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Abstract

Navigation services utilized by autonomous vehicles or ordinary users require the availability of detailed information
about road-related objects and their geolocations, especially at road intersections. However, these road
intersections are generally represented as point elements without detailed information, or are even not available in
current versions of crowdsourced mapping databases including OpenStreetMap (OSM). This study proposes an
approach to automatically detect road objects from street-level images and place them to correct locations
according to urban rules. Our processing pipeline relies on two convolutional neural networks: the first one
segments the images, while the second one detects and classifies the specific objects. Moreover, to locate the
detected objects, we propose an attributed topological binary tree (ATBT) based on urban rules for each image in
an image sequence to depict the coherent relations of topologies, attributes and semantics of the road objects.
Then the ATBT is further matched with map features on OSM to determine the right placed location. The proposed
method has been applied to a case study in Berlin, Germany. We validate the effectiveness of the proposed
method on two object classes: traffic signs and traffic lights. Experimental results demonstrate that the proposed
app roach provides promising results in terms of completeness and positional accuracy.

Keywords: Object placing, Attributed topological binary tree, Street-level images, OpenStreetMap, Completeness,
Traffic lights, Traffic signs

1 Introduction
The rapid development of advanced driver assistance
systems and autonomous vehicles in recent years has
attracted the ever-growing interest in smart traffic appli-
cations. Such intelligent applications can provide de-
tailed road asset inventories of all stationary objects,
such as street furniture (traffic lights and signs, various
poles, bench, etc.), road information (lanes, edges, shoul-
ders, etc.), small façade elements (antennas, cameras,
etc.), and other minor landmarks. However, these de-
tailed road map productions are mainly generated by
mobile mapping systems (MMS), which require high
costs both in the investment of equipment and in labor-
intensive data post-processing. In addition, data updat-
ing is again a huge challenge. For instance, official road

maps suffer from a long update cycle that can last sev-
eral months or even years (Kuntzsch et al., 2016).
The last decade has witnessed an explosion of geospa-

tial data. An increasing number of crowdsourced geo-
spatial data repositories/services allow volunteers to
utilize information from various data sources when con-
tributing data to a crowd-sourced platform. That is
known as Volunteered Geographic Information (VGI)
(Goodchild, 2007). Amongst them, OSM and Mapillary
are the typical representatives of maps and street-level
crowdsourcing platforms, respectively. The large amount
of detailed map data provided by OSM not only enriches
the data sources of map making, but also supports and
promotes data-driven (Hachmann et al., 2018; Melnikov
et al., 2016) and data-intensive (Chang et al., 2016; Gao
et al., 2017) spatial analysis. Additionally, literature (Neis
et al., 2012) has shown that OSM road data in Germany
and Netherlands can be comparable to official data.
With the introduction of Mapillary in 2014, it has
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become the biggest and the most active crowdsourced
street-level imagery platform around the world. Tens of
billions of street view images covering millions of kilo-
metres of roads and depicting street scenes at regular in-
tervals are available (Solem, 2017).
Even though OSM has made remarkable achieve-

ments, it still has some drawbacks. For example, road
intersections in OSM are mainly represented as point
elements without any semantic information (e.g. traf-
fic signs/lights), or are even not available for most
cities/countries (Fig. 1). According to Ibanez-Guzman
et al. (2010), a high percentage of traffic accidents
occur at road intersections, which reflects the import-
ance of road intersections for traffic safety. If we can
provide more information about intersections to the
relevant authorities and let them use this information
together with trajectory data to optimize the setting
of traffic lights or vehicle speeds, that may help re-
duce the incidence of traffic accidents to some extent.

To the best of our knowledge, Mapillary submitted an
additional layer to OSM where marked the traffic
signs on the map. However, the locations of traffic
signs in the layer differ greatly from the actual ones.
Besides, multiple traffic signs with the same category
would appear within a small area at the same time,
which is obviously inconsistent with the actual situ-
ation. This may be related to the fact that Mapillary
only adopted pure computer vision methods to detect
the traffic signs without considering the correctness
of their locations in the real world.
Considering all the above shortcomings, in this paper

we aim to automatically detect and classify traffic lights/
signs at road intersections by using deep learning
method from street-level images, and localize their posi-
tions based on urban rules and proposed attributed
topological binary trees (ATBT). In this way, we can fur-
ther enrich the OSM data. Since these kinds of informa-
tion are hard to be seen on satellite and aerial images

Fig. 1 Incomplete information at road intersections
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and hence they cannot be mapped by volunteers on
OSM, the proposed method provides a good solution for
this issue. To summarize, the main contributions and in-
novations of our work are as follows:

� We propose a simple convolutional neural network,
namely ShallowNet, for traffic sign classification,
which is characterized by low model complexity,
high detection accuracy and fast recognition speed.

� We propose 6 urban rules (or grammar) to assist
the determination of the relative position and
topological relationship of the road-related objects.

� Based on the urban rules, we propose an attributed
topological binary tree (ATBT) for image sequences
to effectively describe the coherent relations of
topologies, attributes and semantics of the road
objects.

� With the proposed ATBT, we can easily and
accurately determine where the traffic lights and
signs should be placed by matching with map
features on OSM. Furthermore, our experiments
show that the whole workflow performs well in
terms of object completeness and positional
accuracy.

The remainder of this paper is organized as follows.
We first review some relevant state-of-the-art ap-
proaches in Section 2. Section 3 presents our complete
detection and localization pipeline. A set of experimental
analyses are presented in Section 4. Conclusions and fu-
ture work are discussed at the end of this paper as Sec-
tion 5.

2 Related work
Benefiting from the ubiquitous street view images ac-
cessible from Google Street View (GSV), Mapillary, etc.,
many efforts have been directed towards the intelligent
use of them to assess urban greenery (Li et al., 2015; Li
et al., 2018), to enhance existing maps with fine-grained
segmentation categories (Mattyus et al., 2016), to ex-
plore urban morphologies by mapping the distribution
of image locations (Crandall et al., 2009), to analyze the
visual elements of urban space in terms of human per-
ception (Zhang et al., 2018) and urban land use (Li et al.,
2017). Furthermore, street view images have also been
combined with aerial imagery to achieve tree detection/
classification (Wegner et al., 2016), land use classifica-
tion (Workman et al., 2017), and fine-grained road
segmentation (Mattyus et al., 2016). Together with
(Timofte & Van Gool, 2011), these methods rely on a
simplified locally flat terrain model to evaluate object lo-
cations from street-level images.
The last ten years have witnessed the quick develop-

ment of Convolutional Neural Network (CNN) and

CNN-based image content analysis. It has been proven
efficient in learning feature representations from a large-
scale dataset (LeCun et al., 2015). And as a consequence,
urban studies involving street-level images have been
largely enhanced since it was proposed. By leveraging
street view images, many studies employ deep learning
for object detection and classification, as well as image
semantic segmentation to monitor neighbourhood
change (Naik et al., 2017), to quantify the urban percep-
tion at a global scale (Dubey et al., 2016), to estimate
demographic makeup (Gebru et al., 2017), to predict the
perceived safety responses to images (Naik et al., 2014),
to predict the socio-economic indicators (Arietta et al.,
2014), and to navigate without maps in a city (Mirowski
et al., 2018). In contrast, less attention has been paid to
extracting traffic elements within road intersections
from street view imagery. Furthermore, all of these
methods use GSV as input data, but GSV charges a fee
after downloading a certain amount for free, which is no
doubt not a good choice for teams or individuals with
insufficient research funds. Therefore, we introduce
Mapillary, a fully free, crowdsourced, almost real-time
updated and ubiquitous street-level imagery, into our
work.
In terms of localization, so far, several approaches have

been made available to map particular types of objects
from street view imagery: traffic lights (Jensen et al.,
2016; Trehard et al., 2014), road signs (Soheilian et al.,
2013), and manholes (Timofte et al., 2011). These
methods determine the positions of the road assets from
individual camera views based on position triangulation.
All of them depend heavily on various visual and geo-
metrical features to match when multiple objects appear
in the same scene. As a result, the performance of these
methods is poor when multiple identical objects exist at
the same time. Hence, an improved method is proposed.
Hebbalaguppe et al. (2017) describe the problem as an
object recognition task, and then adopt a stereo-vision
(Seitz et al., 2006) approach to estimate the object coor-
dinates from sensor plane coordinates using GSV. How-
ever, different from GSV, Mapillary street view images
do not contain any camera intrinsics and projective
transformation in their EXIF information, and thus we
cannot perform the camera calibration. In other words,
we cannot apply the same method for traffic lights/signs
localization using Mapillary images. Recently, Krylov
et al. (2018) combine the use of monocular depth esti-
mation and triangulation to enable automatic mapping
of complex scenes with the simultaneous presence of
multiple, visually similar objects of interest, and achieve
the position precision of approximately 2 m.
In this study, we focus on the research of road inter-

sections to enrich the objects related to OSM intersec-
tions, such as traffic signs and lights, and to locate them
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for the reference of autonomous driving or navigation.
We propose a complete pipeline to extract scene ele-
ments such as buildings, sky, roads, sidewalks, traffic
lights and signs based on image semantic segmentation
from road intersections images. For localization pur-
poses, the hierarchy of semantic objects needs to be ap-
plied, as there are the coherent relations of topologies,
attributes and semantics of the road objects. In further,
together with the segmentation results, an attributed
topological binary tree (ATBT) based on urban rules can
be established to depict the topologies among road ob-
jects. These are then matched with map features on
OSM. In the end, road objects can be localized as prom-
ising results.

3 Methodology
In this section, we discuss a complete pipeline for the
localization of traffic lights and signs from image se-
quences at road intersections. The pipeline has the fol-
lowing three modules: (1) data preprocessing and
cleaning module; (2) object segmentation and recogni-
tion module; (3) localization module. Figure 2 depicts
the whole framework. The first module is for preparing
preprocessed and cleaned data for the next two modules
(see Section 3.1). The second module mainly extracts
road-related information by using image semantic seg-
mentation as well as object detection and classification
(see Section 3.2). In the last module, an attributed topo-
logical binary tree (ATBT) is constructed to represent
the relative position relation between extracted objects
at the intersections and to locate the objects with urban
rules (see Section 3.3). Ultimately, the located objects
can be integrated to enrich the OSM data.

3.1 Data preprocessing and cleaning
The main purpose of the data module is to prepare data
for the next two modules. First of all, the intersections
are identified by using the DBSCAN algorithm (Ester
et al., 1996) based on incomplete traffic lights existing in

OSM data. The incompleteness is reflected in, for ex-
ample, there should have had four traffic lights at the
intersection but only one or two are marked in the
OSM. Additionally, their positions are roughly estimated
which means traffic lights are with lower positional ac-
curacy. After identifying the intersections, selecting
experimented intersections mainly obeyed two rules: (1)
the intersections can be clearly seen in the Mapillary im-
ages; (2) the image sequences can be corrected well by
employing the SfM algorithm. Second, all the available
images can be downloaded by querying the relevant
Mapillary application programming interface (API). Spe-
cifically, a bounding box in geographic coordinates that
covered the entire Berlin has been calculated in advance.
To form a request to the Mapillary API, we then con-
struct an API URL in which includes a common server
address, user’s unique client ID, bounding box and other
search parameters such as start time, end time, searching
radius, etc. Third, a buffer is then set up for each road
intersection to extract image sequences within the buf-
fer. An image sequence refers to a trajectory of a user
traveling along the street. For an intersection with four
road branches, we are able to theoretically build four
image sequences by merging multiple image sequences
according to their geolocations because of four kinds of
rough driving directions, i.e. west-east, east-west, south-
north and north-south. In addition, camera location in-
cluding latitude and longitude, and camera angle are
extracted.
Furthermore, we have found that the GPS positions of

image sequences often drift, which may be associated
with the geographical environment during the shooting
(for example, tall buildings or heavy tree canopies block
the GPS signal), or it may be because the GPS receiver
built in the camera itself is inaccurate. Fortunately, one
of the big advantages of Mapillary is that street view im-
ages of the same road segment may be uploaded repeat-
edly by different volunteers. And there is a certain
degree of overlap between the two adjacent images,

Fig. 2 Workflow of the methodology
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which makes it possible for us to correct their shooting
positions.
To reduce the error as much as possible and to im-

prove the accuracy of localization, we employ a tech-
nique called Structure from Motion (SfM) (Snavely
et al., 2008), as depicted in Fig. 3(a), to match features
between images and reconstruct their surroundings in
three-dimensional space to form point clouds. Each
point has its position in three-dimensional space, so we
can estimate the correct shooting positions of images
along with the camera angles. As a result, these correc-
tions can place misaligned images in their original posi-
tions as much as possible. In general, the more images
feeding into the system from an area, the better the re-
sults could be. An SfM-corrected sequence is shown in
Fig. 3(b). We can easily discover the original image
shooting locations (green dots) swinging from one side
of the road to the other in an “S” pose. Red dots
symbolize the corrected locations, which now are fully
aligned with roads. Additionally, if there are many over-
laps between those images, these corrections can be very
promising.

3.2 Object segmentation and recognition using deep
learning
In theory, all road-related information can be extracted
accurately from images only via semantic segmentation

(see Section 3.2.1). Nevertheless, the quality of crowd-
sourced street-level images varies greatly, and hence it is
difficult to ensure that all images can be segmented well,
which would lead to inaccuracies or errors. Hence, in
Section 3.2.2, we adopt an alternative strategy based on
object detection to improve this problem.

3.2.1 Semantic segmentation using PSPNet
Image semantic segmentation is one of the key tech-
niques used to understand a scene (Zhou et al., 2017),
and is aimed at segmenting and recognizing object in-
stances from images. Given an input image, the model
can assign a class label for each pixel. One of the state-
of-the-art semantic segmentation models with superior
performance – PSPNet (Zhao et al., 2017) is applied in
our study to perform object extraction. The PSPNet uses
a new neural network sub-architecture, which retains
global and local contextual information through a multi-
scale representation of the previous convolutional layer’s
output. Because of the validated performance of the
PSPNet trained on the PASCAL VOC 2012 (Everingham
et al., 2010) and Cityscapes (Cordts et al., 2016) datasets,
we are confident to segment road-related objects well by
using PSPNet, such as buildings, sky, roads, sidewalks,
traffic lights/signs, etc. These extracted objects will later
be used as nodes of the attributed topological binary tree
(ATBT).

Fig. 3 Structure from Motion (SfM) algorithm used for our study to correct shooting positions of images. a A typical SfM pipeline (Snavely et al.,
2008); b SfM doing its corrections
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3.2.2 Object detection and classification using YOLOv3 and
ShallowNet
After image semantic segmentation, we find that there
are three limitations associated with semantic segmenta-
tion, especially for traffic signs. First, since we can only
know this is a traffic sign through semantic segmenta-
tion, but we do not know which kind of traffic sign it be-
longs to. Second, if two signs are arranged together,
semantic segmentation cannot identify them separately,
which is not conducive to the supplement and enrich-
ment of OSM semantic data. Third, our PSPNet model
often misclassifies the isolation piles as traffic signs, or
sometimes confuses two objects with similar features
but they actually do not belong to the same category.
The third limitation may be because the two objects
have similar features (such as color, shape or texture), or
the training dataset does not include such cases. As a re-
sult, the model did not learn the relevant features well.
Fortunately, object detection can address the above

limitations. Taking into account the processing speed
and detection accuracy, we choose YOLOv3 (Redmon &
Farhadi, 2018) as our object detection model after some
researches. Thus, we specially train a YOLOv3 model
based on GTSDB (Stallkamp et al., 2012) dataset for de-
tecting traffic signs, and then cross-validate the results
of object detection and semantic segmentation to reduce
errors and provide rich and effective attribute informa-
tion for localization.
In our study, we not only need to know this is a traffic

sign, but also need to know which kind of sign it belongs
to. Consequently, in terms of traffic sign classification,
we design a new shallow convolutional neural network
called ShallowNet. As illustrated in Fig. 4, the network
contains only five layers with weights; the first three are
convolutional and the remaining two are fully-
connected. The output of the last fully-connected layer
is fed to a 45-way softmax which produces a distribution
over the 45 class labels. We adopt batch normalization
(Ioffe & Szegedy, 2015) right after each convolution and
before ReLU non-linearity (Nair & Hinton, 2010) to

speed up the convergence of model training. Addition-
ally, to reduce the size of feature maps as much as pos-
sible, the convolutional layers involved in the network
are all performed filling operation, and each convolution
is followed by downsampling.
The first convolutional layer filters the 48 × 48 × 3 in-

put image with 64 kernels of size 7 × 7 × 3. The second
convolutional layer filters the output of the previous
layer with 128 kernels of size 4 × 4 × 64. The third con-
volutional layer has 300 kernels of size 4 × 4 × 128 con-
nected to the outputs of the second convolutional layer.
Then we expand the feature map and form 1500 feature
vectors into the fully-connected layer. Moreover, to re-
duce the overfitting of the network, we introduce drop-
out (Hinton et al., 2012) at the first fully-connected
layer.
In general, our proposed network model, ShallowNet,

is characterized by:

� Simple network structure and low model
complexity. With few parameters, it is easy to be
deployed to mobile or embedded devices.

� High accuracy. It can correctly recognize the type of
traffic signs

� Fast recognition speed. Real-time object recognition
can be achieved.

3.3 Object localization
Since Mapillary street view images do not contain any
camera intrinsics in their EXIF information, it is impos-
sible to calculate the projective transformation matrix
and then perform camera calibration. In other words, we
cannot apply photogrammetry methods for traffic lights/
signs localization using Mapillary images.
After observing a large number of images of road in-

tersections, we note that many images show a structure
where buildings are on both sides of the road and a por-
tion of the sky appears between them, traffic lights and
signs being often placed at street corners, as well as pe-
destrians and vehicles appearing on the road. We can

Fig. 4 Overview of our proposed ShallowNet
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vaguely feel that there exist some certain arrangement
rules between the objects in the images. Inspired by this,
we propose a novel method to depict the coherent rela-
tions of topologies, attributes and semantics of the road
objects at the intersections by establishing an attributed
topological binary tree based on urban grammar (see
Section 3.3.1). These objects (mainly traffic lights and
signs) are then further matched with map features on
OSM to determine the correctly placed location (see
Section 3.3.2).

3.3.1 Attributed topological binary tree (ATBT) generation
and updating
Taking the extracted objects through the image semantic
segmentation as input, the ATBT can be created from
top to bottom and from left to right. The left and right
children of the binary tree can reflect the relative pos-
ition relationship between the objects. We regard traffic
lights, traffic signs and sidewalks as three types of nodes
of the tree, and assign corresponding attributes to each
type of node, such as centroid, area, height (optional),
category, and role in the tree.
For traffic lights, there are two types of traffic lights:

located on the sidewalk (low one) and located on the
road (high one), which need to be recognized through
following two urban rules (see Fig. 5):

(1). If the traffic light is surrounded by the sky, a ray
(right red solid line in Fig. 5(b)) can be cast from
the centroid of the segmented traffic light region
downwards the road. If the distance between
centroid and road surface is far more than twice the
height of the tallest pedestrian (blue solid line in
Fig. 5(b)), it can be inferred that this traffic light is
at the road junction (i.e. high one), and its height is
about 7 m (another urban rule, searched from the
Internet).

(2). If the traffic light is surrounded by the buildings, a
similar ray (left red solid line in Fig. 5(b)) can be
cast from the centroid of the segmented traffic light

region downwards the sidewalk. If the distance
between centroid and sidewalk surface is less than
or equal to twice the height of the tallest
pedestrian, it can be inferred that this traffic light is
located on the sidewalk (i.e. low one), and its height
is about 4 m.

In fact, Rule1 implies an “up and down” relationship,
that is, traffic lights are surrounded by the sky and the
sky is above the high traffic lights. Similar to Rule1,
Rule2 also implies a “front and back” relationship, that
is, the low traffic light is surrounded by buildings and
buildings are behind the low traffic light.
As we can see from Rule2, sidewalks are very import-

ant for our judgment. But in many cases, sidewalks are
divided into multiple independent “blocks” by the pedes-
trian (as shown in Fig. 6(b)) according to the results of
image semantic segmentation. In this case, it is necessary
to judge whether the adjacent independent “sidewalk
blocks” meet a certain distance threshold based on an-
other empirical knowledge (i.e. the sidewalks on the
same side are connected, Rule3). If within this distance
threshold, they are considered to be connected. Further-
more, many images do not capture the view of the whole
intersections, but just a part of them as shown in
Fig. 6(a). According to the urban rules, low traffic lights
on the sidewalks tend to appear in pairs (Rule4). As long
as there is a low traffic light on one side of the road,
there definitely has another one on the other side of the
road. This gives our topological binary tree the ability to
reason.
Of course, there are also urban rules applicable to traf-

fic signs. Since the study area of this paper is Berlin,
Germany, we find that traffic signs at road intersections
follow such patterns (Rule5, see Fig. 7): they either ap-
pear alone, or are usually close to the low traffic light
above or both up and down, or arrange together. These
are intrinsic combination patterns, and the distance be-
tween centroids of the internal objects of the combined
pattern is within a small threshold.

Fig. 5 Discrimination of different types of traffic lights based on urban grammar, which includes two rules. Rule1: (1) Surrounded by sky; (2)
Distance > > height of 2 ×max_pedestrian. Rule2: (1) Surrounded by buildings; (2) Distance <= height of 2 ×max_pedestrian
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Finally, for each image in the image sequence, an
ATBT can be established according to the results both
from semantic segmentation and traffic sign detection/
classification. The left subtree of the root node corre-
sponds to the left side of the road, and the right subtree
corresponds to the right side of the road. Additionally,
for the convenience of computation, the node number of
the tree is strictly in accordance with the node number
of the complete binary tree. The left-right or top-bottom
relationship between nodes is determined by the pos-
ition of their centroids.
However, the first image of an image sequence was

generally taken at the farthest location from the inter-
section, which may lead to some road objects not be-
ing segmented/detected and then affect the
establishment of ATBT. Therefore, with the camera
approaching the intersection, the image scene be-
comes clearer and can capture additional objects that
are missed in previous images. Then, ATBT would
dynamically update itself by comparing the difference

between the current tree and the previous tree as well
as combining with the urban rules, as illustrated in
Fig. 8. The image numbered 1–3 are gradually ap-
proaching the intersection.
Meanwhile, the scene depth information is also con-

sidered during the ATBT establishment and updating.
For example, there are two low traffic lights (labelled by
No. 9 and 19 in the third segmented image) as shown in
Fig. 8. They belong to a pair as described in Rule4 (i.e.
low traffic lights on the sidewalks tend to appear in
pairs). Their height should be the exactly same in reality,
however, from the image, the No.19’s height is obviously
lower than the No.9’s. This is because photo imaging fol-
lows the law that the object is big when near and small
when far. Hence, in this case, we used the scene depth
information and Rule4 to infer that these two traffic
lights should belong to a pair and should locate on the
sidewalk.
In summary, as the image gets closer to the intersec-

tion, ATBT can dynamically update itself according to

Fig. 6 a Only part of the intersection is photographed, and Rule4 is summarized: low traffic lights appear in pairs. b A sidewalk is divided into
multiple “blocks” by pedestrians, and Rule3 is summarized: the sidewalks on the same side are connected

Fig. 7 Four combined patterns of traffic signs and lights
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the topological relationship of the objects, urban rules as
well as scene depth information, and get the final ATBT.

3.3.2 Map matching
Based on the ATBT constructed earlier, we can use the
shooting positions and camera angles provided by im-
ages as well as OSM footprints that are located around
the intersections to match the left and right subtrees of
the ATBT with the corresponding footprints. After that,
the geographically placed locations of objects (e.g. traffic
signs) in the real world can be determined.
Assuming there is an image sequence taken from west

to east, the shooting positions of these images are repre-
sented by C1, C2 and C3 (as demonstrated in Fig. 9).
Here, C1 is illustrated as an example. We take the red
shooting point C1 as the centre of a circle, and draw the
buffer with a radius of 26 m (determined by multiple

experiments) to get footprints intersecting with the buf-
fer. After calculating the distance from footprints to C1,
we get that the yellow highlighted footprint is closest to
the C1 (i.e. it corresponds to the right subtree of the
ATBT), and similarly, the green highlighted footprint is
closest to the C1 (i.e. it corresponds to the left subtree
of the ATBT). From Fig. 9, the yellow and green
highlighted footprints are indeed at the intersection,
which indicates that the results we got are correct. In
this way, the placed positions of traffic signs and lights
can be determined.
We have inquired about the “Code for Urban Road

Design”, which clearly states that the minimum width of
an ordinary sidewalk is 2 ~ 3m (Rule6). Therefore, we
place the low traffic lights and traffic signs about 2.5 m
away from the corresponding footprint corner point (A1
or A2); the high traffic lights are placed at the midpoint

Fig. 8 Attributed topological binary tree (ATBT) generation and self-updating. The image numbered 1–3 are gradually approaching
the intersection
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of connection between A1 and A2. In fact, this is not a
precise localization, but it can indicate the approximate
location of the traffic lights and signs.
The situation of C2 is a little bit complex. Since C2 is

located in the middle of the intersection and none of the
footprints is around it. If C2 is the centre of a circle and
the corner points obtained by intersecting with foot-
prints are A1 and A2, it indicates that C2 just passed
one side of the intersection. Since the content of an
image is always the scene in front of C2, but at this time
A1 and A2 are behind the C2, so these two corners are
not the corner points we want. Similarly, if the circle
with C2 as centre intersects with footprints and yields
A3 and A4 as their corner points, which are what we
want because they are in front of C2.

Compared with the situation of C2, the situation of C3
is much simpler. Since C3 is about to leave the intersec-
tion area, the corner points that C3 intersecting with
footprints are always behind it. This situation is not
what we want as well.
For a more intuitive view of the urban rules used in

this paper, we summarize and list them in Table 1 as
shown below.

4 Experimental results
4.1 Study area and data
As the capital and largest city of Germany, Berlin was
chosen as our study area. The study area has various
intersection types, which range from the most common

Fig. 9 Map matching between shooting point and OSM footprints

Table 1 Summarized urban rules used in attributed topological binary trees (ATBT)

Rule
No.

Description of the urban rules

Rule1 1) Traffic light is surrounded by sky; 2) distance between the traffic light and road surface is far more than twice the height of the tallest
pedestrian.
Conclusion: high traffic lights

Rule2 1) Traffic light is surrounded by buildings; 2) distance between the traffic light and road surface is less than or equal to twice the height of
the tallest pedestrian.
Conclusion: low traffic lights

Rule3 The sidewalks on the same side are connected.

Rule4 Low traffic lights on the sidewalks tend to appear in pairs.

Rule5 Traffic signs in Germany either appear alone, or are usually close to the low traffic light above or both up and down, or arrange together.

Rule6 The minimum width of an ordinary sidewalk is 2 ~ 3m.
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intersections with three/four road branches to the com-
plicated intersections, like roundabouts.
The datasets used in this study include OSM building

footprints data, Mapillary street view images, Mapillary
Vistas, German Traffic Sign Detection Benchmark
(GTSDB), and German Traffic Sign Recognition
Benchmark (GTSRB) (Stallkamp et al., 2011). The
OSM building footprints data was collected from
Geofabrik. The Mapillary street view images were
downloaded via querying Mapillary APIs including the
metadata of each image, from 2014 to 2018. To facili-
tate further study, we only extracted images located
in the intersection buffer. Mapillary Vistas was from
Neuhold et al. (2017), which contains 25,000 high-
resolution images annotated into 66 object categories.
They are used as the training set for the semantic
segmentation model—PSPNet. Last but not the least,
GTSDB and GTSRB were from Stallkamp et al. (2011,
2012), and are applied for training object detection
model—YOLOv3 and proposed object classification
model—ShallowNet, respectively.
In summary, above all are reasons why we choose

Berlin as our study area. Fig. 10 depicts the example area
of Berlin as well as the distribution of Mapillary street
view camera locations and OSM building footprints.

4.2 Extraction of road-related objects with PSPNet
4.2.1 Training
For the segmentation task, our implementation is based
on the public framework TensorFlow. Like the Zhao et al.
(2017), we also use the “poly” learning rate policy (the
learning rate is multiplied by ð1− iter

max iterÞ
power ). We set the

base learning rate to 0.01 and power to 0.9. The training is
performed on three NVIDIA GTX 1080Ti GPUs using sto-
chastic gradient descent (SGD) with momentum m= 0.99
and weight decay = 0.0001. Due to limited physical memory
on GPU cards, we set the “batchsize” to 4 for each GPU
card during training. In addition, we crop the Mapillary
training images to a size of 720 × 720, and start with a pre-
trained ResNet34 (He et al., 2016) model with the dilated
network strategy (Yu & Koltun, 2015) to extract the feature
map. For data augmentation, we adopt random mirror, ro-
tations [− 5°, 5°], random resize between 0.5 and 2, and
small enhancements in the image’s color, sharpness, and
brightness for Mapillary Vistas. This comprehensive data
augmentation scheme makes the network resist overfitting.

4.2.2 Evaluation and comparison
The performance on Mapillary street-level images was
evaluated with PSPNet. Figure 11 shows several

Fig. 10 Example area of Berlin (map:© OpenStreetMap contributors). Red dots, green polygons, and blue circles are the Mapillary street view
camera locations, OSM building footprints, and intersection buffers, respectively
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segmented examples, where the first column represents
the sample images located at the intersections, the sec-
ond column corresponds to the segmented results. From
the segmentation results, the PSPNet model we trained
can well segment the sky, buildings, roads, traffic signs
and other objects that we want. Furthermore, to prove
the superiority of our PSPNet model, a comparison test
is conducted with the state-of-the-art model, Dee-
pLabv3+ (Chen et al., 2018). In Table 2, our trained
PSPNet model achieves Mean IoU 34.17% and Pixel
Acc. 91.3%, and both of them outperform the Dee-
pLabv3 + .

4.3 Detection and classification of traffic signs
In this subsection, to prove the superiority of our used
or proposed network, we will conduct a series of com-
parative experiments on detection network YOLOv3 and
the classification network ShallowNet.

4.3.1 Traffic signs detection

4.3.1.1 Training Due to some differences between the
street view at intersections and the ordinary street

view, we add 300 extra annotated Mapillary images at
road intersections into the GTSDB dataset to form a
hybrid dataset. The dataset is divided into 750/450
images for training and testing. We train the YOLOv3
with Darknet on an NVIDIA GTX 1080Ti GPU card,
and set “batchsize” to 8. The warm-up strategy is
adopted in the training phase, i.e. starting with a very
small learning rate at the beginning of training. As
the number of iterations increases, the initial learning
rate gradually increases to 0.001. Starting from the
second epoch, the normal gradient descent is made
with 0.001 as the initial learning rate. Meanwhile, to
augment the data, we use rotations [− 5°, 5°], random
flipping, random scale [20, 200], and color space
conversion.

4.3.1.2 Evaluation and comparison To prove that our
trained YOLOv3 model is excellent at both processing
speed and detection accuracy, we compare YOLOv3
with the previous best-performing method (Faster R-
CNN (Ren et al., 2015)) on the testing set. In Table 3
our trained YOLOv3 model yields mAP (mean Aver-
age Precision) 94.7% and sec/img (second per image)
0.025 s, and both of them outperform the Faster R-
CNN. The detection speed of approximately 30FPS is
much faster than two-stage detector like Faster R-
CNN. In addition, the performance of traffic sign de-
tection on Mapillary street-level images is evaluated
with YOLOv3. Figure 12 shows several example
results.

Fig. 11 Examples of PSPNet results. The first column lists the original images. The second column represents the segmented results

Table 2 Comparison of mIoU and pixel accuracy between our
trained PSPNet and DeepLabv3 +

Method Mean IoU(%) Pixel Acc.(%)

PSPNet 34.17 91.3

DeepLabv3+ 33.97 90.2
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4.3.2 Traffic signs classification

4.3.2.1 Training The public GTSRB dataset contains
only 43 types of traffic signs, but it does not cover signs
that often appear at intersections. Hence, we add two
more categories to reach 45 categories in total. The
dataset is divided into 75 K/12 K images for training and
testing. Due to the uneven number of different categor-
ies of traffic signs, we also use a data augmentation tech-
nique during training, which includes histogram
equalization of color images, affine transformation, con-
trast enhancement, Gaussian blur, Gaussian random
noise, color space conversion, and random inactivation
of pixel values. The training is performed on an NVIDIA
GTX 1080Ti GPU using Adam Optimizer with Cross
Entropy Loss Function.

4.3.2.2 Ablation study for ShallowNet To evaluate
ShallowNet, we conduct experiments with several set-
tings, including batch normalization (BN), dropout, and
data augmentation. As listed in Table 4, the accuracy of
manual recognition is 98.84%. Although the accuracy of
manual recognition is very high, the automation degree
is low, which is not conducive to information extraction.
For the simplest ShallowNet (only convolution, pooling
and full connection operation), the test accuracy on
GTSRB is 95.89%. While it does not work better than
manual recognition, it has higher automation degree and
faster forward propagation speed (it only takes 3.6 ms on
average to detect an image in CPU mode).

Even though the ShallowNet structure is very simple,
the number of neurons in the fully-connected layer is
large, which may lead to overfitting to some extent.
Hence, we introduce dropout at the first fully-connected
layer and successfully increase accuracy by nearly 1.6%.
Besides, batch normalization is adopted in ShallowNet_
Drop to reduce the difference in the distribution of ori-
ginal data, and to help speed up the convergence of
training. ShallowNet_BN_Drop has a similar perform-
ance to manual recognition. Finally, we explore whether
data augmentation improves the accuracy of the model
or not, and augment the data on ShallowNet_BN_Drop.
It achieves the accuracy of 99.52% on the testing set,
which surpasses the accuracy of manual recognition, and
increases by over 1% compared to ShallowNet_BN_
Drop. Through this experiment, it can be proved that
data augmentation is very critical to improve the accur-
acy of the model. Figure 13 shows several examples.

4.4 Localization of traffic lights and signs
In this subsection, we apply the method introduced in
Section 3.3 for locating the traffic signs and lights based
on ATBT and urban rules. The experimented image se-
quences are merged from multiple image sequences ac-
cording to their geolocations and meanwhile, misaligned
images are corrected using Structure from Motion
(SfM). Each image sequence refers to a trajectory of a
volunteer user traveling along the road; and, over time,
the same road segment may be covered by multiple se-
quences that are uploaded by different volunteers. One

Table 3 Comparison of mAP and detection time between our trained YOLOv3 and Faster R-CNN on the GTSDB + Mapillary images
hybrid testing set

Method Input size mAP(%) Model size(M) Sec/img(s)

YOLOv3(Darknet-53) 608 × 608 94.7 246.4 0.025

Faster R-CNN (ResNet) 1280 × 720 90.5 267 0.230

Fig. 12 Examples of traffic sign detection results based on YOLOv3

Zhang et al. Computational Urban Science            (2021) 1:18 Page 13 of 18



hundred intersections with four or three branches are
tested in the experiment, with over 350 image sequences
and more than 3400 images.
Using hybrid results both from semantic segmentation

and traffic signs detection & classification, a parsed
scene with detailed semantic and attributed information
can be established. For this purpose, the hierarchy of se-
mantic objects needs to be applied, as there are coherent
relations of topologies, attributes and semantics of the
road objects. Therefore, an ATBT can be created based
on urban rules for each image in the image track to de-
pict the topologies among road objects. Then, we inte-
grate the final updated ATBTs, rather than only using
the result of one ATBT. Because some important items
(such as traffic signs) in a certain image may be occluded
by cars but the next image does not, which can play a
role of verification and supplement. Ultimately, it can
produce the final localization results along the driving
direction (or camera shooting direction). Please note
that this is not a precise localization, but in fact, it can
indicate the estimated location of the traffic lights and
signs. In Fig. 14, the qualitative localization results of
one crossroad and one T-junction examples are
displayed.

In general, for the localization task, two spatial data
quality elements should be assessed: completeness and
positional accuracy. While positional accuracy is the
best-established indicator of accuracy in mapping sci-
ence (Mobasheri et al., 2018), official position data
(ground truth) of traffic signs and lights are not avail-
able. We cannot compare our generated positions with
ground truth data on positional accuracy. However, we
still manually collect the locations of traffic signs/lights
from Google satellite map through visual observation
and make these locations as “reference data” to access
the completeness and positional accuracy of our
localization results. In terms of completeness level, we
get over 97% in all 100 testing intersections. Please note
that only when all traffic lights and signs are detected
and their predicted locations are not far away from the
real locations at an intersection, then we would consider
it as a complete and correct case. Figure 15 shows two
examples corresponding to Fig. 14a-b respectively, where
red dot 1 in the right figure of (a) contains three signs,
and each of the red dots 1,2,3 in the right figure of (b)
contains two signs because they are overlapped. As can
be seen in the figures, both examples have obtained ap-
proximate positional accuracy compared to the anno-
tated “reference data”.

5 Conclusions and future work
In this paper, we propose an automatic approach to de-
tect and place traffic lights/signs at road intersections in
relatively high completeness and positional accuracy.
The proposed method relies on two deep learning pipe-
lines (one for image semantic segmentation and the
other for traffic sign detection & classification), as well
as novel ATBTs based on six urban rules for traffic
lights/signs localization. The method has been tested at
multiple intersections using Mapillary street view images

Table 4 Investigation of ShallowNet with different settings.
‘Drop’, ‘BN’ and ‘Aug’ represent dropout, batch normalization
and data augmentation, respectively

Method Accuracy(%) Sec/img (ms)

Human performance 98.84 /

ShallowNet 95.89 3.6

ShallowNet_Drop 97.47 /

ShallowNet_BN_Drop 98.49 /

ShallowNet_BN_Drop_Aug 99.52 3.6

Fig. 13 Examples of traffic sign classification results based on ShallowNet
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in Berlin, Germany. We validate the effectiveness of the
proposed approach on two object classes: traffic signs
and traffic lights, and introduce two spatial data quality
elements: completeness and positional accuracy. Experi-
mental results demonstrate that our approach obtains
great objects completeness level (over 97% among 100
testing intersections) and relatively high positional

accuracy compared to the manually collected “reference
data”. Therefore, the proposed method provides a prom-
ising solution for enriching and updating OSM intersec-
tion data.
So far, to the best knowledge of the authors, there

have not been digital maps with so detailed information.
However, this kind of information is of vital importance

Fig. 14 Examples of qualitative localization results of traffic lights and signs at two types of intersections. a localization results at the crossroad; b
localization results at the T-junction
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for many applications. For instance, together with trajec-
tory data, information of traffic signs at road intersec-
tions may help offer more reasonable explanations for
many spatial analyses related to urban structure and
urban transportation. In this context, it is very useful for
urban planning recommendations.
At present, the proposed method can only be applied

to intersections with four or three branches and it is dif-
ficult to handle with complex intersections, such as
roundabouts or five-branch intersections. In addition,
the premise of employing this method is that there

needs to have at least one traffic light marked in OSM
data. Otherwise, we cannot identify and select the inter-
sections by using DBSCAN. That is the second limita-
tion of the proposed approach. However, Europe’s OSM
data is the richest compared to other continents, so the
proposed method can be applied at least in Europe. In
the future, we will further optimize the proposed ap-
proach and aim to resolve and overcome the above limi-
tations. On the other hand, the GTSRB dataset used in
this work only includes 45 categories, which does not
cover all types of traffic signs in Germany or other

Fig. 15 Visual inspection comparison of traffic lights and signs localization results. The first column is the results generated by our proposed
algorithm. The second column is the collected “reference data” from Google satellite map through visual observation
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countries. Hence, another area for future research will
be the extension of GTSRB dataset to increase the
generalization of ShallowNet. Ultimately, we want to
create and contribute a separate intersection layer to
OSM, where contains the number of lanes, the width of
roads and other road-related objects, and to provide
some help for autonomous driving or navigation.

5.0.0.1 Code availability The code is currently stored
on a local area network (LAN) of university and have
not submitted to like Github. If this paper was accepted,
we will release the code there immediately.
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