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Abstract

Accessibility is a topic of interest to multiple disciplines for a long time. In the last decade, the increasing
availability of data may have exceeded the development of accessibility modeling approaches, resulting in a
modeling gap. In part, this modeling gap may have resulted from the differences needed for single versus
multimodal opportunities for access to services. With a focus on large volumes of transportation data, a new
measurement approach, called Urban Accessibility Relative Index (UARI), was developed for the integration of
multi-mode transportation big data, including taxi, bus, and subway, to quantify, visualize and understand the
spatiotemporal patterns of accessibility in urban areas. Using New York City (NYC) as the case study, this
paper applies the UARI to the NYC data at a 500-m spatial resolution and an hourly temporal resolution.
These high spatiotemporal resolution UARI maps enable us to measure, visualize, and compare the variability
of transportation service accessibility in NYC across space and time. Results demonstrate that subways have a
higher impact on public transit accessibility than bus services. Also, the UARI is greatly affected by diurnal
variability of public transit service.
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1 Introduction
Accessibility is a term commonly used in geographical re-
search, transportation, and urban planning. A definition
for accessibility varies in different research contexts, in-
cluding “interactions between human and lands” (Hansen,
1959), “the ease or difficulty for people to reach their op-
portunities or services” (Wachs & Kumagai, 1973), and
“the benefits provided by a transportation/land-use sys-
tem” (Ben-Akiva & Lerman, 1979). Metrics used in acces-
sibility studies include those based on distance, such as
straight-line, Manhattan,1 or network distance, and dis-
tance derivatives, such as times or “cost” (e.g. in dollars/
euros). In studies evaluating accessibility to a facility, the
service areas or catchment areas are derived as polygons
based on a threshold distance or cost (Delamater,

Messina, Shortridge, & Grady, 2012; Vadrevu & Kanjilal,
2016).
While many accessibility studies are based on the

shortest path/cost metric, a more realistic measure is
based on observational data. Observational data of one’s
travel experience was typically only from volunteers.
However, such data (e.g. static travel scenario or self-
reported travel diary) not only lack accuracy but also in-
volve subjective bias due to limited samples. Recently,
many public transportation companies (e.g., taxi, bus,
and subway) have released their transportation data, in
much finer spatiotemporal resolutions, such as the indi-
vidual taxi trips with pickup-dropoff location and time,
which offer unprecedented opportunities for data-driven
accessibility measurement.
Public transit usually refers to buses and subway sys-

tems in urban areas. Accessibility to public transit has
drawn intensive attention in transportation research
from different perspectives. As an environment-friendly
commuting and travel mode, public transportation can
help reduce greenhouse gas emissions, traffic congestion,
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car accidents, and oil price vulnerability (Litman, 2003).
Research also found that public transportation users
have a lower obesity rate and present better physical and
mental health (Sallis, Frank, Saelens, & Kraft, 2004).
Moreover, accessibility of public transportation can be
used as an indicator to measure social equality. For ex-
ample, measurements of access to public transportation
helped researchers to identify socially disadvantaged
groups in gender (Kwan, 1999; Kwan, Murray, O'Kelly,
& Tiefelsdorf, 2003), age (Hess, 2009), socio-economic
status (Niedzielski & Boschmann, 2014), races (Tribby &
Zandbergen, 2012), and disability (Church & Marston,
2003). Traditionally, public transit accessibility was mea-
sured by service frequency estimation or travel situation
simulation. Recently, the increasing availability of public
transit usage data opens the possibility to measure pub-
lic transit accessibility more realistically and dynamically
with a big data approach.
Taxis, unlike buses or subways, provide private and

convenient location-to-location transportation services.
In the past few years, taxi companies worldwide have in-
stalled Global Navigation Satellite System (GNSS) equip-
ment in taxicabs. In general, two types of travel data can
be collected from an in-car GNSS. The first type of data
has the entire route recorded with GNSS positions regu-
larly sampled at a specified time interval (Herring,
Hofleitner, Abbeel, & Bayen, 2010). The second type of
data only contains information on the origin (pick-up lo-
cation) and destination (drop-off location) of each taxi
trip, and the travel distance, duration, and cost, without
recording the actual route of each trip (Guo & Zhu,
2014; Guo, Zhu, Jin, Gao, & Andris, 2012).
Both public transit accessibility and taxi trip data have

been individually studied to reveal different urban charac-
teristics. Public transit data have been used to analyze job
opportunities (Farber & Fu, 2017; Lei, Chen, & Goulias,
2012), food deserts (Burns & Inglis, 2007; Paez, Gertes
Mercado, Farber, Morency, & Roorda, 2010), and activity-
based research (Mavoa, Witten, McCreanor, & O’Sullivan,
2012). Continuous taxi data have been used for travel con-
dition monitoring and road network analysis (Veloso,
Phithakkitnukoon, Bento, Fonseca, & Olivier, 2011). Trip-
based taxi data is useful for urban land use and human
mobility analysis (Peng, Jin, Wong, Shi, & Liò, 2012).
However, few studies have integrated more than one type
of transportation mode in accessibility measurements.
This paper proposes a novel approach to measure and

visualize urban accessibility, with big data of taxi trips
and public transit uses (including both bus and subway),
using New York City (NYC) as a study case. Specifically,
a new Urban Accessibility Relative Index (UARI) was de-
veloped by integrating multiple transportation modes
and big data of daily mobility, and subsequent analyses
were then carried out to visualize and understand the

spatiotemporal distribution of accessibility patterns in
NYC.

2 Literature review
2.1 Accessibility
In the simplest case, two places (or points) are con-
nected, which means accessibility exists between these
two places. As noted earlier, access based on distance
can be straight-line, Manhattan, or network distance.
Thus, using a transportation road network, accessibility
between two places can be measured as the length of
road, or the travel time/cost that connects the two
places. When measuring accessibility from a social or
economic perspective, an “attraction” variable is often
added to a distance decay function. Hansen (1959) intro-
duced a gravity model in accessibility and land-use. For
example, as the distance between home and a shopping
center increases, the possibility for one to go to that
shopping center decreases. Different functional forms
are applied to calculate the distance decay between two
locations, including power, exponential, and Gaussian
(Scott & Horner, 2008).
Accessibility in transportation research generally mea-

sures how easy, or how difficult, for people to get to
their opportunities or services (Wachs & Kumagai,
1973). Based on different applications, Geurs and van
Wee (2004) grouped accessibility into four groups: 1)
infrastructure-based accessibility, 2) location-based ac-
cessibility, 3) person-based accessibility, and 4) utility-
based accessibility. Infrastructure-based accessibility
measures the performance of a road network, such as
travel speed and congestion conditions. Location-based
accessibility measures the number of places of interest
that can be reached from an origin. Person-based acces-
sibility comes from space-time geography, which mea-
sures places that can be reached given individual’s time
and space constraints (Kwan, 1999; Miller, 1991).
Utility-based accessibility measures the usage of a certain
transportation mode or the market share of a transpor-
tation mode (Ben-Akiva & Lerman, 1979).
Based on different data types used in accessibility mea-

surements, Páez, Scott, and Morency (2012) grouped ac-
cessibility measurements into two categories: normative
measurement and positive measurement. Normative
measurements do not use observational data (i.e., peo-
ple’s behavior) and consider only the performance of
transportation. Larsen and Gilliland (2008) measured
food deserts in urban London, ON, Canada, based on
minimum walking and public transit accessibility.
Farber, Morang, and Widener (2014) used public transit
data to study the temporal variability of public transpor-
tation. Positive measurements use people’s travel behav-
ior data, which come from surveys or behavioral models.
For example, Minocha, Sriraj, Metaxatos, and Thakuriah
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(2008) used local trip data to estimate demand factors.
Pasch, Hearst, Nelson, Forsyth, and Lytle (2009) sur-
veyed teenagers to study the association between teen-
agers’ alcohol use and alcohol outlet locations. Scott and
Horner (2008) conducted a travel diary survey for urban
opportunity accessibility.
Accessibility in urban areas has been studied in many

applications using different types of data. In this article,
three major areas of urban accessibility are reviewed.
The first area includes studies related to public transit
accessibility (Section 2.2). Each public transit trip can be
divided into three segments: from one’s origin to transit
network, travel inside transit network, and from transit
network to destination. Because of this division, public
transit accessibility has two sub-areas: to/from transit
network and in a transit network. The second major area
of research involves taxi travels (Section 2.3). Taxi travel
data is a direct indicator of accessibility in terms of mon-
etary or time cost, and more complicated and meaning-
ful information can be retrieved from taxi travel data.
The third major area focuses on relative accessibility
(Section 2.4), which includes comparison among more
than one type of accessibility measurements. Such com-
parison can be conducted between accessibility using
different transportation modes, during different time pe-
riods, or for different groups of public transit users.

2.2 Accessibility in public transit
Accessibility measurements in public transit can be fur-
ther grouped into two categories: to/from transit net-
work and in-transit network. The to/from transit
network accessibility measures the combined travel from
their original location to the transit stop and travel from
the last transit stop to their final destination. The in-
transit-network accessibility considers the cumulative
travel time/cost on buses or subways, transfer time
among different lines, etc. Malekzadeh and Chung
(2020) provides a review of transit accessibility models.
A to/from transit network accessibility measures the

physical access to a transportation network, defined as
how far one person needs to travel to a transit stop,
either a bus stop or a subway station (Currie, 2010). If
the accessibility is based on a threshold distance the
resulting polygonal area is a service area/catchment area
of a transit stop. There are two traditional methods to
measure a service area: circular buffer analysis and road
network analysis. However, the buffer analysis is rarely
used for human-related service areas as the result is
often an overestimation of service areas and served
population. Biba, Curtin, and Manca (2010) and Guti
and Garc (2008) compared service areas and population
inside service areas using circular buffer analysis and
road network analysis. Their results showed that buffer
zone overestimates one-third to half of the service areas

and served population. This overestimation is due to the
difference between distances constrained by travel along
a road network and the straight-line distance used for
the buffer analysis. Studies also showed that individuals’
walking speed and maximum tolerant walking distance
affect accessibility of public transit accessibility (Hess,
2009; Mavoa et al., 2012). In addition, other factors, such
as safety, weather, infrastructure (Walton & Sunseri,
2010) and even an individual’s social identity (Murtagh,
Gatersleben, & Uzzell, 2012) also affect accessibility to/
from the public transit network.
Derived from the general definition of accessibility, the

in-transit accessibility measures the ease, or difficulty,
often expressed simply as “cost”, for passengers to get to
their destinations using public transit systems. The meas-
urement of travel cost varies in different applications and
different research preferences. The most straightforward
measurement is the travel distance, or the length of a pub-
lic transit route between the origin and the destination,
which can be calculated with road network data (Liu &
Zhu, 2004). These measurements, however, often assume
that the travel speed in the network is constant, which ob-
viously varies by roadway type, speed limits, congestion,
and such variability diurnally and episodically.
Compared to route length, travel time is a more com-

monly used metric in measurements for travel cost.
While an accessibility polygon based on a maximum
travel cost is often used as a service area, the algorithm
for calculating costs can be done for an infinite number
of origins or a systematic sample, as with a raster. Thus,
a cost surface can be created from the a large set of ori-
gins. For example, O’Sullivan, Morrison, and Shearer
(2000) developed a tool to draw isochrones lines over a
cost surface to represent public transit accessibility.
Given an origin, their tool can draw accessible areas that
can be reached within a given time threshold using pub-
lic transit. Their travel time estimation is based on aver-
age travel speed along road network. Later studies
implemented public transit timetables and potential ad-
justments into their travel time calculation models to in-
crease accuracy (Cheng & Agrawal, 2010; Lei & Church,
2010; Zhang, Dong, Zeng, & Li, 2018).
Another important development in accessibility meas-

urement is to measure accessibility for different time pe-
riods of a day. Polzin, Pendyala, and Navari (2002)
included supply and demand during different time pe-
riods in 1 day. Based on the predicted ridership and
available public transit service, their model calculates the
availability of transit services as the daily trips per capita.
Chen et al. (2011) applied a temporal component in job-
based accessibility. Liao, Gil, Pereira, Yeh, and Verendel
(2020) analyzed travel time between cars and transit in
four different cities around world and found car travel-
ing time is shorter in majority parts of the all four cities.

Jiang et al. Computational Urban Science            (2021) 1:10 Page 3 of 15



2.3 Accessibility with taxi trip data
Taxis in urban areas provide convenient and private
origin-to-destination transportation services based on
customers’ requests. In the last decade, with the ad-
vancement of GNSS technology, many taxi companies
have installed in-car GNSS trackers in taxicabs. This
tracking data not only help monitor taxicabs’ move-
ments for better navigation and dispatching but also
guarantees a safer environment for taxi drivers. Taxi
data have been used for different research objectives
(e.g., measuring accessibility) in cities all over the world,
including San Francisco, USA (Herring et al., 2010;
Hoque, Hong, & Dixon, 2012; Hunter, Herring, Abbeel,
& Bayen, 2009), Lisbon, Portugal (Veloso et al., 2011),
Shanghai, China (Peng et al., 2012), Stockholm, Sweden
(Jenelius & Koutsopoulos, 2013), and Delft, Netherlands
(Zheng & Van Zuylen, 2013).
Taxi data can be grouped into two categories: tracking

data and origin-destination (OD) data. Tracking data
consists of taxi trajectories obtained from GNSS re-
ceivers that also record taxi locational information at a
specified time interval, usually at a 30 s or 60 s interval.
They are useful to monitor road network conditions and
are commonly used to measure infrastructure-based ac-
cessibility. Since GNSS locations are less accurate in
urban settings a pre-processing step is typically used to
project any ‘off-road’ points onto road networks. Based
on the changes in location, driving speed can be inferred
and thus travel time can be predicted. Hunter et al.
(2009) used about 60,000 observations from 50 taxicabs
in San Francisco to calculate travel time. Herring et al.
(2010) used a probabilistic model to estimate arterial
traffic condition from 500 taxicabs in San Francisco.
Veloso et al. (2011) used a Gamma distribution to model
taxicabs’ distribution over Lisbon, Portugal area. Jenelius
and Koutsopoulos (2013) used data from 1500 vehicles
in Stockholm, Sweden to estimate travel time between
any two points on the road network. Zheng and Van
Zuylen (2013), based on probe cars, created a three-layer
neural network to simulate travel conditions in Delft,
Netherlands.

2.4 Relative accessibility
Relative accessibility compares different accessibility mea-
sures for population groups. These comparisons can be
between poverty and non-poverty (Niedzielski & Eric
Boschmann, 2014), personal identities (Murtagh et al.,
2012), genders (Kwan, 1999), and age groups (Hess, 2009).
The most commonly compared population groups in
transportation and planning research are between public
transportation and private car driving. Implemented by
O’Sullivan et al. (2000), mapping service areas from a
given location of public transit and driving provides the most
direct comparison between accessibility measurements.

Besides visual comparison, travel time ratios and
location-based accessibility measurements are com-
monly used to quantify differences in accessibility.
Mapping the ratio of travel time between public transit

and private vehicle is one of the common methods. Hess
(2005) focused on low-wage job accessibility for low-
income adults in the Buffalo-Niagara region. Using the
centroids of each neighborhood, they calculated a 30-min
travel buffer for automobile driving and public transit rid-
ing, respectively. Their job accessibility measurements
were the summations of jobs within a 30-min travel time.
They used the ratio of automobile and public transit job
accessibility in each neighborhood. Their results showed
that automobile drivers have 2 to 3 times more job acces-
sibility than public transit users. Salonen and Toivonen
(2013) used the travel time ratio of public transit to private
vehicle to map accessibility to public libraries in Greater
Helsinki area, Netherland. They used three different
models for public transit and driving: (1) a simple model
that ignores congestion and parking, (2) an intermediate
model that includes congestion but ignores parking, and
(3) an advanced model considering both congestion and
parking. Not surprisingly, in all three models, the average
travel time for public transit is longer than average travel
time for private vehicle. In addition, public transit travel
time to the closest destination is also longer than that for
private vehicles. However, this ratio is calculated at the in-
frastructure level, by measuring how public transit and
taxi are performing locally. Only one origin can be used at
each time. When the origin is determined, it measures ac-
cessibility as a property to all possible destinations. Tem-
porally, Farber and Fu (2017) measured public transit
accessibility using origin-destination travel time cubes to
model fluctuations during a day.
There are other studies on location-based accessibility

measurements, which often employ an opportunity
index, to compare accessibility among different loca-
tions. Shen (2001) studied job opportunities differences
between public transit and private vehicles. They defined
an accessibility score as the ratio of the total number of
opportunities to the total of opportunity seekers for each
zone. They generated 775 transportation analysis zones
in the Boston Metropolitan Area and calculated a job
opportunity index for each zone using public transit and
private cars. Their study showed that not many job op-
portunities exist if one only uses public transit. For these
opportunity-based calculation methods, researchers need
to subjectively assign a weight or score to different op-
portunity or activity types, or subjectively classify service
or importance levels for different opportunities. Com-
pared to ratio measurements, opportunity-based mea-
surements consider accessibility as a property of the
origin, but these weights or classifications are usually
based on survey results or arbitrary assignments.
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In defference to the previous studies we have proposed
and demonstrate the use of a new index – urban accessi-
bility relative index (UARI) – that combines a location-
based focus and connection-based focus using observa-
tional data. The UARI is ideal for comparing accessibility
between travel modes, such public transit and alternative
transit measurements (e.g. taxi transit).

3 Study area and data
3.1 Study area: New York City
This research focuses on New York City (NYC), consist-
ing of five boroughs: Brooklyn, Queens, Manhattan, the
Bronx, and Staten Island (Fig. 1). Each of the five bor-
oughs is a separate county in the state of New York.
NYC had an estimated population of 8,491,079 in year
2014 and an area of about 800 km2 (U.S. Census
Bureau). Since Staten Island has a separate subway sys-
tem that is not connected to the main subway system
and has very limited bus routes connecting to the main
areas of NYC, Staten Island was excluded in this study.
NYC has the highest population density of all major

cities in the United States, which makes NYC an ideal
study area for this research for two main reasons. First,
the public transportation ridership is very high in NYC.
Due to limited spaces and high land price, NYC has the
lowest car ownership in the United States, with 66%
households not owning a private car (Salon, 2009).
Therefore, residents’ daily commuting and traveling rely
heavily on public transportation. According to the data
from Metropolitan Transportation Authority (MTA)’s
ridership report in 2013, the annual ridership was more

than 1.7 billion for subway and 0.67 billion for transit
buses. On an average weekday, the ridership was about 5
million for subway and 2 million for transit buses. Ac-
cording to the data obtained from the New York City
Taxi & Limousine Commission, there were more than
14 million taxi trips for each month in 2013 (i.e., roughly
half a million taxi trips per day). Second, NYC has a
complex, dense and effective public transportation net-
work and a large fleet of taxi cars. In the Manhattan
area, bus stops or subway stations are within walking
distance. In 2013, there were 13,437 taxicabs operating
in NYC. In addition, there are 21 subway routes with
494 subway stations in NYC. Transit bus network con-
sists of 237 local routes and 65 express routes (MTA,
2013). This high density of the public transportation net-
work and high diversity in transportation modes makes
NYC an ideal test bed with abundant data for the study-
ing, understanding, and use of accessibility.

3.2 Data
3.2.1 GIS-based data
Basic geographical information data, including city and
borough boundaries, are available from the New York
State GIS Clearinghouse (https://gis.ny.gov/). Subway
and transit bus routes are digitized and maintained by
the City University of New York Mapping Service at the
Center of Urban Research (http://www.gc.cuny.edu/
CUR). Hospital data used in the application parts can be
found from New York State Open Data – Health Data
(https://health.data.ny.gov/Health/Health-Facility-Map/
875v-tpc8). This dataset includes all types of healthcare

Fig. 1 Study area of New York City
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facilities. For demonstration purposes, only hospital data
were used in the application presented in Section 5.2.

3.2.2 Taxi trip data
The New York City Taxi & Limousine Commission is
one of the major taxi companies operating in NYC. Trip
data are available for taxicabs holding license from the
New York City Taxi & Limousine Commission. This re-
search used the taxi trip data for the entire year of 2013,
which has 13,437 registered taxicabs and 173,179,759
taxi trips in 2013 (i.e. about half a million taxi rides each
day), with a total of 1.99 billion dollars for taxi fare (tips
were not included). Information associated with each
trip includes: pick-up data and time, drop-off date and
time, passenger count, trip time in second, trip distance,
pick-up location (latitude and longitude), drop-off loca-
tion (latitude and longitude), payment type, fare amount,
surcharge, MTA tax, toll amount, and total amount. The
average taxi trip time was 799 s (about 13 min), the aver-
age trip distance was 4.65 km and the average fare for a
taxi trip was 11.49 dollars.
In this research, it was assumed that the actual driving

route of each recorded taxi trip (which was not available
in the source data) is the shortest path (in terms of net-
work travel time) from the origin to the destination.

3.2.3 Public transit data
Public transit data for NYC subway and transit buses are
published and maintained by the MTA, which is the
company that operates NYC subways and major transit
bus routes. The public transit data are in General Tran-
sit Feed Specification (GTFS) format, containing public
transportation schedules and associated geographical in-
formation. The structure of GTFS data includes agency,
routes, trips, stops, stop times, and calendar. Detailed
explanation of the GTFS data format can be found at
https://developers.google.com/transit/gtfs/reference.

4 Methodology
This research proposes a UARI to compare the relative
accessibility between public transit and taxi. As reviewed
in Section 2.4, there are two main approaches to meas-
ure relative accessibility: travel time ratio measurement
and opportunity-based measurement. Travel time ratio
is used to measure the relative performance between taxi
and public transit and considers accessibility as a prop-
erty of the connection between origin and destination
(rather than a property of the location, such as either
the origin or the destination). Opportunity-based meas-
urement, on the other hand, views accessibility as a
property of the origin (rather than the connection),
which involves arbitrary decisions on different types of
destinations.

The proposed UARI measurement is derived with a re-
gression approach. The UARI for a given location is de-
fined as the slope of the regression line, with public
transit travel time on the y-axis and taxi travel time on
the x-axis, for all (or a selected group of) destinations
from the given location. If the regression slope is 1.0
then no difference in travel time exists between travel
modes. If the slope is greater than 1.0 the public transit
time is greater than a taxi mode of travel. This new
index enables both location-based measurement (by
mapping ratio-based relative accessibility of the given lo-
cation) and connection-based measurement (by compar-
ing the relative accessibility of different locations), both
of which can vary across space and time.

4.1 Computation of public transit accessibility
Given an origin (or a destination) and a departure time
(or arrival time), the total travel time can be estimated
based on the complete public transit schedule, with the
arrival and departure time for each bus or subway train
and the estimate of walk time for transfer connections
within the network and to/from origin/destination. The
Dijkstra shortest path algorithm (Dijkstra, 1959) was
used to find the expected travel time using public trans-
portation between the origin and the destination, includ-
ing walking time to/from stations, waiting time, riding
subways and/or buses, walking for transfers, and waiting
time during the transfer. A threshold of 500 m was used
to define a maximum “walkable” distance from an origin
location to a public transit and from the public transit to
a destination, calculated using network distance (perhaps
more appropriately called Manhattan distance in NYC).

4.2 Computation of taxi accessibility
Given an origin (or a destination) and a departure time
(or arrival time), related taxi travel records will be re-
trieved and processed to estimate the travel time, which
can be the average time of all taxi trips that started from
the neighborhood of the origin around the given depart-
ure time and ended near the destination. Taxi trips
within a 500-m distance from the selected location are
eliminated from the calculation, as we assume 500-m is
the walking distance threshold. Since this method uses
actual historical taxi trip records (instead of modeled
travel over road networks) to derive the actual travel
time between a given origin and a destination for a spe-
cific departure time, it implicitly considers traffic condi-
tions and other unknown variable factors in calculating
the driving time.

4.3 Urban accessibility relative index (UARI)
4.3.1 Computing UARI for one location
UARI can be calculated for either an origin or destin-
ation and a selected time period. To calculate the UARI
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for a given origin, the first step is to build a 500-m buf-
fer zone, as the origin zone, around a hypothesized ori-
gin. All taxi trips leaving from this origin zone are
selected and all the public transit stations, including
both bus stops and subway stations, are also selected.
Public transit accessibility and taxi accessibility are cal-
culated using methods described in Sections 4.1 and 4.2,
respectively. For each pair of origin-destinations (O-D)
with existing historical travel records, the UARI for this
O-D pair can be calculated with Eq. 1:

UARI ¼ accessibilitypublic transit
accessibilitytaxi

ð1Þ

To calculate UARI for a given destination, trips arriv-
ing at the selected destination zone (500-m around a
destination) at the given time are selected. Public transit
accessibility and taxi accessibility are then calculated.
Similar to the UARI calculation process for origins, the
UARI of each pair of destination-origins (D-O) with
existing travel records are calculated. Of note is the
UARI derived in Eq. 1 implicitly does not include walk-
ing time or waiting time for either public transit or taxi
stops.
When calculating the UARI for an origin, all the O-D

pairs have the same origin. Therefore, the UARI can be
viewed as a property associated with the destinations
corresponding with the trips leaving from the given ori-
gin. For the same reason, the UARI for a given destin-
ation is a property associated with the origins where
trips arriving at this given destination start from.
The UARI for Pennsylvania Station (Penn Station) as

the origin was used to demonstrate the calculation
process in this study. Penn Station is an important tran-
sit hub connecting commuting trains from New Jersey
and public transit network in NYC. The UARI for Penn
Station was calculated for two different times: 3:00 am
and 3:00 pm, to compare the dynamics of UARI during
different times of a day. A 10-min time window was ap-
plied to both starting time so that trips starting between
2:55 am and 3:05 am are included for 3:00 am to allow
more flexibility.

4.3.2 Computing UARI for multiple locations
To calculate UARI for multiple origins, the first step is
to conduct the calculation for each of the available ori-
gins. Then for each of the given origins, its public transit
time and taxi time to all potential destinations are plot-
ted, with the taxi travel time on the x-axis and the public
transit time on the y-axis. A linear regression analysis is
used to derive the UARI between the public transit
travel time and taxi travel time. Specifically, the total
least squares regression method is used:

y ¼ αþ βx ð2Þ

where the slope of this regression line, β, is an overall
measurement of how efficient the public transit travel
time is compared to taxi travel time. We use β as the
UARI. Compared to the ordinary least square regression
(Fig. 2a), the total least square regression (Fig. 2b) calcu-
lates residuals for both x and y. which allows us to treat
α and β symmetrically (Golub & Van Loan, 1980). In
this research, errors exist in both taxi and public transit
measurements and thus the total least square regression
is more suitable for this case.
In Eq. 2, α (intercept with y-axis) can be interpreted as

the sum of the walking time to the public transit origin
and the waiting time for next bus or subway. Because
taxi waiting time is not available, α is not reported or
discussed in this study.
For a specific location the UARI is the expected

change in public transit travel time given a 1.0 unit
change in travel time by taxi. For example, if one loca-
tion has a UARI of 7.5, it means, for each minute in taxi
travel time, public transit riders should expect 7.5 min of
public transit – or 7.5 times the taxi travel time. A UARI
of 1.0 means taxi and public transit travel time have es-
sentially similar performances. Therefore, a higher UARI
means the location has a lower relative accessibility (i.e.
not convenient for people to use public transit system
compared to using taxi) and a lower UARI means a
higher relative accessibility, that public transit has simi-
lar performance with taxi (assuming no walking and
waiting time).
Figure 3 is an example of trips starting at Penn Station

at 3:00 pm. Each point on this scatter plot represents
one Penn Station-to-destination pair. For this Penn
Station-to-destination pair, the origin is within a 500-m
buffer zone around Penn Station and the destination is
outside this 500-m buffer zone. Location of the point in
this coordinate system is determined by the travel time
using taxi and public transit. The slope of the red line
(2.8) is the UARI for the cell containing Penn Station
during 3:00 pm (Fig. 3).
For each O-D pair, both public transit travel time and

taxi travel time (if existing) are retrieved. Because all
subway stations and bus stops are connected in the pub-
lic transit system network, cells in which subway stations
or bus stops are located, as well as cells reached by walk-
ing, have values for transit travel time. However, not all
O-D pairs have taxi trips. For O-D pairs having more
than one taxi trip, the average time for all taxi trips is
used for taxi travel time of that O-D pair. UARI values
are only calculated for origins with 10 or more destina-
tions. A minimum frequency of 10 was subjectively
chosen in this case study. Similarly, when calculating
UARI for a destination, that destination must have no

Jiang et al. Computational Urban Science            (2021) 1:10 Page 7 of 15



less than 10 origins. In other words, to run the regres-
sion, no less than 10 points must exist on the scatter
plot.
To calculate UARI for multiple destinations, trips ar-

riving at each destination are selected first. The UARI is
calculated using the same procedure as calculating UARI
for origins.

5 Results and discussion
5.1 UARI for one origin
Relative urban accessibility values can be geographically
displayed by mapping the UARI values for all locations.
The UARI for Penn Station as an origin is shown at 3:
00 am (Fig. 4) and 3:00 pm (Fig. 5). The origin (Penn
Station) is at the center of the ‘black hole’ on Staten

Fig. 2 Comparison between a Ordinary Least Squares (OLS) and b Total Least Squares (TLS) regression

Fig. 3 Scatter plot of O-D pairs starting at Penn Station
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Island as short trips (trip distance less than 500m) were
excluded in this analysis. In these two maps, blue colors
indicate that the public transit time is shorter than taxi
time, while yellow to red colors indicate that a taxi takes
less time than public transit to travel from Penn Station
to the destination. For some destinations (e.g. upper Staten
Island), the public transit time can be more than three
times longer than taxi travel time. Noticably, the Park Slope
neighborhood (red circle in Fig. 4) in Brooklyn, the public
transit time is less than taxi travel time. This neighborhood
is located near Barclays Center, the home to the NBA
Brooklyn Nets basketball team. A total of nine subway lines
are going around this neighborhood, which reduces public-
transit travel time.
The frequency of travel by subway, expressed as the

times between arriving subway train, has a major impact
on the UARI values in this example. The early morning
time (i.e. 3:00 am) was chosen as an example when very
few public transit services are available. At this time of
day, the Manhattan area shows 2 to 3 times longer travel
time using public transit than using taxi (Fig. 4). Even
though Manhattan is generally considered to have both
the most road congestion and the most convenient pub-
lic transit system, during the night hours, public transit
accessibility is markedly reduced by limited public tran-
sit services. The afternoon travel time of 3:00 pm illus-
trates a notable difference in relative travel mode times
on Manhattan Island (Fig. 5). Curiously, public travel
time north of Penn Station is less than taxi travel time

while travel time to the south is more efficient by taxi.
One reasonable explanation is that subway network is
more accessible, compared to taxi travel, south of Penn
Station.

5.2 UARI for multiple origins
Figures 6 and 7 illustrate the UARI values for all origins
in NYC during two different time periods in a day.
Figure 6 indicates UARI for 3:00 am, representing
transportation conditions during the early morning
hours and Fig. 7 shows UARI for 3:00 pm. In both
figures, the red color indicates steep slopes for the re-
gression line (i.e. the UARI value), which means lon-
ger travel time with public transit compared to taxi
travel, while the blue color indicates shorter travel
time using public transit. These hypsometric classifi-
cation scheme for Figs. 6 and 7 was based on quan-
tile divisions of all possible slopes. In other words,
the array of slope values (combined 3:00 am and 3:00
pm) was divided into 9 classes with equal numbers of
observations in each class.
For each origin, we first plotted travel time for all the

destinations onto a scatter plot, similar to Fig. 3, and
then we calculated UARI using the method described in
Section 4.3.2. In other words, we generated a scatter plot
for each origin cell, and the UARI for the origin was cal-
culated as we solved the β in the regression equation
(Eq. 2). Due to a limited number of taxi trips and re-
duced public transit services at 3:00 am, many cells have

Fig. 4 UARI for 3:00 am using Penn Station as the origin
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Fig. 5 UARI for 3:00 pm using Penn Station as origin

Fig. 6 UARI for all origins at 3:00 am
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no value, meaning no UARI at 3:00 am. Thus, a missing
UARI value means either the cell was inaccessible using
public transit service or no taxi trips were available in
records at the given time. All cells with no values are
shown in black color. Therefore, Figs. 6 and 7 are not
comparable to Figs. 4 and 5 as the UARIs were calcu-
lated for multiple origins.
In Figs. 6 and 7, the majority of Manhattan areas and

some parts of Brooklyn have very similar values. In
Queens, only areas along major subway lines and around
some stations have values.
In the map for 3:00 am (Fig. 6), most areas are shown

in red color, which means public transit riders should
expect at least 4 times the taxi travel time needed. In
some areas (shown in dark red), public transit riders
should expect almost 8 times or more public transit time
than taxi time. The map for 3:00 pm (Fig. 7) is quite dif-
ferent from the one for 3:00 am, where the majority of
Manhattan is covered by UARI values of only 2 to 3.
This means the majority of Manhattan areas have low
UARI, indicating high public transit accessibility. During
daytime hours, for every minute traveling in taxi, public
transit riders should expect about 2 min travel time
using public transit system.
In Figs. 6 and 7, not all locations had an ample fre-

quency (i.e. 10 or more) trip records to be considered as
a valid location in UARI measurement. Visual examin-
ation of Figs. 6 and 7 provided evidence of travel de-
mands for taxis. Since public transit network time

covers all of NYC, whether a location is valid or not was
actually determined by the number of taxi trips starting
from that location. In Figs. 6 and 7, most areas of
Manhattan have enough taxi trips to be considered as
valid. Outside of Manhattan, most valid locations are
only along subway lines. This distribution pattern indi-
cated taxi travel demand. From this visual examination,
NYC provided a good public transit service to meet
travel demands.
At 3:00 am, UARI results indicated that for the major-

ity of NYC, public transit takes three to four times com-
paring to taxi travel times, even in the Manhattan area,
where people would expect the most convenient public
transit services. At 3:00 pm, the Manhattan area shows
results as expected with public transit times only slightly
longer than taxi times. This difference between 3:00 am
and 3:00 pm is indicative of the frequency of subway ser-
vices during day hours and night hours. With a reduced
number of subways during night hours and consequently
longer waiting times, accessibility for public transit dur-
ing night is much lower than accessibility during
daytime.

5.3 UARI for multiple destinations
This section presents results from UARIs calculated for
selected destinations. Nine major hospitals were selected
as destinations. These results provide a practical sce-
nario for comparing the accessibility of hospitals at 3:00
am and 3:00 pm. Similarly as before, for each hospital as

Fig. 7 UARI for all origins at 3:00 pm
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a destination, the original cell must have more than 10
trips to be considered as a valid origin for that O-D pair.
Table 1 and Fig. 8 provide the UARIs for these nine hos-
pitals as destinations at 3:00 am and 3:00 pm.
Seven of these nine major hospitals are located in

lower Manhattan and two are located in Brooklyn. Not
surprisingly, UARIs at 3:00 am are much higher for all
hospitals than UARIs at 3:00 pm, indicating lower acces-
sibility of public transit system during night hours. The
Woodhull Medical & Mental Health Center hospital has
the lowest UARI at 3:00 pm (1.8). This hospital also has
the second lowest UARI at 3:00 am. Compared to other
hospitals. NYU Hospitals Center and Bellevue Hospital
Center are located farther away from subway routes.
These two hospitals have the highest UARI during both
time periods, which indicates low public transit accessi-
bility to reach these two hospitals.

6 Limitations
The methods and data sources used in this research
have some limitations and need further improvement.
First, the taxi data at early morning hours for many loca-
tions have very low frequencies. For example, in the map
of UARI for 3:00 am (See Fig. 6), not many places have
historical taxi trips. Therefore, only a limited number of
places have UARIs. In future research, additional efforts
may be needed in the early stages of data to either re-
move outliers in taxi trips or to include a confidence
measurement based on the frequency/variance of taxi
times for a location. A second limitation of this research
is with defining a valid location and the 500-m walking
time. Since the actual origin of the commuter is not
known we subjectively used a 500-m walking distance
threshold to derive O-D pairs to an origin or a destin-
ation. Also, to ensure a large enough frequency (e.g. 10
in this study) we used the 500-m buffer area. Other pos-
sible sources of information (voluntary surveys, social
media, etc.) could be exploited to derive more refined
starting or ending locations emanating from the public
transit or taxi stops. Many areas, especially areas other

than Manhattan, did not contain enough observations.
In future research, a smoothing algorithm or a scalable
filter could be applied to increase the number of valid
locations. Also, a large temporal period of observations,
either additional years of public transit data or taxi data,
or larger hourly periods of origins (e.g. 1:00 am to 3:00
am) would increase the frequencies. Another limitation
with public transit data was of possible unexpected de-
lays. The UARI could be applied to city development or
travel planning to include real-time information and im-
prove estimates of actual time using public transit. In
addition, the walking distance of people may vary in dif-
ferent places. More details about local people’s travel be-
haviors require further analysis.

7 Conclusion
This paper introduces and demonstrates a new measure-
ment of accessibility (UARI), aiming to bridge current
methodologies with the increasing availability of multi-
modal transportation data. The UARI developed in this
study has three main innovations. First, it considers ac-
cessibility as a property of a location (either origin or
destination) but derives the measure as the collective
property of all connections that involve the location.
The new measure is empirically derived and calculated,
generally, with a large number of actual travel records so
that there are less arbitrary decisions or biases involved
compared to traditional methods. Second, the method
uses historical taxi travel records and public transit time-
tables to accurately model travel time, rather than using
road network and properties such as speed limits on
road segments. Third, the new method and data can en-
able accessibility measurements at a fine spatiotemporal
resolution, such as for different time periods of a day
and different days of a week, based on big data of taxi
trips and transit schedules (which, for example, differ
significantly for weekdays and weekend days). As such,
the new method can enable the analysis and understand-
ing of dynamic accessibility patterns with time-varying
and multimodal accessibility measurements.

Table 1 UARI for nine major hospitals

ID Hospital Name 3:00 am 3:00 pm

① Wyckoff Heights Medical Center 4.1 2.5

② New York-Presbyterian/Lower Manhattan Hospital 5.5 2.9

③ Bellevue Hospital Center 7.5 2.7

④ Mount Sinai Beth Israel 6.3 2.7

⑤ NYU Hospital for Joint Diseases 6.1 2.7

⑥ New York Eye and Ear Infirmary of Mount Sinai 6.0 2.5

⑦ NYU Hospitals Center 7.8 2.6

⑧ Woodhull Medical & Mental Health Center 4.3 1.8

⑨ Lenox Health Greenwich Village 5.7 2.6
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Fig. 8 UARI for the nine hospitals in NYC (refer to Table 1 for the hospital names)
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Using NYC as a study case, UARI for different time
periods showed the temporal changes in accessibility
patterns in NYC. Comparing UARI of the same location
during different times of a day indicates the temporal
and spatial variation of accessibility. Examples in this
study demonstrate that UARI can be used for both ori-
gins and destinations, and that the number of origins or
destinations can be varied according to different applica-
tions. Potential applications of this method include, but
not limited to, measuring the accessibility of hospitals,
grocery stores, voting stations, and other public facilities
for transportation planning. This method can further be
integrated with more transportation modes, such as
bikes and e-scooters sharing to encourage more
environment-friendly transportation in city. In addition,
transportation authorities can adjust current public tran-
sit routes or schedules according to this accessibility
measurement. Also, given a standardized data format for
taxi trip records and public transit timetable, this re-
search can be applied other cities when relevant data are
available.
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