and dynamics in urban
and rural areas. The rapid increase in the volume, variety,
and velocity of multi-domain datasets often allows urban
planners and scientists to analyze particular issues at mul-
tiple scales. Meanwhile, the tremendous amount of geo-
data collected from a wide spectrum of sources are often
heterogeneous and unstructured, which entails data qual-
ity issues, presenting different types of challenges to geo-
spatial research efforts. Thakuriah et al. (2017) described
these challenges as the “big data tsunami” (Laney, 2001)
and categorized them into four types, namely (1) techno-
logical, (2) methodological, (3) social & political, and (4)
theoretical and epistemological. Technological challenges
are often associated with the limitations of the technology
(e.g., storage, computational speed, and internet band-
width), which do not entail gaps and unknowns in the do-
main knowledge. On the other hand, methodological
challenges are caused by the gap of domain knowledge
and expertise, such as the data uncertainty resulting from
the design of the method and experiment. Social and pol-
itical challenges are often originated from political, legal,
and ethical concerns, such as data privacy and locality.
Laws and regulations in many states, countries, or govern-
mental agencies, such as the United Kingdom Data Pro-
tection Act (Jaar & Zeller, 2009), the Swiss Federal Act on
Data Protection (Staiger, 2020), and the Canadian Per-
sonal Information Protection and Electronic Documents
Act (Harbour et al., 2003), regulate that sensitive or confi-
dential information should not leave the physical bound-
aries of the country or region (residency), or should not
be exposed to unauthorized parties (privacy). Many of
these regulations put restrictions on the acquisition and
transfer of social sensing and public datasets for fair use
purposes and scientific applications. The theoretical and
epistemological challenges are linked with whether the re-
searcher could build an appropriate interrelationship be-
tween their epistemological and theoretical stances to
understand the question and the methodology they
adopted.
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In the context of exploring urban mobility patterns
under the influences of the COVID-19 pandemic, we
summarized the major data challenges from the techno-
logical, methodological, and social & political perspec-
tives based on the previous review and knowledge in the
geoinformatics disciplines for each data type (Table 1).
The theoretical and epistemological challenges in analyz-
ing the aforementioned types of mobility data are
common and associated with the inappropriate inter-
pretation of the data and analytical results. Most existing
studies derive causal inference, insights, and generate hy-
potheses solely based on data but don’t have a solid fu-
sion between the human mobility domain knowledge
and data analytics. Therefore, we didn’t list it in this
table.
As summarized in Table 1, most of the technical and

methodological challenges are associated with two key-
words: “big data processing” and “data uncertainty”.
Tackling these challenges often requires researchers to
develop proficient skills and knowledge in computer sci-
ences and data sciences and spend a significant amount
of time developing software and web tools for processing
and archiving various types of mobility data. With the
recent evolution in data science products, many
generalizable cyberinfrastructures and big-data platforms
developed by both the commercial and open-source
communities can be adapted to resolve big data process-
ing challenges in mobility research.
At the technical level, many of these products are

cloud-scale applications developed using the state-of-art

computing and storage paradigm (e.g., mobile edge
computing, fog computing, and distributed data stores),
providing intuitive web-style interfaces and visual dash-
boards to allow users to search, discover, explore, and
perform analytics (through machine learning and
visualizations) on various IoT-connected data sources in
near-real-time with minimum programming efforts. An
example of these products would be the Elastic Stack, a
combination of open-source web-based data science
products (Elasticsearch, Logstash, and Kibana) from
Elastic (Fakhir, 2018), which is designed to allow users
without intensive big-data and coding expertise, through
an end-to-end workflow, to discover data from any type
and format through Elasticsearch engine, processing col-
lected data using Logstash pipeline, and analyze and
visualize that data in real-time through the Kibana on-
line platform, which is powered by a variety of modular
data analytics and visualization libraries. Recently, the
Elastic Stack has been increasingly applied to build data-
driven research applications that analyze both COVID-
19 and mobility data (Cecchet et al., 2020; Thakur et al.,
2020), severing as an effective tool to lower the technical
barriers for addressing big data challenges. Data prod-
ucts that offer similar capabilities as the Elastic Stack in-
clude Datadog, Grafana, and Splunk. As for the data
uncertainty associated with the crowdsourced mobility
data, it can be managed and analyzed by imposing
system-based metadata standards that could help data
scientists identify records retrieved using devices without
reliable GPS or under poor network quality.

Table 1 Challenges by type of data

Data Type Challenge
Types

Challenges

Mobile Device Technical Data coverage in spatial and temporal dimensions may vary dramatically and is limited by the quality of the
mobile network.

Methodological The accuracy and reliability of the geolocation are a concern due to the appropriateness of data-sharing devices
and processes. The OD flows for each user are estimated by clustering the users’ staying points. Different cluster-
ing methods and selection criteria could lead to different results. The OD flows obtained from mobile devices
need to be spatially aggregated to different geographic units to reveal the dynamics of human mobility at dif-
ferent spatial scales.

Social and
political

Data privacy concerns prevent the sharing of individual user records. Only spatially aggregated information is
available.

Social Media Technical Accuracy of geo-information varies across different social media platforms, user settings, and mobile devices.

Methodological Data bias from different user groups (e.g., races, regions, and age.) Social media data is more heterogeneous
with high variability of data types, formats, and qualities.

Social and
political

The locational information in social media data should not be used to identify individual users.

Connected
Vehicle (CV)

Technical The tremendous volume and rapid data collection speeds of CV data lead to rigorous requirements for
computing and storage devices. The spatiotemporal coverage and availability of the CV data vary across regions.

Methodological Different CV data companies are partnered with different original equipment manufacturers (OEMs) to collect CV
data from a variety of vehicles. The data collection and processing also vary from OEM to OEM, leading to
severe data uncertainty. Meanwhile, only vehicle movements are covered by CV data; the mobility of active
transportation (e.g., biking, walking) is missing.

Social and
political

The high detailed trajectory and driving behavior datasets collected from CVs may have the risk of revealing too
much personal information (e.g., home and working addresses.)
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At the methodological level, a comprehensive
ontology-driven approach could be devised to further
improve the description of different mobility datasets
(e.g., types, characteristics, challenges and limitations,
and computational resources required for data storage
and analysis). The ontology should comply with well-
known international standards for data description, to
enhance the visibility and searchability of novel data
sources across the internet, as well as to automate the
integration and handling of heterogeneous datasets of
different resolutions and types. Time-space geography
theorems, such as the space-time prism model, could be
potentially applied to derive individual movement trajec-
tories from mobile device data that is aggregated to the
neighborhood level through the determination of likeli-
hood of human presence based on time constraints, as
well as GIS data which defines impassable areas (e.g.,
roof, bushes, and water space).
The theoretical and epistemological challenges could

be addressed through the theory-guided data analytics
approach, which aims to bring domain experts and their
knowledge and experiences into the data-driven analytics
to enable rational interpretation of insights, patterns,
and inferences derived from various mobility data. As
for social and political challenges, some solutions are
already proposed to protect individuals’ data confidenti-
ality and privacy such as anonymization, data obfusca-
tion, cryptographic mechanisms, compensating users for
privacy loss, among others (Halder, 2017). But, more im-
portantly, we believe standardized guidelines and regula-
tions for crowdsourced data collection and utilization
need to be proposed by the joint efforts from both the
public and private sectors, research communities, as well
as government authorities.

4 Concluding remarks and vision—promoting
theory-driven research and keeping humans in
the loop
The emerging geospatial mobility data plays a vital role
in the exploration of human mobility patterns and dy-
namics in response to the COVID-19 pandemics. To en-
sure the extraction of useful insights and inferences,
different types of emerging mobility datasets, which in-
clude data collected from mobile devices, social media,
and CV, should be appropriately analyzed and handled
with the consideration of their research benefits and lim-
itations. This opinion paper provided in-depth reviews
of current advances in COVID-19 mobility research de-
veloped based on each type of emerging data and dis-
cussed their potential research opportunities and
limitations. We summarized the technical blockers and
challenges associated with the effective analysis of these
emerging data types, followed by the sharing of our

experiences on addressing these challenges through
emerging urban informatics products and techniques.
The recent smart mobility and smart city initiatives

have introduced many novelties in social sensing and
connected sensor systems, as well as data-driven tech-
niques for exploring human mobility phenomena that
are conceptually complex and computationally intensive
to analyze and model using theory-driven approaches.
We note that the theory-guided data analytics ap-
proaches would be a major trend in future mobility re-
search, through which big-data analytics can be
validated and interpreted using domain theory and
knowledge, while theory-driven techniques (e.g.,
process-based models) can be retrofitted to incorporate
a new variety of mobility data. Previous geoinformatics
reviews conclude that the need for a wide variety of
computer and data science skills would be critical for
conducting future mobility research, while we noted that
many web-based data-analytics platforms and cyberin-
frastructure developed by the industry sector could be
used to lower the technical barriers and requirements to
data-centric mobility research. Many data-analytics plat-
forms also provide intuitive user workflows coupled with
abstracted data visualizations to allow non-expert users
to explore how data model parameters could affect the
results and the performances of different data models
(machine learnings and statistics) in performing the
same data analysis. Our opinion would be that many
data science products developed by industry could be
readily applied to tackle big-data challenges in mobility
research, saving urban scientists time and efforts on cre-
ating data analytics tools from scratch and ensuring bet-
ter data and software interoperability between different
research efforts. More recent approach trends to incorp-
orate the human components (e.g., public awareness, en-
gagement, and analytical reasoning) into the technology-
driven pipeline automated for the data acquisition, dis-
covery, processing, and analysis to facilitate the heuristic
exploration of human mobility dynamics in complex and
multidimensional metropolitan areas. Under this general
trend, the scientific gamification approach has been in-
creasingly reported in mobility research to involve
humans (e.g., the general public, policymakers) in the
data analysis, planning, and decision support processes
in the form of serious games to effectively collect user
data (e.g., social demands, opinion, and needs).
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