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Abstract
In this paper, we present a continuous-time algorithm with a dynamic event-triggered communication (DETC)
mechanism for solving a class of distributed convex optimization problems that satisfy a metric subregularity
condition. The proposed algorithm addresses the challenge of limited bandwidth in multi-agent systems by utilizing
a continuous-time optimization approach with DETC. Furthermore, we prove that the distributed event-triggered
algorithm converges exponentially to the optimal set, even without strong convexity conditions. Finally, we provide
a comparison example to demonstrate the efficiency of our algorithm in communication resource-saving.
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1 Introduction
In recent decades, network systems have become increas-
ingly significant in numerous practical fields, including
multi-robot [1], reinforcement learning [2], power system
[3], and smart manufacturing [4]. Many tasks over net-
work systems can be formulated as distributed optimiza-
tion problems, which involve searching for the optimal so-
lution of aggregating all the nodes’ local objective func-
tions. Various algorithms, such as continuous-time version
[5–9] and discrete-time version [10–15], have been pro-
posed to solve distributed optimization problems.

The convergence rate of optimization algorithms is a
well-recognized topic in optimization theory and the cor-
responding algorithm design. The rate of the first-order
gradient-based algorithm is generally expressed as O(1/k)
[16] or O(1/k2) (with an accelerated strategy) [17] for opti-
mization problems with general convex and Lipschitz con-
tinuous objective functions. However, to attain a faster
convergence performance (such as linear convergence),
the objective function must satisfy the condition of strong
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convexity [18]. Despite its theoretical appeal, strong con-
vexity is not always a practical assumption in various appli-
cations. To address this issue, several methods have been
developed to relax the strict assumption, including met-
ric subregularity [19], restricted secant inequality [20], and
Polyak-Łojasiewicz (PL) conditions [21]. For smooth con-
strained optimization problems, [22] proposed a relax-
ation of the strong convexity conditions as quasi-strong
convexity, quadratic under-approximation, quadratic gra-
dient growth, and quadratic functional growth. These re-
laxed conditions have been shown to enable linear conver-
gence for several first-order methods.

Effective communication resource management has al-
ways been vital for evaluating distributed algorithms, as
communication is energy-intensive and resources are of-
ten constrained. To alleviate the communication burden,
researchers have proposed using event-triggered commu-
nication. Several studies have demonstrated that event-
triggered communication is highly effective in reducing
communication costs, including works by [23–33]. For
optimization problems involving smooth cost functions,
[34] developed a communication-efficient event-triggered
first-order primal-dual algorithm, achieving an O(1/k)
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convergence rate. [11] combined the event-triggered
mechanism with the mirror descent algorithm for dis-
tributed stochastic optimization problems. More recently,
researchers have proposed a more advanced theory called
the dynamic event-triggered communication (DETC)
mechanisms, which employ additional internal dynamic
variables. This mechanism has better communication re-
source saving than static event-triggered communication.
For undirected and connected graphs, [35] proposed a dis-
tributed zero-gradient-sum algorithm that uses dynamic
event-triggered communication, which converges expo-
nentially to the global minimizer. In addition, [36] pro-
posed a fully distributed algorithm with a dynamic event-
triggered communication mechanism for the second-
order continuous-time multi-agent systems, excluded the
Zeno behavior, and showed an exponential convergence.

Given the non-strong convexity of the metric subregu-
larity for linear convergence and the potential of the event-
triggered communication mechanism to save communi-
cation resources, we solve the distributed optimization
problem with a dynamic event-triggered communication
mechanism and provide the corresponding convergence
performance. Correspondingly, the main contributions of
this work are summarized as follows.

1) We design a distributed dynamic event-triggered
primal-dual algorithm for solving distributed
optimization problems with metric subregularity.
Compared with the results in [19], the proposed
algorithm significantly reduces the communication
burdens but does not sacrifice the convergence rate.

2) The designed algorithm linearly converges to the
optimum set with an explicit convergence rate, which
is faster than the asymptotic convergence in [37] with
strong convexity. Moreover, compared with the
restricted strong convexity in [38], we relax the
condition as metric subregularity and achieve the
same convergence rate of [38].

3) Compared to the seminal dynamic event-triggered
mechanism, which needs the exchanging of the
consensus error xj(t

j
kj(t)) – xi(ti

ki(t)) at the triggered
time, for distributed optimization in [35], our
method is more simple by removing the term
xj(t

j
kj(t)) – xi(ti

ki(t)) and we provide a different method
for convergence analysis.

The rest of the paper is organized as follows. Sect. 2
gives some basic knowledge of metric subregularity and
graph theory. Sect. 3 introduces the distributed optimiza-
tion problem and algorithm design. Sect. 4 analyzes the
performance of the proposed algorithm and Sect. 5 gives a
comparison example and Sect. 6 ends this paper with some
concluding remarks.

2 Preliminaries
2.1 Notation
A� is the transpose of A. R, Rn, and R

m×n denote the sets
of real numbers, n-dimensional vector, and m × n real ma-
trices, respectively. ‖ · ‖ denotes the l2-norm of a vector
or the induced dual norm of a matrix. lij is the element
at the j-th column and i-th row of L. 1n ∈ R

n stands for
a column vector of n dimensions with all one. col{zi}N

i=1 =
[z�

1 , z�
2 , . . . , z�

n ]� (col{z1, z2}) denotes an augmented vector
stacked by vectors z1, z2, . . . , zn (z1 and z2). A⊗B is the Kro-
necker product of the two matrices. d(x,X ) is the distance
between the point x and set X .

2.2 Metric subregularity
Consider a map H : Rn →R

n and define

gph H :=
{

(x, y)|y = H(x), x, y ∈R
n},

rge H :=
{

y|y = H(x), x, y ∈R
n},

H–1(y) :=
{

x|(x, y) ∈ gph H , x, y ∈ R
n}, ∀y ∈ rge H .

By the above map H : Rn → R
n, we give the definition of

κ-metrically subregular.

Definition 1 (see [19]) For a map H : Rn → R
n with

(xo, yo) ∈ gph H , if there exist κ > 0 and a neighborhood D
of xo such that

d
(
x, H–1(yo)

) ≤ κ
∥∥yo – H(x)

∥∥, ∀x ∈D,

then H is κ-metrically subregular at (xo, yo).

2.3 Comparison lemma
For the convenience of the convergence analysis here-
inafter, we provide the following comparison lemma on
nonlinear systems.

Lemma 1 (see [39]) Consider the following scalar differen-
tial equation

u̇ = f (t, u), u(t0) = u0,

where f (t, u) is continuous in t and locally Lipschitz in u,
for all t ≥ 0 and all u ∈ J ⊂ R. Let [t0, T) (T may be in-
finite) be the maximal interval of solution existence u(t),
and suppose u(t) ∈ J for all t ∈ [t0, T). Let v(t) be a contin-
uous function with an upper right-hand derivative D+v(t)
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satisfying the differential inequality

D+v(t) ≤ f
(
t, v(t)

)
, v(t0) ≤ u0,

where v(t) ∈ J for all t ∈ [t0, T). Then, v(t) ≤ u(t) for all t ∈
[t0, T).

2.4 Graph theory
For an undirected graph G = (V ,E), E ⊆ V × V and V =
{1, 2, . . . , n} are the sets of edges and nodes, respectively.
(i, j) ∈ E means that node i exchanges information with
node j. A = [aij] ∈R

n×n is the adjacency matrix with aij =
aji > 0 if {j, i} ∈ E and aij = 0 otherwise. Defining D =
diag{d1, . . . , dn} with di =

∑n
i=1 aji, i ∈ V , L = D – A is the

Laplacian matrix of G . Specifically, if G is directed and con-
nected, then L = L� ≥ 0.

3 Problem formulation and algorithm design
In this section, we consider a distributed convex optimiza-
tion problem and propose an event-triggered primal-dual
algorithm to solve this problem.

3.1 Problem formulation
Consider the distributed optimization problem over net-
works as follows

min
x∈RNn

ψ(x) :=
N∑

i=1

ψi(xi)

s.t. xi = xj, ∀i, j ∈ V ,

(1)

where ψi(·) : Rn → R and x = col{xi}N
i=1 ∈ R

Nn. In the
meantime, we take the following mild assumption.

Assumption 1 The local functions ψi(·), i ∈ V are convex
and differentiable, and the corresponding gradients are lo-
cal Lipschitz continuous.

To solve the above optimization problem in a distributed
manner, a multi-agent system on communication graph G
must be employed. In that way, each agent updates its local
variable xi using local data and communication to reach
the optimal solution over G . We take the following mild
assumption for G .

Assumption 2 The graph G is connected and undirected.

Note that Assumption 2 implies that the Laplacian ma-
trix L is symmetric and positive semi-definite.

3.2 Algorithm design
We propose the following event-triggered-based algo-
rithm from the primal-dual perspective to solve the above
problem.

Algorithm 1 Dynamic Event-triggered-based Algorithm
Design

Initialization: Choose the parameters ai, bi, ci, and di >
0, θ ∈R

+
0 , lij is the (i, j)-th element of L. Initialize xi(0) ∈

R
n, qi(0) ∈R

n, ti
1 = 0, ∀i ∈ V .

Update flows: For each i ∈ V ,
S. 1. for t = 1, 2, . . . , T do
S. 2. Update the local variables:

{
ẋi(t) = –∇ψi(xi(t)) –

∑N
j=1 lij[xj(t

j
kj(t)) + qj(t

j
kj(t))],

q̇i(t) =
∑N

j=1 lijxj(t
j
kj(t)

),
(2)

S. 3. Update the event time ti
k+1 by

ti
k+1 = max

t≥ti
k

{

t
∣∣∣∣
ηi(t) + θ

∥∥xi(t) – xi
(
ti
k
)∥∥ ≤ aie–bit

ηi(t) + θ
∥∥qi(t) – qi

(
ti
k
)∥∥ ≤ cie–dit

}

, (3)

S. 4. if an event occurs at agent i then
S. 5. Update the latest event time ti

ki(t) = ti
k+1; Up-

date and broadcast state estimates xi(ti
ki(t)) and qi(ti

ki(t));
S. 6. else
S. 7. Keep local memory constant.
S. 8. end if
S. 9. end for

In Algorithm 1, ηi(t) is an internal dynamic variable
which satisfies

η̇i(t) = –βηi(t) +
∥∥xi(t) – xi

(
ti
k
)∥∥ (4)

with β > 0 and ηi(0) ∈R
+
0 .

Remark 1 Algorithm 1 is introduced from the seminal
work of [19] but with the event-triggered mechanism.
Compared with event-triggered based algorithms pro-
posed in [11, 28, 29, 34–36, 38], it relaxes of strong con-
vexity as κ-metrically subregular. Furthermore, the pro-
posed method modifies the static event-triggered commu-
nication scheme into a dynamic counterpart, resulting in
a communication scheme that is more efficient compared
to the approach presented in [11, 28, 34, 38].

Remark 2 The event-triggered communication (ETC) in
[11, 28, 34, 38] is denoted as static ETC, as it exclusively
involves the current values of local variables. In contrast,
the ETC in Algorithm 1 is termed dynamic ETC, as it in-
corporates an additional internal dynamic variable ηi. The
main idea behind the dynamic event-triggered communi-
cation scheme involves introducing an internal nonnega-
tive dynamic variable ηi based on the static event-triggered
communication scheme. This modification ensures that
θ‖xi(t) – xi(ti

k)‖ – aie–bit and θ‖qi(t) – qi(ti
k)‖ – cie–dit do

not have to be strictly non-negative at all times but rather
non-negative on average. Furthermore, in the limit where
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θ → +∞, the static ETC can be considered a special case
of the dynamic ETC.

For the designed DETC, we have the following basic con-
clusion.

Lemma 2 Let x, q, and η be generated by the proposed al-
gorithm in (2)-(4). Then, for all t ∈ [0, t∞), ηi(t) + θ‖xi(t) –
xi(ti

k)‖ – aie–bit ≥ 0 and ηi(t) ≥ 0.

Proof By (3), the communication condition triggers when

ηi(t) + θ
∥∥xi(t) – xi

(
ti
k
)∥∥ – aie–bit ≥ 0, t ∈ [0, t∞).

According to (3) and (4),

η̇i(t) ≥ –
(1 + θβ)

θ
ηi(t) +

ai

θ
e–bit

≥ –
(1 + θβ)

θ
ηi(t) +

a0

θ
e–b0t ,

where a0 = min{ai, ci}N
i=1, b0 = max{bi, di}N

i=1. Then

ηi(t) ≥ ηi(0)
(
C1e– 1+θβ

θ
(t) + C2e–b0(t)) > 0,

where C1 = – a0
1+θ (β–b0) and C1 = –C2. �

Remark 3 The value of ηi depends on the values of (1+θβ)
θ

and b0. If b0 > (1+θβ)
θ

, then C1 > 0 and yields ηi(t) > 0, oth-
erwise C2 > 0 and achieves ηi(t) > 0 as well.

4 Main results
In this section, we present the linear convergence of the
proposed algorithm with the aid of the Lyapunov theory.
Define

x̂i(t) = xi
(
ti
ki(t)

)
, q̂i(t) = qi

(
ti
ki(t)

)
,

x(t) = col
{

xi(t)
}N

i=1, x̂(t) = col
{

x̂i(t)
}N

i=1,

q(t) = col
{

qi(t)
}N

i=1, q̂(t) = col
{

q̂i(t)
}N

i=1,

ex
i (t) = x̂i(t) – xi(t), ex = col

{
ex

i
}N

i=1,

eq
i (t) = q̂i(t) – qi(t), eq = col

{
eq

i
}N

i=1,

z(t) = col
{

x(t), q(t)
}

, ẑ(t) = col
{

x̂(t), q̂(t)
}

,

η(t) = col
{
ηi(t)

}N
i=1.

We rewrite the algorithm in (2) into the following compact
form

ż(t) = –H
(

z(t), ẑ(t)
)
, (5)

where H(z, ẑ) = col{∇ψ(x) + L̄x̂ + L̄q̂, –L̄x̂}.

Define [z]∗ as the projection from a point z to the optimal
solution set Z∗ = X∗ × Y ∗, then

d
(

z,Z∗) =
∥∥z – [z]∗

∥∥.

Based on the optimization problem in (1) and the primal-
dual event-triggered algorithm in (5), we take the follow-
ing assumption, which is more general than the strongly
convex and restrict strongly convex in [18, 38].

Assumption 3 H is k0-metrically subregular at any point
(z∗, 0) ∈ gph H , namely, there exist a constant k0 > 0 and
Z∗ ⊂D such that

∥∥H(z, ẑ)
∥∥ ≥ k–1

0 d
(

z,Z∗), ∀z ∈D. (6)

For the proposed algorithm in (2), we design the follow-
ing Lyapunov function

V (z,η) = 6σ0V1(z,η) +
4
3

V2(z,η), (7)

V1(z,η) =
1
2

d2(z,Z∗) + A‖η‖2, (8)

V2(z,η) = ψ(x) – ψ
(
[x]∗

)
+

1
2
〈x + 2q, L̄x〉 + B‖η‖2, (9)

where L̄ = L ⊗ IN and σ0 is the largest singular value of L.

Lemma 3 Under Assumptions 1-3, let (x, q) be generated
by the proposed algorithm in (2). Then, the Lyapunov func-
tion can be bounded as follows

V (z,η) ≥ 7σ0

3
∥∥z – [z]∗

∥∥2,

V (z,η) ≤ 2l0 + 13σ0

3
∥∥z – [z]∗

∥∥2 +
(

6σ0A +
4
3

B
)

‖η‖2,

where l0 is the Lipschitz constant of ∇ψ(·).

Proof According to the optimal conditions ∇ψ([x]∗) =
–L̄[q]∗ and [x∗]�L̄ = 0, we have

{
〈x – [x]∗,∇ψ([x]∗)〉 = –〈x – [x]∗, L̄[q]∗〉,
〈x, L̄q〉 = 〈x – [x]∗, L̄q〉.

Then we rewrite V2(z) as

V2(z,η) = ψ(x) – ψ
(
[x]∗

)
–

〈
x – [x]∗,∇ψ

(
[x]∗

)

+
1
2

L̄
(

x – [x]∗ + 2q – 2[q]∗
)〉

+ B‖η‖2.

The convexity of ψ and L̄ � 0 imply,

ψ(x) ≥ ψ
(
[x]∗

)
+

〈
x – [x]∗,∇ψ

(
[x]∗

)〉
,
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〈
x – [x]∗, L̄

(
x – [x]∗

)〉 ≥ 0.

Therefore,

V2(z,η) ≥ 〈
x – [x]∗, L̄

(
q – [q]∗

)〉

≥ –
σ0

2
(∥∥x – [x]∗

∥∥2 +
∥∥q – [q]∗

∥∥2) (10)

= –
σ0

2
∥∥z – [z]∗

∥∥2

and

V1(z,η) =
1
2

d2(z,Z∗) + A‖η‖2 (11)

≥ 1
2

d2(z,Z∗).

According to (10) and (11), the lower bound of V (z) is

V (z,η) ≥ 7σ0

3
∥∥z – [z]∗

∥∥2. (12)

By Lemma 1 and the l0-Lipchitz continuity of ∇ψ(·), we
have

ψ(x) – ψ
(
[x]∗

)
–

〈
x – [x]∗,∇ψ

(
[x]∗

)〉 ≤ l0

2
∥∥x – [x]∗

∥∥2,
〈
x – [x]∗, L̄

(
x – [x]∗

)〉 ≥ σ0
∥∥x – [x]∗

∥∥2.

Moreover,

〈
x – [x]∗, L̄

(
q – [q]∗

)〉

≤ σ0
∥∥x – [x]∗

∥∥∥∥q – [q]∗
∥∥

≤ σ0

2

(
ε
∥∥x – [x]∗

∥∥2 +
1
ε

∥∥q – [q]∗
∥∥2

)
,

for any ε > 0. By ε = σ0
l0+σ0

, we have

V2(z,η) ≤ l0 + σ0

2
(∥∥x – [x]∗

∥∥2 +
∥∥q – [q]∗

∥∥2)

+
σ 2

0
2(l0 + σ0)

∥∥x – [x]∗
∥∥2 + B‖η‖2

≤ l0 + 2σ0

2
∥∥z – [z]∗

∥∥2 + B‖η‖2.

The upper bound is

V (z,η) ≤ 2l0 + 13σ0

3
‖z – [z]∗‖2 +

(
6σ0A +

4
3

B
)

‖η‖2.

(13)

Therefore, we obtain the bounds of V (z). �

Theorem 1 Under Assumptions 1-3, let (x, q) be generated
by the proposed algorithm in (2). Then z(t) linearly con-
verges to the optimal set Z∗ as follows

∥∥z(t) –
[

z(t)
]∗∥∥

≤
√

3V (z(T0))
7σ0

[
C3e

– 3
k2
0 (2η0+13σ0)

(t–T0)

+ C4e– b
2 (t–T0)

]
, t ≥ T0,

(14)

where C3 = 2γ3Nk2
0 (2l0+13σ0)

bk2
0 (2l0+13σ0)–6 , C4 = –C3, and T0 < ∞.

Proof For the designed Lyapunov function in (7), we cal-
culate its first-order derivatives with respect to t,

V̇1(z,η) =
〈
x – [x]∗, –L̄

(
x + ex) – L̄

(
q + eq) – ∇ψ(x)

〉

+
〈
q – [q]∗, L̄

(
x + ex)〉 + 2A〈η, η̇〉

=
〈
x – [x]∗, –L̄

(
x + ex) – L̄

(
q – [q]∗ + eq)

+ ∇ψ
(
[x]∗

)
– ∇ψ(x)

〉
+

〈
q – [q]∗, L̄

(
x + ex)〉

+ 2A〈η, η̇〉
= –

〈
x, L̄(x + ex + eq〉 +

〈
q – [q]∗, L̄ex〉

–
〈
[x]∗ – x,∇ψ

(
[x]∗

)
– ∇ψ(x)

〉

+ 2A〈η, η̇〉 (15)

≤ –
1
2

x�L̄x + σ0
(∥∥ex∥∥2 +

∥∥eq∥∥2)

+ σ0‖q – [q]∗‖∥∥ex∥∥

–
〈
[x]∗ – x,∇ψ

(
[x]∗

)
– ∇ψ(x)

〉
+ 2A〈η, η̇〉

≤ –
1
2

x�L̄x + σ0
(∥∥ex∥∥2 +

∥∥eq∥∥2)

+
b
2
∥∥q – [q]∗

∥∥2

+
σ 2

0
2b

∥∥ex∥∥2 –
〈
[x]∗ – x,∇ψ

(
[x]∗

)
– ∇ψ(x)

〉

+ 2A〈η, η̇〉,

where the first equation follows from ex = x̂ – x and eq =
q̂ – q, the second equation is deduced based on L̄[q]∗ =
–∇ψ([x]∗), the first inequality is deduced based on Young’s
inequality and Cauchy-Schwarz inequality, and the last in-
equality is deduced by b = min{b1, . . . , bN , d1, . . . , dN } ≥ 0.
Define

a = max{a1, . . . , aN , c1, . . . , cN } ≥ 0.
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By (3), we have

{
‖ex‖2 ≤ ∑N

i=1 ‖ aie–bit–ηi
θ

‖2 ≤ 2(Na2e–2bt+‖η‖2)
θ2 ,

‖eq‖2 ≤ ∑N
i=1 ‖ cie–dit–ηi

θ
‖2 ≤ 2(Nc2e–2dt+‖η‖2)

θ2 .
(16)

From (16),

〈η, η̇〉 ≤
N∑

i=1

〈
ηi, –βηi +

aie–bit – ηi

θ

〉

=
N∑

i=1

(
–βη2

i –
1
θ
η2

i +
1
θ
ηiaie–bit

)
(17)

≤ –β‖η‖2 +
1

4θ
Na2e–2bt ,

where the first inequality follows from (17) and the second
inequality is deduced based on –η2

i + ηiaie–bit ≤ a2
i e–2bit ≤

a2e–2bt . By (8),

∥∥q – [q]∗
∥∥2 ≤ 2V1(z,η). (18)

Based on (15), (16), and (18),

V̇1(z,η) ≤ bV1(z,η) +
4σ0

θ2 Na2e–2bt +
4σ0

θ2 ‖η‖2

+
σ 2

0
bθ2 Na2e–2bt +

σ 2
0

bθ2 ‖η‖2

– 2Aβ‖η‖2 +
A
2θ

Na2e–2bt

≤ bV1(z,η)

+
(

4σ0

θ2 +
σ 2

0
bθ2 +

A
2θ

)
Na2e–2bt (19)

–
(

2Aβ –
4σ0

θ2 –
σ 2

0
bθ2

)
‖η‖2

≤ bV1(z,η)

+
(

4σ0

θ2 +
σ 2

0
bθ2 +

A
2θ

)
Na2e–2bt ,

where the last inequality holds under 2Aβ – 4σ0
θ2 – σ 2

0
bθ2 > 0.

Therefore,

V1(z,η) ≤ γ1ebt , (20)

where γ1 = V0(z,η) + ( 4σ0
3bθ2 + σ 2

0
3bθ2 + A

6bθ
)Na2. By (18), we

have

∥∥q – [q]∗
∥∥ ≤ √

2γ1e
b
2 t . (21)

According to (15), (16) and (21),

V̇1(z,η) ≤ –
1
2
〈x, L̄x〉 +

4σ0

θ2 Na2e–2bt

+
4σ0

θ2 ‖η‖2 +
√

2γ1σ0

θ
Nae– b

2 t

–
σ0

θ

√
γ1ηe

b
2 t – 2Aβ‖η‖2

+
A
2θ

Na2e–2bt (22)

≤ –
1
2
σ –1

0 ‖L̄x‖2 + γ2Ne– b
2 t

–
(

2Aβ –
4σ0

θ2

)
‖η‖2,

where γ2 = a( 4a
θ2 +

√
2γ1
θ

+ Aa
2θσ0

)σ0. Moreover,

V̇2(z,η) =
〈∇ψ(x) + L̄x + L̄q, ẋ

〉
+ 〈L̄x, q̇〉 – 2B〈η, η̇〉

=
〈∇ψ(x) + L̄x + L̄q,

–
(∇ψ(x) + L̄x + L̄q + L̄ex + L̄eq)〉

+
〈
L̄x, L̄x + L̄ex〉 – 2B〈η, η̇〉 (23)

= –
∥∥∇ψ(x) + L̄x + L̄q

∥∥2 + ‖L̄x‖2

–
〈∇ψ(x) + L̄x + L̄q, L̄ex + L̄eq〉

+
〈
L̄x, L̄ex〉 – 2B〈η, η̇〉,

where the second equation follows from ex = x̂ – x and eq =
q̂ – q. Due to –a�b ≤ c

4‖a‖2 + 1
c ‖b‖2, we have

–
〈∇ψ(x) + L̄x + L̄q, L̄ex + L̄eq〉

≤ 1
4
∥∥∇ψ(x) + L̄x + L̄q

∥∥2 +
∥∥L̄ex + L̄eq∥∥2 (24)

and

〈
L̄x, L̄ex〉 ≤ 1

2
‖L̄x‖2 +

1
2
∥∥L̄ex∥∥2. (25)

Substituting (24) and (25) into (23), we have

V̇2(z,η) ≤ –
∥∥∇ψ(x) + L̄x + L̄q

∥∥2 + ‖L̄x‖2

+
1
4
∥∥∇ψ(x) + L̄x + L̄q

∥∥2

+
∥∥L̄ex + L̄eq∥∥2 +

1
2
‖L̄x‖2 +

1
2
∥∥L̄ex∥∥2

+ 2B〈η, η̇〉

≤ –
3
4
∥∥∇ψ(x) + L̄x + L̄q

∥∥2 +
3
2
‖L̄x‖2
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+
∥∥L̄ex + L̄eq∥∥2 +

1
2
∥∥L̄ex∥∥2 + 2B〈η, η̇〉

≤ –
3
4
∥∥∇ψ(x) + L̄x + L̄q

∥∥2 +
3
2
‖L̄x‖2

+
9Nσ 2

0 a2

θ2 e–2bt +
9σ 2

0
θ2 ‖η‖2

– 2Bβ‖η‖2 +
BNa2

2θ
e–2bt ,

where the last inequality follows from (16). As a result,

V̇ (z,η) ≤ –
∥∥∇ψ(x) + L̄x + L̄q

∥∥2 – ‖L̄x‖2

+ 6σ0γ2Ne– b
2 t – 12σ0

(
Aβ –

2σ0

θ2

)
‖η‖2

+
12σ 2

0
θ2 Na2e–2bt +

12σ 2
0

θ2 ‖η‖2 –
8
3

Bβ‖η‖2

(26)

+
2B
3θ

Na2e–2bt

= –‖H(z, ẑ)‖2 + γ3Ne– b
2 t

–
(

12Aσ0β –
36σ 2

0
θ2 +

8
3

Bβ

)
‖η‖2,

where γ3 = 6σ0γ2 + ( 12σ 2
0

θ2 + 2B
3θ

)e– 3
2 bt . Based on (6), (13) and

(26),

V̇ (z,η) ≤ –‖H(z, ẑ)‖2 + γ3Ne– b
2 t

–
(

12Aσ0β –
36σ 2

0
θ2 +

8
3

Bβ

)
‖η‖2

≤ –
3

k2
0(2l0 + 13σ0)

V (z,η) + γ3Ne– b
2 t

+
3

k2
0(2l0 + 13σ0)

(
6σ0A +

4
3

B
)

‖η‖2 (27)

–
(

12Aσ0β –
36σ 2

0
θ2 +

8
3

Bβ

)
‖η‖2

≤ –
3

k2
0(2l0 + 13σ0)

V (z,η) + γ3Ne– b
2 t ,

where β > 3
2k2

0 (2l0+13σ0) + 18
θ2(6σ0A+ 4

3 B)
. Defining

U̇(z,η) = –
3

k2
0(2l0 + 13σ0)

U(z,η) + γ3Ne– b
2 t . (28)

By the Laplace transform of (28), we have

U(s) =
γ3N

(s + 3
k2

0 (2l0+13σ0) )(s + b
2 )

.

Then, there exists a finite constant T0 such that

U
(

z(t),η(t)
)

= U
(

z(T0),η(T0)
)[

C3e
– 3

k2
0 (2l0+13σ0)

(t–T0)

+ C4e– b
2 (t–T0)

]
, ∀t ≥ T0,

where

C3 =
2γ3Nk2

0(2l0 + 13σ0)
bk2

0(2l0 + 13σ0) – 6
and C4 = –C3.

According to Lemma 1, we have

V
(

z(t),η(t)
) ≤ V

(
z(T0),η(T0)

)[
C3e

– 3
k2
0 (2l0+13σ0)

(t–T0)

+ C4e– b
2 (t–T0)

]
, ∀t ≥ T0. (29)

Combining (29) with (12),

∥∥z(t) –
[

z(t)
]∗∥∥ ≤

√
3V (z(T0))

7σ0

[
C3e

– 3
k2
0 (2η0+13σ0)

(t–T0)

+ C4e– b
2 (t–T0)

] 1
2

, t ≥ T0.

Consequently, z(t) linearly converges to Z∗. �

Remark 4 By Theorem 1, the convergence rate depends
on the values of 3

k2
0 (2η0+13σ0) and b

2 , where the optimiza-
tion problem determines the first one and the other one
depends on the event-triggered strategy. If b

2 > 3
k2

0 (2η0+13σ0) ,

then C3 > 0 and it yields ‖x(t) – [x]∗‖ ≤ O(e
– 3

2k2
0 (2η0+13σ0) ),

otherwise C4 > 0 and we have ‖x(t) – [x]∗‖ ≤ O(e– b
4 ).

Remark 5 For continuous-time algorithms with event-
triggered communication, Zeno behavior is an important
topic. In this paper, Zeno Behavior is precluded in the al-
gorithm (2) and the event-triggered scheme (3) is designed
by referring to the work of [38]. The analysis of the Zeno
behavior of the primal-dual algorithm is similar to Theo-
rem 3 of [38] and we omit it in this paper.

5 Simulation
To illustrate the effectiveness of the proposed method, we
take the same example in [19], which considers a network
containing 12 agents connected by a ring topology and
equipped with the following local objective functions

ψi(x) =

⎧
⎪⎨

⎪⎩

Ci
5(x – ri)2, if x ≥ ri,

Ci
6(x + si)2, if x ≤ –si,

0, if – si < x < ri,
(30)
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Table 1 Parameters of the simulation

i C5 C6 r s xi[0]

1 0.1 0.5 1 9 –9
2 0.3 0.2 3 3 4
3 0.8 0.5 3 7 –9
4 0 0.6 7 2 –9
5 0.9 0.7 1 0 0
6 0.7 0.4 7 7 –8

i C5 C6 r s xi[0]

7 0.5 0.4 1 5 6
8 0.6 1 7 5 6
9 0.2 0 5 9 4
10 0.5 0.9 8 6 –7
11 1 0.9 7 6 3
12 0.5 0.8 9 9 0

Figure 1 The trajectories of agent 1 in the methods of [19] and this
paper

Figure 2 The trajectories of J(k) in the methods of [19] and this paper

where Ci
5, Ci

6, ri, and si > 0 are given in Table 1. Then ψi(x)
is convex and differentiable with

∇ψi(x) =

⎧
⎪⎨

⎪⎩

2Ci
5(x – ri), if x ≥ ri,

2Ci
6(x + si), if x ≤ –si,

0, if – si < x < ri.

Table 2 The times of triggering to achieve 0.01 convergence
accuracy

i TTC in [19] Proposed DETC Communication-saving

1 444 11 97.52%
2 500 12 97.60%
3 399 10 97.49%
4 262 5 98.10%
5 2766 34 98.77%
6 135 5 96.30%
7 135 3 97.78%
8 96 4 95.83%
9 200 3 98.50%
10 184 7 96.20%
11 1587 26 98.36%
12 2282 27 98.82%

Figure 3 The trajectories of J(k) of Algorithm 1 about the
event-triggered parameters b

For the designed event-triggered scheme, we randomly
select ai and bi in the triggering mechanism (10) and (15).
We provide the trajectories of xi(t) and qi(t) of agent 1 gen-
erated by the algorithm of [19] and the proposed algorithm
with DETC in Fig. 1. Moreover, we show the relative er-
rors J(k) = ‖x(k) – 1N ⊗ x∗‖2/‖x(1) – 1N ⊗ x∗‖2 of these al-
gorithms in Fig. 2 and summarize the times of triggering
to achieve Ji(k) = ‖xi(k) – x∗‖2/‖xi(1) – x∗‖2 = 0.01 conver-
gence accuracy in Table 2. Furthermore, we show the rela-
tive errors J(k) of Algorithm 1 when considering the event-
triggered parameters b in Fig. 3. As we state in Remark 4,
when b = {0.5, 0.6}, which implies b

2 > 3
k2

0 (2η0+13σ0) , the con-
vergence rate is determined by the optimization problem,

then ‖x(t) – [x]∗‖ ≤ O(e
– 3

2k2
0 (2η0+13σ0) ), otherwise the con-

vergence rate is determined by the event-triggered strat-
egy, then ‖x(t) – [x]∗‖ ≤ O(e– b

4 ).
From Figs. 1-2 and Table 2, the DETC achieves almost

the same convergence rate as the counterparts of the TTC



Yu et al. Autonomous Intelligent Systems             (2024) 4:4 Page 9 of 10

in [19] while the DETC significantly reduces communica-
tion burdens than TTC (98.36% for achieving 0.01 conver-
gence accuracy).

6 Conclusion
In this paper, we designed a distributed continuous-time
primal-dual algorithm for the distributed optimization
problem with the metric subregularity condition. To al-
leviate the resource burden caused by continuous com-
munication, we proposed a dynamic event-triggered com-
munication mechanism without Zeno behavior. Moreover,
we proved that the proposed algorithm achieved a linear
convergence rate. Finally, we illustrated the effectiveness
of the proposed algorithm with a comparison example.
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