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Abstract
Distributed stochastic zeroth-order optimization (DSZO), in which the objective function is allocated over multiple
agents and the derivative of cost functions is unavailable, arises frequently in large-scale machine learning and
reinforcement learning. This paper introduces a distributed stochastic algorithm for DSZO in a projection-free and
gradient-free manner via the Frank-Wolfe framework and the stochastic zeroth-order oracle (SZO). Such a scheme is
particularly useful in large-scale constrained optimization problems where calculating gradients or projection
operators is impractical, costly, or when the objective function is not differentiable everywhere. Specifically, the
proposed algorithm, enhanced by recursive momentum and gradient tracking techniques, guarantees convergence
with just a single batch per iteration. This significant improvement over existing algorithms substantially lowers the
computational complexity. Under mild conditions, we prove that the complexity bounds on SZO of the proposed
algorithm areO(n/ε2) andO(n(2

1
ε )) for convex and nonconvex cases, respectively. The efficacy of the algorithm is

verified on black-box binary classification problems against several competing alternatives.

Keywords: Zeroth-order optimization, Projection-free method, Stochastic constrained optimization, Distributed
optimization

1 Introduction
In recent years, distributed optimization has received a
surge of interest in diverse areas, including autonomous
vehicle control [16], multi-agent systems [31] and sensor
networks [1], due to its significant advantages in aspects
of data privacy, robustness, flexibility, and scalability. Dis-
tributed optimization minimizes a joint function through
local computation and communication between agents in
a network. Recently, much effort has been dedicated to the
distributed stochastic setting [11, 19, 29, 30], where each
agent’s objective function is the expectation of a function
with random variables that follow unknown distributions.
Such situation widely exists in the machine learning [5, 19],

*Correspondence: xianlin.zeng@bit.edu.cn; xiaofan@bit.edu.cn
1National Key Laboratory of Autonomous Intelligent Unmanned Systems,
School of Automation, Beijing Institute of Technology, Beijing, 100081, China

multi-agent reinforcement learning [25, 27, 28], and un-
manned systems [7, 31], to name a few. Most distributed
algorithms for solving such problems require the explicit
gradients of objective functions. However, the feedback
available to agents is incomplete or noisy because of the
environmental uncertainty in many practical applications.
Hence, the real gradient feedback seems too strict in real-
ity.

Zeroth-order optimization is a typical gradient-free
method that has gained widespread concern due to its
wide usage in many practical large-scale optimization
tasks. In these tasks, the explicit gradient of the objec-
tive function is expensive or unavailable to obtain, and
only function evaluations are accessible. For instance, the
objective function of many big data problems in com-
plex data generation processes cannot be clearly defined.
Such situations include large-scale black-box adversarial
attacks to deep networks [8], simulation-based model-
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Table 1 Complexity bounds for Stochastic Frank-Wolfe Optimization method to find an ε-optimal or ε-stationary point

Reference Structure SZO LMO Query-Size

ZSCG[4] centralized convex O(n/ε3) O(1/ε) O(nK2)
centralized nonconvex O(n/ε4) O(1/ε2) O(nK )

ZSAGMIU[4] centralized convex O(n/ε2) O(1/ε) O(k2nK )
MOST-FW[3] centralized convex O(n/ε2) O(1/ε2) O(n)
Acc-SZOFW*[14] centralized nonconvex O(n/ε3) O(1/ε3) O(n)

DSGFF [22] decentralized convex O(n/ε3) – O(1)

decentralized nonconvex O(n
4
3 /ε4) – O(1)

Our Work distributed convex O(n/ε2) O(1/ε2) O(n)

distributed nonconvex O(n(2
1
ε )) O(2

1
ε ) O(n)

* The symbol n is the dimension of strategy variables. Symbols k and K denote the iteration number and the total number of iterations, respectively. Here Query-Size is
the required function query size in estimating one zeroth-order gradient.

ing [20], and reinforcement learning [24], etc. Motivated
by these applications, the design and analysis of zeroth-
order algorithms become increasingly popular, including
distributed zeroth-order algorithms [21, 32, 34, 35] and
stochastic zeroth-order algorithms [33, 36]. Nevertheless,
most zeroth-order algorithms, even in centralized settings,
are designed for unconstrained optimization problems or
depend on projection operators for constraint sets. The
projection operations may encounter an undesirable com-
putational burden and even become computationally pro-
hibitive for some latent group Lassos [15], e.g., l1 norm
balls and nuclear norm balls.

Consequently, Frank-Wolfe (FW) method [10], aka con-
ditional gradient method, has resurged because of its
projection-free and computationally efficient nature. FW
method avoids the projection step by accessing a linear
minimization (LM) oracle, which can be effectively imple-
mented, especially for some widespread structured con-
straints (see Table I in [15]). For instance, solving an LM
problem over a nuclear norm ball only requires comput-
ing a single pair of singular vectors corresponding to the
largest singular value, whereas projecting a point onto a
nuclear norm ball demands a complete SVD decomposi-
tion. Recent years have witnessed extensive research on
FW algorithms both in the centralized stochastic setting
[2, 12, 18] and distributed deterministic setting [5, 6, 17].
Note that the aforementioned FW algorithms are all de-
signed based on the first-order gradient, which cannot be
directly applied to problems with only access to the value
of objective functions.

FW method with stochastic zeroth-order oracle (SZO)
has been recently investigated in both convex and non-
convex settings. Specifically, [4] put forth zeroth-order
stochastic FW algorithms with complexity bounds1

O(n/ε2) and O(n/ε4) on SZO for convex and nonconvex

1The following results are normalized to find an ε-optimal solution for con-
vex optimization problems and ε-stationary point for nonconvex optimization
problems. The symbol n denotes the dimension of the strategy variable.

cases, respectively. However, the algorithms in [4] require
a mini-batch size related to the total number of iterations
and the dimension of the problem for guaranteeing con-
vergence. Further, [14] relaxed conditions on batch sizes
via the variance reduction technique called SPIDER, and
demonstrated that the algorithm achieves a lower com-
plexity bound O(n/ε3) on SZO for the nonconvex set-
ting. For the convex case, [3] put forth a stochastic zeroth-
order FW method, which only requires a single batch per
iteration by using a momentum-based gradient tracking
technique, and obtained a complexity bound O(n/ε2) on
SZO. Subsequently, [22] further extended the centralized
stochastic zeroth-order FW methods to the decentralized
setting, which depends on a central coordinator, and de-
rived that the proposed algorithm has complexity bounds
O(n/ε3) and O(n 4

3 /ε4) on SZO for convex and nonconvex
cases, respectively. Unfortunately, there are no efficient
existing zeroth-order FW works for solving distributed
stochastic optimization (DSO) problems in convex or non-
convex settings.

Motivated by the above discussions, this paper ded-
icates to designing a novel distributed projection-free
and gradient-free algorithm for DSO problems. We pro-
vide rigorous theoretical analysis on the convergence rate
and complexity guarantee of the proposed algorithm,
which enjoys a convergence rate comparable to central-
ized stochastic first-order optimization algorithms [13],
filling the theoretical gap of zeroth-order FW methods in
DSO problems. Table 1 provides a comparison of the algo-
rithms proposed in the context. The following is the main
contributions of our work.

• We put forth a Distributed Stochastic Zeroth-Order
Frank-Wolfe algorithm (DSZO-FW) by using the
gradient tracking technique, the momentum-based
variance reduction technique, and the coordinate-wise
gradient estimation. To our best knowledge,
DSZO-FW is the first zeroth-order FW algorithm for
DSO problems.
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• We derive sufficient conditions to guarantee the
convergence of DSZO-FW under mild conditions.
Specifically, DSZO-FW converges only using one
batch by introducing the recursive momentum
technique [9]. We establish convergence rates of
O(k– 1

2 ) and O(1/ log2(k)) for the convex and
nonconvex case, respectively. The guarantee of the
convex case matches the previous best-known result
of centralized stochastic optimization methods.

• For convex objective functions, we prove that
DSZO-FW has a function query complexity of
O(n/ε2) for finding an ε-optimal solution, which
coincides with that of the existing centralized best
results [3, 4], and is even smaller than that of the
recent decentralized FW method in [22].

• For nonconvex objective functions, we derive that
DSZO-FW has a function query complexity of
O(n(2 1

ε )) for finding an ε-stationary point under
time-decaying step sizes. In contrast, other works
[4, 14, 22] for solving such problems rely on the step
sizes related to the total number of iterations.

The remaining is structured as follows. We introduce the
problem and the algorithm design in Sect. 2. The conver-
gence performance and theoretical guarantees of the pro-
posed algorithm is presented in Sect. 3. Section 4 takes sev-
eral simulation experiments to validate the efficacy of the
algorithm. Section 5 concludes the work. Appendix pro-
vides some technical proofs of the paper.

Notations The notations used in this paper are fairly
standard. Specifically, we denoteR as a set of real numbers,
and R+ as a set of nonnegative real numbers. Symbols 〈·〉
and �·� denote the inner product and the ceiling operation,
respectively. In addition,Rp is the set of p-dimensional real
vectors. Consider a vector v ∈R

p. We write ‖v‖q for the lq
norm of v and ‖v‖ for the Euclidean norm of v. We write
E[·] to denote the expectation operator; moreover, E[·|Fk]
represents the conditional expectation on the σ -field Fk .
Finally, W = [wij]N×N is the weighted adjacency matrix of
a topology graph G(N ,E), where N = {1, 2, . . . , N} is a set
containing of N agents, and E ⊆ N × N is a set of edges.
For any i, j ∈N , if (i, j) ∈ E , then wij > 0, otherwise wij = 0.

2 Problem statement and algorithm design
2.1 Problem statement
Consider a set of agents N = {1, 2, . . . , N} over an undi-
rected network G = {N ,E}, where E ⊆ N × N is a set of
edges. These agents aim to collaborate to find an optimal
solution x∗ of the problem

min
x∈X

h(x), h(x) :=
1
N

N∑

i=1

Eξ i
[
hi

(
x, ξ i)], (1)

where x ∈R
n is the strategy variable, and X ⊆R

n is a com-
pact and convex set. The function Hi(x) := Eξ i [hi(x, ξ i)] is
a local objective function, and hi : X × R

p → R is a func-
tion involving random variable ξ i with an unknown dis-
tribution. The randomness ξ i can be viewed as a random
sample inserted by algorithms or as measurement noise in-
herent in systems. Here, we assume that the gradient of the
objective function Hi(·) is expensive or infeasible to obtain
and agent i ∈N is only able to access a stochastic approx-
imation of the real objective value hi(x, ξ i) for any given x
and ξ i.

2.2 Algorithm design
We propose a Distributed Stochastic Zeroth-Order Frank-
Wolfe algorithm (DSZO-FW), which is summarized in Al-
gorithm 1. To measure the convergence performance of
DSZO-FW, we introduce the following two oracle com-
plexities and a performance measure.

Algorithm 1 DSZO-FW
Input: initial conditions xi

1 ∈ X , and yi
1 = si

1 = ∇̂hi(x̄i
1, ξ i

1)
for ∀i ∈N .

1: for all k = 1, 2, . . . , K do
2: Approximate the average iterate

x̄i
k =

∑

j∈Ni

wijx
j
k . (2)

3: Approximate the local gradient

gi
k = (1 – βk)gi

k–1 + ∇̂hi
(
x̄i

k , ξ i
k
)

– (1 – βk)∇̂hi
(
x̄i

k–1, ξ i
k
)
, (3)

where βk ∈ (0, 1], and ∇̂hi is defined in (9).
4: Approximate the global gradient

yi
k =

∑

j∈Ni

wijy
j
k–1 + gi

k – gi
k–1, (4)

si
k =

∑

j∈Ni

wijy
j
k . (5)

5: Update the iterate

zi
k ∈ argmin

φ∈X

〈
si

k ,φ
〉
, (6)

xi
k+1 = x̄i

k + γk
(
zi

k – x̄i
k
)
, (7)

where γk ∈ (0, 1] is a step size.
6: end for

Output: xi
k+1 for all i ∈N .
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• Stochastic Zeroth-order Oracle (SZO): SZO returns a
function value hi(x, ξ i) for given x ∈ R

n and ξ i ∈R
p.

• Linear Minimization Oracle (LMO): LMO solves a
linear optimization problem, and returns
argminφ∈X 〈s,φ〉 for given direction s and constraint
set X .

• ε-optimal solution: Let x∗ ∈X be an optimal solution
of problem (1). If h(x) – h(x∗) ≤ ε, then x ∈X is an
ε-optimal solution of problem (1).

Due to the unavailability of the gradient information
for objective functions, agent i estimates the gradient
∇hi(xi, ξ i) by using a coordinate-wise gradient estimator
[3, 14]:

∇̂hi
(
xi, ξ i) =

n∑

j=1

hi(xi + ρej, ξ i) – hi(xi – ρej, ξ i)
2ρ

ej, (8)

where ρ > 0 denotes the element-wise smoothing param-
eter, and ej ∈ R

n is a standard basis vector with [ej]i = 1 if
i = j, otherwise [ej]i = 0. We convert the estimator (8) to
the following expression at an iteration k in Algorithm 1:

∇̂hi
(
xi

k , ξ i
k
)

=
n∑

j=1

hi(xi
k + ρkej, ξ i

k) – hi(xi
k – ρkej, ξ i

k)
2ρk

ej, (9)

where {ρk}∞k=1 is a decreasing sequence of positive real
numbers.

In Algorithm 1, each agent uses SZO rather than the gra-
dient information and mainly executes four steps. Here, we
briefly introduce the process of the ith agent’s kth iteration.

• Step 1: Agent i takes a weighted average of values from
its neighbors on the basis of W , and uses x̄i

k to
approximate the average iterate. The specific
description is provided in (2).

• Step 2: Agent i estimates the gradient by using the
coordinate-wise gradient estimator (9). To address the
non-vanishing variance caused by the gradient
estimation, the paper introduces a modified
momentum-based variance reduction method, aka
recursive momentum [9], into the distributed
stochastic Frank-Wolfe (FW) algorithm. The specific
expression is described in (3).

• Step 3: Agent i approximates the global gradient by
using the gradient tracking technique, which reuses
the global gradient estimation yi

k–1 from the previous
iteration via (4) and (5).

• Step 4: To avoid projection operations, agent i updates
the iterate by firstly solving a linear minimization
problem (6) to obtain a conditional gradient zi

k , and
then makes a convex combination with the average
iterate approximation x̄i

k in (7).

Remark 1 The employment of zeroth-order gradients, also
known as derivative-free optimization methods, brings
forth both unique challenges and potential advantages.
One of the main challenges with zeroth-order methods is
their high requirement of function evaluations compared
to first-order methods, leading to the gradient variance
and higher computational costs. To address this issue, this
paper incorporates recursive momentum techniques into
a gradient-tracking distributed framework to reduce the
non-vanishing variance caused by the gradient estimation.
Remarkably, the proposed distributed zeroth-order algo-
rithm can not only attenuate the noise in gradient approx-
imation by only using single batch, but also achieve a com-
parable function query complexity to the existing central-
ized best result in convex case. The most significant advan-
tage of using zeroth-order gradients is the ability to opti-
mize functions without the need for gradient information,
making it applicable to a wider range of problems where
gradients are difficult or impossible to compute.

Remark 2 In Algorithm 1, we introduce the recursive mo-
mentum technique into the distributed zeroth-order FW
method for reducing the variance caused by gradient esti-
mates, as described in (3). Specifically, we rewrite (3) as

gi
k = βk∇̂hi

(
x̄k , ξ i

k
)

+ (1 – βk)
(∇̂hi

(
x̄k , ξ i

k
)

– ∇̂hi
(
x̄k–1, ξ i

k
)

+ gi
k–1

)
. (10)

The second term ∇̂hi(x̄k , ξ i
k) – ∇̂hi(x̄k–1, ξ i

k) + gi
k–1 plays an

important role in reducing variance caused by the gra-
dient estimation. In addition, the recursive momentum
technique allows Algorithm 1 to converge with only one
sample at each iteration, unlike the algorithms in [4] and
[22], which require large batches. Hence, Algorithm 1 is
also well-competent to large-scale finite-sum optimization
problems.

Remark 3 In Algorithm 1, the FW step ((6)–(7)) circum-
vents the projection operation by minimizing a linear op-
timization subproblem (6) over a constraint set X . When
constraint sets are structural constraints such as nuclear
and l1 norm balls, (6) provides an efficient implementa-
tion or even a closed-form solution [15], resulting in a
cheaper computational cost compared with the projection
step. For example, if X is an l1 norm ball (X := {x|‖x‖1 ≤
d}), the FW step allows for a closed-form solution zi

k =
d · [0, . . . , 0, – sgn[si

k]h, 0, . . . , 0]T with h = argmaxj |[si
k]j| in

Algorithm 1. Moreover, when X is a nuclear norm ball,
solving (6) requires computing only a single pair of sin-
gular vectors corresponding to the largest singular value,
whereas computing a projection onto X demands a com-
plete SVD decomposition.
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3 Assumptions and convergence analysis
This section dedicates to analyzing the convergence per-
formance of Algorithm 1. Before providing main results,
several standard assumptions are required.

3.1 Assumptions and facts
Assumption 1 The network G is connected.

Assumption 2 The weighted adjacency matrix W is dou-
bly stochastic.

Assumptions 1 and 2 indicate that for each round of the
Step 1 in Algorithm 1, the agent takes a weighted average
of the values from its neighbors according to W . In addi-
tion, these assumptions [26] also imply that the matrix W ’s
second largest eigenvalue λ satisfies |λ| < 1. The following
fact is true under Assumptions 1 and 2 [26].

Fact 1 Let x̄ = 1
N

∑N
i=1 xi and x̄i =

∑N
j=1 wijxj. Then,

(
∑N

i=1 ‖x̄i – x̄‖2) 1
2 ≤ |λ|(∑N

i=1 ‖xi – x̄‖2) 1
2 .

Fact 1 suggests that each update in the average consensus
process (Step 1) incrementally aligns the iteration variables
more closely with their mean value x̄. To streamline our
convergence analysis, we introduce k0 ∈R+ as the smallest
integer such that |λ| ≤ [k0/(k0 + 1)]2. Clearly, k0 = �(|λ|– 1

2 –
1)–1�.

Assumption 3 Hi(·) and hi(·, ξ i) are L-smooth functions
on the constraint set X for all i ∈N and ξ i ∈R

p.

Furthermore, we posit an additional assumption regard-
ing the constraint set X , which forms a foundational ele-
ment in the context of FW-based methods [3, 4, 14, 22].

Assumption 4 X is compact and convex, that is, ‖x–y‖ ≤
d for all x, y ∈X , where d is a positive constant.

Assumption 5 The variance of ∇hi(x, ξ i) is bounded for
all x ∈ X and i ∈ N . That is, there exists a constant δ

such that E[‖∇hi(x, ξ i) – ∇Hi(x)‖2] ≤ δ2, where Hi(x) =
E[hi(x, ξ i)].

Fact 2 (see [13]) If Assumptions 4–5 hold, there is a
positive constant l such that E[‖∇hi(x, ξ i)‖2] ≤ l2 and
E[‖∇hi(x,
ξ i)‖] ≤ l.

Assumptions 3–5 are standard assumptions in stochas-
tic FW methods [3, 4, 9, 13, 14, 22]. If Assumption 3 holds,
the following fact is true.

Fact 3 Define ∇̂Hi(xi) :=
∑n

j=1
Hi(xi+ρej)–Hi(xi–ρej)

2ρ
ej =

E[∇̂hi(xi, ξ i)], where ∇̂hi(xi, ξ i) defined in (8). Then, for any
xi ∈X (i ∈N ) and ξ i ∈R

p,
∥∥∇̂hi

(
xi, ξ i) – ∇hi

(
xi, ξ i)∥∥2 ≤ nL2ρ2, (11)

∥∥∇̂Hi
(
xi) – ∇Hi

(
xi)∥∥2 ≤ nL2ρ2. (12)

Proof We first prove (11). It follows from the definition of
∇̂hi(xi, ξ i) and the mean value theorem to ∇hi(xi, ξ i) that
there exists αj ∈ (0, 1) such that

∥∥∇̂hi
(
xi, ξ i) – ∇hi

(
xi, ξ i)∥∥2

=

∥∥∥∥∥

n∑

j=1

hi(xi + ρej, ξ i) – hi(xi – ρej, ξ i)
2ρ

ej

– ∇hi
(
xi, ξ i)

∥∥∥∥∥

2

=

∥∥∥∥∥
1

2ρ

n∑

j=1

(
2ρejeT

j ∇hi
(
xi + (2αj – 1)ρej, ξ i))

– ∇hi
(
xi, ξ i)

∥∥∥∥∥

2

.

It follows from the property of the basis vector ej and Eu-
clidean norm that

∥∥∇̂hi
(
xi, ξ i) – ∇hi

(
xi, ξ i)∥∥2

=
n∑

j=1

∥∥ejeT
j
(∇hi

(
xi + (2αj – 1)ρej, ξ i) – ∇hi

(
xi, ξ i))∥∥2

≤
n∑

j=1

∥∥∇hi
(
xi + (2αj – 1)ρej, ξ i) – ∇hi

(
xi, ξ i)∥∥2

≤ L2
n∑

j=1

∥∥(2αj – 1)ρej
∥∥2

≤ nL2ρ2,

where we use Assumption 3 in the second inequality. We
obtain Eqn. (12) in a similar way. �

Fact 4 (see [13]) For any vectors v1, . . . , vN ∈R
n,

‖v1 + · · · + vN‖2 ≤ N
(‖v1‖2 + · · · + ‖vN‖2). (13)

Assumptions 1–5 and Facts 2–4 are crucial to the subse-
quent analysis. They serve as the theoretical groundwork
upon which our analysis is constructed, ensuring a rigor-
ous foundation for the methodologies employed and the
conclusions drawn.
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Table 2 The nomenclature of values employed in this article

Symbol Vaule

C1 k0
√
Nd

C2 k304
k0–1N(60L2(d + 2C1)2 + 12(2l2 +ψ2))

C3 max{2‖ḡ1 – ∇̂h(x1)‖2, 156L2(d + 2C1)2 + 24δ2}
C4 max{√3(h(x̄1) – h(x∗)), 2Ld2 + 2d

√
18L2(d + 2C1)2 + 12C2 + 6C3}

 (L2(d + C1)2 + C2 + C3)
1
2 + Ld2

γk , βk 2/(k + 2), 2/(k + 1)
ρk 0 < ρk ≤ (d + 2C1)/(sqrtn(k + 2))

c c ≥ ∑2m
k=1(4d/(k + 2)

3
2 )

3.2 Convergence analysis
For the convenience of analysis, we define

x̄k :=
1
N

N∑

i=1

xi
k , ḡk :=

1
N

N∑

i=1

gi
k ,

p̄k :=
1
N

N∑

i=1

∇Hi
(
x̄i

k
)
.

The following lemma estimates the tracking error for the
average iterate in Algorithm 1, and we provide the proof in
Appendix 1.2.

Lemma 1 Let γk = 2
k+2 . If Assumptions 1, 2 and 4 hold,

then, for any i ∈N and k ≥ 1, ‖x̄i
k – x̄k‖ ≤ 2C1

k+2 and ‖x̄i
k+1 –

x̄i
k‖ ≤ 2(d+2C1)

k+2 , where C1 is defined in Table 2 and k ≥ 1.

Lemma 1 shows that the averaged iterate estimation
x̄i

k approximates to the real average value x̄k at a rate of
O(1/k).

We provide the performance of the averaged gradient
tracking for Algorithm 1 in the following lemma. Ap-
pendix 1.4 presents the proof of Lemma 2.

Lemma 2 Suppose Assumptions 1–5 hold. If βk = 2
k+1 , γk =

2
k+2 and 0 < ρk ≤ d+2C1√

n(k+2) , then

E
[∥∥ḡk – si

k
∥∥2] ≤ 4C2

(k + 2)2 , (14)

where C2 is defined in Table 2 and k ≥ 1.

Lemma 2 establishes that E[‖ḡk – si
k‖2] = O(1/k2), which

implies that ‖ḡk – si
k‖ converges to zero as k → +∞ in ex-

pectation.
The following lemma plays an important role in the con-

vergence analysis of Algorithm 1.

Lemma 3 Define ∇̂h̄k := 1
N

∑N
i=1 Ek[∇̂hi(x̄i

k , ξ i
k)]. If As-

sumptions 1–5 hold, the following two relations are estab-
lished.

1) For any k ≥ 1, it holds that

E
[‖ḡk – ∇̂h̄k‖2]

≤ (1 – βk)2
E

[‖ḡk–1 – ∇̂h̄k–1‖2] + 60nL2ρ2
k–1

+ 6δ2β2
k + 24L2γ 2

k–1(d + 2C1)2. (15)

2) If βk = 2
k+1 , γk = 2

k+2 , and ρk ≤ d+2C1√
n(k+2) , then for any

k ≥ 1,

E
[‖ḡk – p̄k‖2] ≤ 2C3 + 2L2(d + 2C1)2

k + 2
, (16)

where C3 and C1 are defined in Table 2.

The proof of Lemma 3 is provided in Appendix 1.5.
Lemma 3 shows that the variable ḡk tracks the real

average gradient p̄k with an average error bounded by
O( C3+L2(d+C1)2

k+2 ). That is, the expected error of the approxi-
mation in stochastic gradient diminishes as the number of
iterations increases. Making use of Lemmas 2 and 3, the
following lemma is established.

Lemma 4 Choose βk = 2
k+1 , γk = 2

k+2 , and 0 < ρk ≤ d+2C1√
n(k+2) .

If Assumptions 1–5 hold, then, for any k ≥ 1 and i ∈N ,

E
[∥∥∇h(x̄k) – si

k
∥∥2]

≤ 18L2(d + 2C1)2 + 12C2 + 6C3

k + 2
. (17)

The proof is presented in Appendix 1.6.
The following two theorems establish convergence rates

of Algorithm 1 for convex and nonconvex objectives, re-
spectively.

Theorem 1 (Convex objective) Let Assumptions 1–5 hold.
Choose βk = 2

k+1 , γk = 2
k+2 , and 0 < ρk ≤ d+2C1√

n(k+2) . If hi(·, ξ i) is
convex for any i ∈N and ξ i, then

E
[
h(x̄k+1)

]
– h

(
x∗) ≤ C4

(k + 3) 1
2

, ∀k ≥ 1,

where C4 is defined in Table 2.

The proof of Theorem 1 is presented in Appendix 1.7.
Theorem 1 indicates that the convergence rate of Al-

gorithm 1 is O(1/k 1
2 ). The result can be directly trans-

lated into finding an ε-optimal solution to problem (1).
The numbers of calls to SZO and LMO for ε-optimal so-
lutions are O( nC2

4
ε2 ) and O( C2

4
ε2 ), respectively.

For the nonconvex case, we introduce a convergence
criterion used for standard FW methods, aka FW-gap
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[4, 13, 14, 22], which is

pk = max
x∈X

〈∇h(x̄k), x̄k – x
〉
. (18)

Based on the convergence measure (18), we establish the
following theorem for problem (1) with nonconvex objec-
tive functions.

Theorem 2 (Nonconvex objective) Suppose Assumptions
1–5 hold. Choose βk = 2

k+1 , γk = 2
k+2 , and 0 < ρk ≤ d+2C1√

n(k+2) .
Then,

E

[
min

k∈{1,...,K}
pk

]
≤ 1

log2(K) – 1
(
h(x̄1) – h(x̄K+1) + 4Ld

+ c
√

18L2(d + 2C1)2 + 12C2 + 6C3
)
,

where c ∈R satisfies
∑2m

k=1(4d/(k + 2) 3
2 ) ≤ c.

The proof of Theorem 2 is presented in Appendix 1.8.
Theorem 2 shows that Algorithm 1 converges to a sta-

tionary point at a rate of O(1/ log2(K)) when the objec-
tive function is nonconvex. The total number of calls to
SZO and LMO are O(2 

ε d) and O(2 
ε ) for finding an ε-

stationary point, respectively.

Remark 4 Table 1 shows that both the number of calls and
the function query-size to SZO of Algorithm 1 are signif-
icantly less than those in ZSCG and ZSAGMIU [4], at the
cost of a larger complexity bound on LMO. In addition, Al-
gorithm 1 has the same complexity bounds for both SZO
and LMO as those in the recently proposed centralized
method MOST-FW [3]. Compared with the existing de-
centralized zeroth-order FW method DSGFF [22], which
requires a central coordinator, the fully distributed Algo-
rithm 1 has a lower complexity bound of SZO in the convex
case and a weaker dimensional dependency of SZO in the
nonconvex case.

Remark 5 It is worth noting that the step sizes we use are
monotone decreasing, different from the existing zeroth-
order nonconvex FW methods [4, 14, 22]. The step sizes
mentioned in these references depend on the total itera-
tion number K and the dimension of the variable.

4 Numerical simulations
In this section, we apply Algorithm 1 (DSZO-FW) to
solve a black-box distributed stochastic binary classifica-
tion problem with convex and nonconvex objectives, re-
spectively. To solve such problems, DSZO-FW is applied
over a connected network G with N = 5 agents and a dou-
bly stochastic adjacency matrix W . The communication
graph is a ring topology, and each agent only accesses its
own objective function hi. We construct matrix W by

using maximum-degree weights. Specifically, the maxi-
mum degree of ring topology is dmax = 2. For any edge
(i, j) in the graph, the weight wij is set as wij = 1/(1 + dmax)
for all i �= j. The diagonal elements wii are then set to
make the rows sum up to 1, which typically results in
wii = 1 –

∑
j∈Ni

wij, where Ni denotes the set of neighbors
of node i. We set the constraint set to an l1-norm ball such
that X = {x|‖x‖1 ≤ d}. Here we assume d = 5.

For better evaluating the performance of DSZO-FW,
we compare it against centralized algorithms ZSCG [4],
SGFFW [23], and MOST-FW [3] as baselines. In the ex-
periments, we use three public datasets2 (covtype.binary,
a9a and w8a) and suppose that each iteration randomly
obtains only 1% of data. Because a large batch size mk (re-
lated to the dimension and the total number of iterations)
required by ZSCG exceeds the total number of samples in
these three datasets, we regard ZSCG as a deterministic
algorithm in the experiment, which uses full data to com-
pute the function value. We evaluate these four algorithms
according to the FW-gap, which is defined in (18).

4.1 Black-box binary classification with convex objectives
This subsection dedicates to verifying the theoretical re-
sults of DSZO-FW in the convex case. Our goal is to find an
optimal solution x ∈R

n by solving the following stochastic
binary classification problem:

min
x∈X

h(x), h(x) :=
1
N

N∑

i=1

hi(x),

hi(x) :=
1

mi

mi∑

j=1

Eaij ,bij

[
ln

(
1 + exp

(
–bij〈aij, x〉))],

where (aij, bij)mi
j=1 are mi (feature, label) pairs randomly ob-

tained by agent i from the dataset. For benchmark, we
set step sizes of these four algorithms to the same val-
ues as their theoretical results in the convex setting, i.e.,
αk = 6/(k + 5) for ZSCG [4]; ρk = 4/(k + 8) 2

3 , γk = 2/(k + 8)
and ck = 2/(n 1

2 (k + 8) 1
3 ) for SGFFW [23]; γk = 1/k, ηk =

2/(k + 1), μk = 0 and ρk = d/
√

n(k + 1) for MOST-FW
[3]; βk = 2/(k + 1), γk = 2/(k + 2) and ρk = d/

√
n(k + 2) for

DSZO-FW.
Figure 1 shows the convergence performance of these

four algorithms on a convex binary classification prob-
lem. We observe that DSZO-FW and MOST-FW perform
a smaller FW-gap than ZSCG and SGFFW, especially on
dataset w8a, although they use less data than ZSCG. This
dedicates that the local gradient estimate via the recur-
sive momentum technique might be a better candidate for
approximating the gradient. We observe the periodic vi-
brate on the curves of these four algorithms, especially on

2Available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 1 The comparison between ZSCG, MOST-FW, SGFFW and DSZO-FW on convex black-box binary classification. (a) a9a (b) w8a (c)
covtype.binary

Figure 2 The comparison between ZSCG, MOST-FW, SGFFW and DSZO-FW on nonconvex black-box binary classification. (a) a9a (b) w8a (c)
covtype.binary

datasets a9a and w8a. We intuitively believe that this phe-
nomenon occurs due to the imprecise estimation of the
gradient estimator and the gradient variance reduced pe-
riod via the variance reduction technique.

4.2 Black-box binary classification with nonconvex
objectives

In this subsection, we dedicate to verifying the theoreti-
cal results of DSZO-FW in the nonconvex case. Consider
the following stochastic binary classification problem with
nonconvex objective functions:

min
x∈X

h(x), h(x) :=
1
N

N∑

i=1

hi(x),

hi(x) :=
1

mi

mi∑

j=1

Eaij ,bij

[
1

1 + exp(bij〈aij, x〉)
]

,

where (aij, bij)mi
j=1 are mi (feature, label) pairs randomly ob-

tained by agent i from the dataset. For benchmark, we set

step sizes of these four algorithms to the same values as
their theoretical results in the nonconvex setting, i.e., αk =
1/T 1

2 for ZSCG [4]; γk = 1/T 3
4 , ρk = 4/((k + 8) 2

3 (1 + n) 1
3 ),

and ck = 2/(n 3
2 (k + 8) 1

3 ) for SGFFW [23]; γk = 1/k, ηk =
2/(k + 1), μk = 0, and ρk = d/

√
n(k + 1) for MOST-FW

[3]; βk = 2/(k + 1), ρk = d/
√

n(k + 2), and γk = 2/(k + 2) for
DSZO-FW. Note that MOST-FW is not proven to be con-
vergent for the nonconvex case. We implement the algo-
rithm only for comparison purposes.

Figure 2 shows the convergence performance measured
by FW-gap of these four algorithms on a nonconvex bi-
nary classification problem. The results show that DSZO-
FW converges faster than ZSCG and SGFFW in both three
datasets. In contrast, DSZO-FW has a comparable con-
vergence performance to MOST-FW on datasets a9a and
w8a, demonstrating the efficacy of the variance reduction
technique used in DSZO-FW and MOST-FW. Similar to
Fig. 1, the periodic vibrate on the curves of these four al-
gorithms also appears, especially on datasets a9a and w8a.
We infer that this phenomenon occurs because the vari-
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ance of the gradient estimator is too high in these two
cases.

5 Conclusions
This paper proposed a novel algorithm in a projection-free
and gradient-free manner for distributed stochastic opti-
mization problems accessing only the stochastic zeroth-
order oracle (SZO). The proposed algorithm only requires
a single batch size to guarantee convergence using re-
cursive momentum and gradient tracking techniques. We
proved that the proposed algorithm has the comparable
complexity bound O(n/ε2) on SZO as that of the cen-
tralized best results for the convex case. For the noncon-
vex case, the algorithm has a complexity bound O(n/(2 1

ε ))
on SZO under mild conditions. The efficacy of the pro-
posed algorithm is demonstrated through simulation ex-
periments on multiple datasets. Our future works include
extending the algorithm to stochastic nonsmooth opti-
mization problems and introducing variance reduction
techniques to obtain a better convergence performance.

Appendix
1.1 Technical lemmas for Lemma 1
We first provide some technical lemmas before proving
Lemma 1.

Lemma 5 (Lemma 2, [2]) Let {�k} be a sequence of real
numbers such that

�k =
(

1 –
A1

(k + t0)a1

)
�k–1 +

A2

(k + t0)a2
,

for some a1 ∈ [0, 1] satisfying a1 ≤ a2 ≤ 2a1, A1 > 1 and
A2 ≥ 0. Then �k converges to zero at a rate of

�k ≤ A
(k + t0 + 1)a2–a1

,

where A = max{�0(t0 + 1)a2–a1 , A2
A1–1 }.

Lemma 6 For all k = 1, 2, . . . , K , if Assumption 1 holds, we
have the following relationships:

(a) 1
N

∑N
i=1 yi

k+1 = ḡk+1;
(b) x̄k+1 = (1 – γk)x̄k + γk z̄k , where z̄k = 1

N
∑N

i=1 zi
k .

Proof (a) It follows from (4) of Algorithm 1 that

1
N

N∑

i=1

yi
k+1 =

1
N

N∑

i=1

(
gi

k+1 – gi
k +

N∑

j=1

wijy
j
k

)

= ḡk+1 – ḡk +
1
N

N∑

i=1

yi
k

=
1
N

N∑

i=1

gi
1 – ḡ1 + ḡk+1 = ḡk+1,

where the fact that the matrix W is doubly stochastic is
used in the second equality. Hence, 1

N
∑N

i=1 yi
k+1 = ḡk+1.

(b) According to the definitions of x̄k and xi
k ,

x̄k+1 =
1
N

N∑

i=1

[
γkzi

k + (1 – γk)
N∑

j=1

wijx
j
k

]

=
(1 – γk)

N

N∑

i=1

xi
k +

γk

N

N∑

i=1

zi
k

= γk z̄k + (1 – γk)x̄k ,

where the fact that the matrix W is doubly stochastic is
used in the first equality. The proof is completed. �

1.2 Proof of Lemma 1

Proof In the first step, we prove that ‖x̄i
k – x̄k‖ ≤ C1γk .

We derive that ‖x̄i
k – x̄k‖ ≤ maxi∈N ‖x̄i

k – x̄k‖ ≤
(
∑N

i=1 ‖x̄i
k – x̄k‖2) 1

2 from the properties of Euclidean norm.
Next, we make a proof on the following inequality by using
induction on k,

( N∑

i=1

∥∥x̄i
k – x̄k

∥∥2
) 1

2

≤ 2C1

k + 2
=

2k0
√

Nd
k + 2

= C1γk . (19)

It can be observed that (19) holds for k = 1 to k = k0 – 2.
We assume that (19) holds for some k ≥ k0 – 2 in the

induction step. It follows from Lemma 6 (b) and (7) that

N∑

i=1

∥∥x̄i
k+1 – x̄k+1

∥∥2

=
N∑

i=1

∥∥∥∥∥

N∑

j=1

wij(1 – γk)x̄j
k

+
N∑

j=1

wijγkzj
k – (1 – γk)x̄k – γk z̄k

∥∥∥∥∥

2

=
N∑

i=1

∥∥∥∥∥

N∑

j=1

wij

[
(1 – γk)

N∑

h=1

wjhxh
k + γkzj

k

]

–
1
N

N∑

j=1

[
(1 – γk)

N∑

h=1

wjhxh
k + γkzj

k

]∥∥∥∥∥

2

≤ |λ|2
N∑

i=1

∥∥(1 – γk)
(
x̄i

k – x̄k
)

+ γk
(
zi

k – z̄k
)∥∥2, (20)
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where λ is the second largest eigenvalue of W , and we use
Fact 1 in the last inequality. Next, we provide an upper
bound on

∑N
i=1 ‖(1 – γk)(x̄i

k – x̄k) + γk(zi
k – z̄k)‖2.

N∑

i=1

∥∥γk
(
zi

k – z̄k
)

+ (1 – γk)
(
x̄i

k – x̄k
)∥∥2

(a)≤
N∑

i=1

[
γ 2

k d2 + (1 – γk)2∥∥x̄i
k – x̄k

∥∥2

+ 2γk(1 – γk)D
∥∥x̄i

k – x̄k
∥∥]

(b)≤
N∑

i=1

(∥∥γkxi
k – x̄k

∥∥2 + 2γkd
∥∥x̄i

k – x̄k
∥∥ + γ 2

k d2)

(c–)≤ C2
1γ

2
k + nγ 2

k d2 + 2γkd
√

N

√√√√
N∑

i=1

∥∥x̄i
k – x̄k

∥∥2

≤ C2
1γ

2
k + Nγ 2

k d2 + 2dγ 2
k
√

NC1

= γ 2
k
(
C1 + C1k0

–1)2 =
(

k0 + 1
k0

C1γk

)2

, (21)

where (a) holds because of Assumption 4; (b) is due to
1 – γk ≤ 1; (c) follows from

∑N
i=1 ‖x̄i

k – x̄k‖ ≤√
N

√∑N
i=1 ‖x̄i

k – x̄k‖2 and the induction hypothesis (19).
Substituting (21), λ ≤ ( k0

k0+1 )2 and γk = 2
k+2 into (20), it has

N∑

i=1

∥∥x̄i
k+1 – x̄k+1

∥∥2 ≤
(

2(k0 + 1)
k0(k + 2)

(
k0

k0 + 1

)2

C1

)2

≤
(

2(k + 2)
(k + 2 + 1)(k + 2)

C1

)2

= C2
1γ

2
k+1, (22)

where we use the monotonically increasing property of
function g(x) = x/(1 + x) with respect to x over [0,∞) in the
second inequality. We obtain

∑N
i=1 ‖x̄i

k+1 – x̄k+1‖2 ≤ C1γk+1
by (22). That is, (19) holds for the iteration k + 1. Hence,
‖x̄i

k – x̄k‖ ≤ 2C1/(k + 2) for all k ≥ 1.
Next, we prove that ‖x̄i

k+1 – x̄i
k‖ ≤ 2(d+2C1)

k+2 . From the def-
inition of x̄i

k , we have

∥∥x̄i
k+1 – x̄i

k
∥∥

≤
N∑

j=1

wij
(∥∥xj

k+1 – x̄j
k
∥∥ +

∥∥x̄j
k – x̄i

k
∥∥)

(a)=
N∑

j=1

wij
(∥∥γkzj

k – γkx̄j
k
∥∥ +

∥∥x̄j
k – x̄k + x̄k – x̄i

k
∥∥)

(b)≤
N∑

j=1

wij
(∥∥x̄j

k – x̄k
∥∥ +

∥∥x̄i
k – x̄k

∥∥)

+
N∑

j=1

wij
∥∥γk

(
zj

k – x̄j
k
)∥∥

(c–)≤
N∑

j=1

wij(γkd + 2C1γk) =
2(d + 2C1)

k + 2
,

where (a) holds for (7); (b) is due to the triangle inequality;
(c) follows from Assumption 4. �

1.3 Technique lemmas
The following two Lemmas provide the bounds of E[‖gi

k‖]
and E[‖gi

k‖2] in Algorithm 1.

Lemma 7 Choose βk = 2
k+1 , γk = 2

k+2 , and ρk ≤ d+2C1√
n(k+2) . If

Assumptions 1–5 hold, then, for any k ≥ 1 and i ∈N ,

E
[∥∥gi

k
∥∥] ≤ ψ1, (23)

where ψ1 = max{‖gi
1‖, 2l + 5L(d + 2C1)} and C1 = k0

√
Nd.

Proof Obviously, (23) holds for k = 1. We discuss the case
when k > 1 in the next step. It follows from the update (3)
that

E
[∥∥gi

k
∥∥]

= E
[∥∥(1 – βk)gi

k–1 + ∇̂hi
(
x̄i

k , ξ i
k
)

– (1 – βk)∇̂hi
(
x̄i

k–1, ξ i
k
)∥∥]

≤ (1 – βk)E
[∥∥gi

k–1
∥∥]

+ βkE
[∥∥∇̂hi

(
x̄i

k–1, ξ i
k
)

– ∇hi
(
x̄i

k–1, ξ i
k
)

+ ∇hi
(
x̄i

k–1, ξ i
k
)∥∥]

+ E
[∥∥∇̂hi

(
x̄i

k , ξ i
k
)

– ∇̂hi
(
x̄i

k–1, ξ i
k
)∥∥]

(a)≤ (1 – βk)E
[∥∥gi

k–1
∥∥]

+ βkl +
√

nLρk–1βk

+ E
[∥∥∇̂hi

(
x̄i

k , ξ i
k
)

– ∇hi
(
x̄i

k , ξ i
k
)

+ ∇hi
(
x̄i

k–1, ξ i
k
)

– ∇̂hi
(
x̄i

k–1, ξ i
k
)

+ ∇hi
(
x̄i

k , ξ i
k
)

– ∇hi
(
x̄i

k–1, ξ i
k
)∥∥]

(b)≤ (1 – βk)E
[∥∥gi

k–1
∥∥]

+ βkl +
√

nLρk–1βk +
√

nLρk

+
√

nLρk–1 + LE
[∥∥x̄i

k – x̄i
k–1

∥∥]

(c–)≤ (1 – βk)E
[∥∥gi

k–1
∥∥]

+ βkl +
√

nLρk–1

+ 2
√

nLρk–1 + γk–1L(d + 2C1),
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where we use Facts 2 and 3 in (a); (b) holds by Fact 3 and
the smoothness of hi in Assumption 3; (c) holds because of
the fact ρk ≤ ρk–1, βk < 1, and Lemma 1. Taking βk = 2

k+1 ,
γk = 2

k+2 , and ρk ≤ d+2C1√
n(k+2) , we yield that

E
[∥∥gi

k
∥∥] ≤

(
1 –

2
k + 1

)
E

[∥∥gi
k–1

∥∥]
+

2l + 5L(d + 2C1)
k + 1

.

Using Lemma 5 with t0 = 1, a1 = a2 = 1, A1 = 2, and
A2 = 2nl + 4L(d + 2C1), we yield that E[‖gi

k‖] ≤ ψ1 =
max{‖gi

1‖, 2l + 5L(d + 2C1)}. �

Lemma 8 Suppose Assumptions 1–5 hold. Choose γk =
2

k+2 , βk = 2
k+1 , and ρk ≤ d+2C1√

n(k+2) . Then, for any k ≥ 1 and
i ∈N ,

E
[∥∥gi

k
∥∥2] ≤ ψ2, (24)

where ψ2 = max{‖gi
1‖2, 10Lψ1(d + 2C1) + 28L2(d + 2C1)2 +

8l2 + 4lψ1}.

Proof Obviously, (24) holds for k = 1. Next, we consider
the case when k > 1. It follows from the update (3) that

∥∥gi
k
∥∥2 ≤ (1 – βk)2∥∥gi

k–1
∥∥2 + 2(1 – βk)

∥∥gi
k–1

∥∥

× ∥∥∇̂hi
(
x̄i

k , ξ i
k
)

– (1 – βk)∇̂hi
(
x̄i

k–1, ξ i
k
)∥∥

+
∥∥∇̂hi

(
x̄i

k , ξ i
k
)

– (1 – βk)∇̂hi
(
x̄i

k–1, ξ i
k
)∥∥2

≤ (1 – βk)2∥∥gi
k–1

∥∥2 + 2(1 – βk)
∥∥gi

k–1
∥∥

× ∥∥∇̂hi
(
x̄i

k , ξ i
k
)

– ∇̂hi
(
x̄i

k–1, ξ i
k
)

+ βk∇̂hi
(
x̄i

k–1, ξ i
k
)∥∥ +

∥∥∇̂hi
(
x̄i

k , ξ i
k
)

– ∇̂hi
(
x̄i

k–1, ξ i
k
)

+ βk∇̂hi
(
x̄i

k–1, ξ i
k
)∥∥2

≤ (1 – βk)
∥∥gi

k–1
∥∥2

+ 2
∥∥gi

k–1
∥∥(∥∥∇̂hi

(
x̄i

k , ξ i
k
)

– ∇̂hi
(
x̄i

k–1, ξ i
k
)∥∥

+ βk
∥∥∇̂hi

(
x̄i

k–1, ξ i
k
)∥∥)

+ 2
∥∥∇̂hi

(
x̄i

k , ξ i
k
)

– ∇̂hi
(
x̄i

k–1, ξ i
k
)∥∥2

+ 2β2
k
∥∥∇̂hi

(
x̄i

k–1, ξ i
k
)∥∥2, (25)

where we use the fact 1 – βk ≤ 1 and the triangle inequal-
ity in the last inequality. Next, we concentrate on the term
‖∇̂hi(x̄i

k , ξ i
k) – ∇̂hi(x̄i

k–1, ξ i
k)‖ on the RHS of (25). Introduc-

ing ∇hi(x̄i
k , ξ i

k) – ∇hi(x̄i
k–1, ξ i

k), we have

∥∥∇̂hi
(
x̄i

k , ξ i
k
)

– ∇̂hi
(
x̄i

k–1, ξ i
k
)∥∥

=
∥∥∇̂hi

(
x̄i

k , ξ i
k
)

– ∇hi
(
x̄i

k , ξ i
k
)

+ ∇hi
(
x̄i

k–1, ξ i
k
)

– ∇̂hi
(
x̄i

k–1, ξ i
k
)

+ ∇hi
(
x̄i

k , ξ i
k
)

– ∇hi
(
x̄i

k–1, ξ i
k
)∥∥

≤ ∥∥∇̂hi
(
x̄i

k , ξ i
k
)

– ∇hi
(
x̄i

k , ξ i
k
)∥∥ +

∥∥∇hi
(
x̄i

k–1, ξ i
k
)

– ∇̂hi
(
x̄i

k–1, ξ i
k
)∥∥ +

∥∥∇hi
(
x̄i

k , ξ i
k
)

– ∇hi
(
x̄i

k–1, ξ i
k
)∥∥

≤ √
nLρk +

√
nLρk–1 + L

∥∥x̄i
k – x̄i

k–1
∥∥

≤ 2
√

nLρk–1 + L(d + 2C1)γk–1, (26)

where we use the triangle inequality, Fact 3, and Lemma 1
to obtain the result. Substituting (26) into (25), and taking
the conditional expectation on Fk , we therefore have that

Ek
[∥∥gi

k
∥∥2] ≤ (1 – βk)

∥∥gi
k–1

∥∥2

+
(
4
√

nLρk–1 + 2L(d + 2C1)γk–1
)∥∥gi

k–1
∥∥

+ 2
(
2
√

nLρk–1 + L(d + 2C1)γk–1
)2

+ 2β2
kEk

[∥∥∇̂hi
(
x̄i

k–1, ξ i
k
)

– ∇hi
(
x̄i

k–1, ξ i
k
)

+ ∇hi
(
x̄i

k–1, ξ i
k
)∥∥2]

+ 2βk
∥∥gi

k–1
∥∥Ek

[∥∥∇̂hi
(
x̄i

k–1, ξ i
k
)

– ∇hi
(
x̄i

k–1, ξ i
k
)

+ ∇hi
(
x̄i

k–1, ξ i
k
)∥∥]

≤ (1 – βk)
∥∥gi

k–1
∥∥2

+
(
4
√

nLρk–1 + 2L(d + 2C1)γk–1
)∥∥gi

k–1
∥∥

+ 16nL2ρ2
k–1 + 4L2(d + 2C1)2γ 2

k–1

+ 4nL2ρ2
k–1β

2
k + 4l2β2

k

+ 2
√

nL
∥∥gi

k–1
∥∥βkρk–1 + 2l

∥∥gi
k–1

∥∥βk , (27)

where the last inequality is due to (13), Fact 2, and Fact 3.
Taking the full expectation on both sides of (27) and taking
βk = 2

k+1 , γk = 2
k+2 , ρk ≤ d+2C1√

n(k+2) , it follows from (23) that

E
[∥∥gi

k
∥∥2] ≤ (1 – βk)E

[∥∥gi
k–1

∥∥2] + 4
√

nLψ1ρk–1

+ 2L(d + 2C1)ψ1γk–1 + 8nL2ρ2
k–1

+ 4L2(d + 2C1)2γk–1 + 4nL2ρ2
k–1 + 4l2βk

+ 2
√

nLψ1ρk–1 + 2lψ1βk

≤
(

1 –
2

k + 1

)
E

[∥∥gi
k–1

∥∥2] +
10Lψ1(d + 2C1)

k + 1

+
28L2(d + 2C1)2 + 8l2 + 4lψ1

k + 1
.

Using Lemma 5 with t0 = 1, a1 = a2 = 1, A1 = 2, and A2 =
10Lψ1(d + 2C1) + 28L2(d + 2C1)2 + 8l2 + 4lψ1, we prove the
result. �
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1.4 Proof of Lemma 2

Proof To obtain the result in (14), we prove that

E

[ N∑

i=1

∥∥si
k – ḡk

∥∥2
]

≤ C2γ
2
k (28)

by using induction on k. Firstly, we prove that (28) holds if
1 ≤ k ≤ k0 – 2. It follows from the updates (4) and (5) that
si

k = yi
k+1 – gi

k+1 + gi
k . We have

E

[ N∑

i=1

∥∥si
k – ḡk

∥∥2
]

= E

[ N∑

i=1

∥∥yi
k+1 – gi

k+1 + gi
k – ḡk

∥∥2
]

≤ E

[ N∑

i=1

(
4
∥∥yi

k+1
∥∥2 + 4

∥∥gi
k+1

∥∥2 + 4
∥∥gi

k
∥∥2

+ 4

∥∥∥∥∥
1
N

N∑

j=1

gj
k

∥∥∥∥∥

2)]

≤ 12Nψ2 + 4
N∑

i=1

E
[∥∥yi

k+1
∥∥2], (29)

where we use (13) in the first inequality and (24) in the last
inequality. Next, we focus on the second term of the RHS
of (29). It follows from the update (4) that

E
[∥∥yi

k+1
∥∥2] = E

[∥∥∥∥∥

N∑

j=1

wijy
j
k + gi

k+1 – gi
k

∥∥∥∥∥

2]

(a)≤ E

[
3

N∑

j=1

wij
∥∥yj

k
∥∥2 + 3

∥∥gi
k+1

∥∥2 + 3
∥∥gi

k
∥∥2

]

(b)≤ 3
N∑

j=1

wijE
[∥∥yj

k
∥∥2] + 6ψ2

(c–)≤ 3k–2(18l2 + L2(d + 2C1)2) + 6k3k–1ψ2,

where (a) holds because of (13) and the Jensen’s inequality;
(b) follows from (24); (c) is due to the fact that E[‖yj

1‖2] =
E[‖∇̂hi(x̄i

1, ξ i
1) – ∇hi(x̄i

1, ξ i
1) + ∇hi(x̄i

1, ξ i
1)‖2] ≤ 2l2 + L2(d +

2C1)2/9. We therefore yield that

E

[ N∑

i=1

∥∥ḡk – si
k
∥∥2

]

≤ 12Nψ2 + 4
(
3k–2)(18l2 + L2(d + 2C1)2)N

+ 24k3k–1Nψ2

≤ 12Nψ2 +
(
4k0–3)(18l2 + L2(d + 2C1)2)N

+ 8(k0 – 2)3k0–2Nψ2

≤ 12Nψ2 + 4k0–1N
(
2l2 + L2(d + 2C1)2 + 2(k0 – 2)ψ2

)

for k < k0 – 2. Obviously, (28) is true when k ∈ {1, k0 – 2}.
For induction step, we assume that (28) is true for some

k ≥ k0 – 2. For convenience of analysis, we define �gi
k+1 :=

gi
k+1 – gi

k and �ĝk+1 := ḡk+1 – ḡk . According to the update
(4), we have that yi

k+1 = �gi
k+1 + si

k . Further, it follows from
Fact 1 and Lemma 6 (a) that

E

[ N∑

i=1

∥∥si
k+1 – ḡk+1

∥∥2
]

≤ E

[
|λ|2

N∑

i=1

∥∥yi
k+1 – ḡk+1

∥∥2
]

= E

[
|λ|2

N∑

i=1

∥∥�gi
k+1 + si

k – ḡk+1
∥∥2

]
. (30)

Next, we focus on the RHS of (30). It follows from the def-
initions of �gi

k+1 and �ĝk+1 that

N∑

i=1

∥∥�gi
k+1 + si

k – ḡk+1
∥∥2

=
N∑

i=1

∥∥si
k – ḡk + �gi

k+1 – �ĝk+1
∥∥2

≤
N∑

i=1

(∥∥si
k – ḡk

∥∥2 +
∥∥�gi

k+1 – �ĝk+1
∥∥2

+ 2
∥∥si

k – ḡk
∥∥∥∥�gi

k+1 – �ĝk+1
∥∥)

. (31)

Recall the definition of �gi
k+1 and the update (3). We bound

E[‖�gi
k+1‖2] as

E
[∥∥�gi

k+1
∥∥2]

= E
[∥∥gi

k+1 – gi
k
∥∥2]

= E
[∥∥βk+1

(∇̂hi
(
x̄i

k , ξ i
k+1

)
– gi

k
)

+ ∇̂hi
(
x̄i

k+1, ξ i
k+1

)

– ∇̂hi
(
x̄i

k , ξ i
k+1

)∥∥2]

≤ 3β2
k+1E

[∥∥gi
k
∥∥2] + 3β2

k+1E
[∥∥∇̂hi

(
x̄i

k , ξ i
k+1

)

– ∇hi
(
x̄i

k , ξ i
k+1

)
+ ∇hi

(
x̄i

k , ξ i
k+1

)∥∥2]

+ 3E
[∥∥∇̂hi

(
x̄i

k+1, ξ i
k+1

)
– ∇hi

(
x̄i

k+1, ξ i
k+1

)

+ ∇hi
(
x̄i

k , ξ i
k+1

)
– ∇̂hi

(
x̄i

k , ξ i
k+1

)
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+ ∇hi
(
x̄i

k+1, ξ i
k+1

)
– ∇hi

(
x̄i

k , ξ i
k+1

)∥∥2]

(a)≤ 9E
[∥∥∇̂hi

(
x̄i

k+1, ξ i
k+1

)
– ∇hi

(
x̄i

k+1, ξ i
k+1

)∥∥2]

+ 9E
[∥∥∇hi

(
x̄i

k , ξ i
k+1

)
– ∇̂hi

(
x̄i

k , ξ i
k+1

)∥∥2]

+ 9E
[∥∥∇hi

(
x̄i

k+1, ξ i
k+1

)
– ∇hi

(
x̄i

k , ξ i
k+1

)∥∥2]

+
(
6l2 + 3ψ2

)
β2

k+1 + 6nL2ρ2
k β2

k+1

(b)≤ 9nL2ρ2
k+1 + 15nL2ρ2

k +
(
6l2 + 3ψ2

)
β2

k+1

+ 9L2∥∥x̄i
k+1 – x̄i

k
∥∥2

(c–)≤ 24nL2ρ2
k +

(
6l2 + 3ψ2

)
β2

k+1

+ 9L2(d + 2C1)2γ 2
k , (32)

where (a) follows from (13), (24), and Fact 2; (b) holds by
(11), the smoothness of hi, and the fact that βk+1 < 1; (c)
holds because of the fact that ρk+1 ≤ ρk and Lemma 1. Fur-
thermore, we use the result in (32) to yield that

E
[∥∥�gi

k+1 – �ĝk+1
∥∥2]

= E

[∥∥∥∥∥�gi
k+1 –

1
N

N∑

i=1

�gi
k+1

∥∥∥∥∥

2]

= E

[∥∥∥∥

(
1 –

1
N

)
�gi

k+1 –
1
N

∑

j �=i

�gj
k+1

∥∥∥∥
2]

≤ 2
(

1 –
1
N

)
E

[∥∥�gi
k+1

∥∥2] +
2
N

∑

j �=i

E
[∥∥�gj

k+1
∥∥2]

≤ 4
(

1 –
1
N

)(
24nL2ρ2

k +
(
6l2 + 3ψ2

)
β2

k+1

+ 9L2(d + 2C1)2γ 2
k
)

≤ 4(60L2(d + 2C1)2 + 12(2l2 + ψ2))
(k + 2)2

=
(
60L2(d + 2C1)2 + 12

(
2l2 + ψ2

))
γ 2

k , (33)

where we use the fact that 1 – 1
N ≤ 1 and the choice of ρk ,

βk , γk in the last inequality. Taking full expectation on the
RHS and LHS of (31), and then substituting (33) into the
result, we obtain

N∑

i=1

E
[∥∥�gi

k+1 + si
k – ḡk+1

∥∥2]

(a)≤ E

[ N∑

i=1

∥∥si
k – ḡk

∥∥2
]

+ N
(
60L2(d + 2C1)2 + 12

(
2l2 + ψ2

))
γ 2

k

+ 2
N∑

i=1

(
E

[∥∥si
k – ḡk

∥∥2]) 1
2
(
E

[∥∥�gi
k+1 – �ĝk+1

∥∥2]) 1
2

(b)≤ C2γ
2
k + N

(
60L2(d + 2C1)2 + 12

(
2l2 + ψ2

))
γ 2

k

+ 2Nγ 2
k

√(
60L2(d + 2C1)2 + 12

(
2l2 + ψ2

))
C2

≤ γ 2
k
(
C2 + N2(60L2(d + 2C1)2 + 12

(
2l2 + ψ2

))

+ 2N
√(

60L2(d + 2C1)2 + 12
(
2l2 + ψ2

))
C2

)

≤ γ 2
k

(√
C2 +

√
C2

k0

)2

= γ 2
k

(
k0 + 1

k0

√
C2

)2

, (34)

where (a) is due to the Hölder’s inequality; (b) follows from
the induction hypothesis. Hence, (30) is written as

E

[ N∑

i=1

∥∥si
k+1 – ḡk+1

∥∥2
]

≤ |λ|2γ 2
k

(
k0 + 1

k0

√
C2

)2

≤
(

2k0

(k0 + 1)(k + 2)
√

C2

)2

≤
(

2
k + 3

√
C2

)2

= C2γ
2
k+1,

where we use the relations |λ| ≤ [k0/(k0 + 1)]2, γk = 2/(k +
2), and the monotonically increasing property of function
g(x) = x/(1 + x) with respect to x over [0, +∞). That is, (28)
holds when k ← k + 1. The required result is obtained. �

1.5 Proof of Lemma 3

Proof 1) According to the definition of ḡk and the update
(3), we have

ḡk – ∇̂h̄k

=
1
N

N∑

i=1

gi
k – ∇̂h̄k

= (1 – βk)ḡk–1 +
1
N

N∑

i=1

∇̂hi
(
x̄i

k , ξ i
k
)

– ∇̂h̄k – (1 – βk)
1
N

N∑

i=1

∇̂hi
(
x̄i

k–1, ξ i
k
)
.

Introducing (1–βk)∇̂h̄k–1 into the RHS of the above equal-
ity and rearranging, we arrive at

ḡk – ∇̂h̄k

= (1 – βk)(ḡk–1 – ∇̂h̄k–1)
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+
1
N

N∑

i=1

∇̂hi
(
x̄i

k , ξ i
k
)

– ∇̂h̄k

+ (1 – βk)

(
∇̂h̄k–1 –

1
N

N∑

i=1

∇̂hi
(
x̄i

k–1, ξ i
k
)
)

. (35)

Taking the squared-norm on RHS and LHS of (35) and
then taking conditional expectation on Fk , we obtain

Ek
[‖ḡk – ∇̂h̄k‖2]

= (1 – βk)2‖ḡk–1 – ∇̂h̄k–1‖2

+ 2(1 – βk)(ḡk–1 – ∇̂h̄k–1)

×
(
Ek

[
1
N

N∑

i=1

∇̂hi
(
x̄i

k , ξ i
k
)

– ∇̂h̄k

]

+ (1 – βk)Ek

[
∇̂h̄k–1 –

1
N

N∑

i=1

∇̂hi
(
x̄i

k–1, ξ i
k
)
])

+ Ek

[∥∥∥∥∥
1
N

N∑

i=1

∇̂hi
(
x̄i

k , ξ i
k
)

– ∇̂h̄k + (1 – βk)

×
(

∇̂h̄k–1 –
1
N

N∑

i=1

∇̂hi
(
x̄i

k–1, ξ i
k
)
)∥∥∥∥∥

2]

= (1 – βk)2‖ḡk–1 – ∇̂h̄k–1‖2

+ Ek

[∥∥∥∥∥
1
N

N∑

i=1

∇̂hi
(
x̄i

k , ξ i
k
)

– ∇̂h̄k + (1 – βk)

×
(

∇̂h̄k–1 –
1
N

N∑

i=1

∇̂hi
(
x̄i

k–1, ξ i
k
)
)∥∥∥∥∥

2]
, (36)

where the last equality holds due to the fact that

Ek

[
1
N

N∑

i=1

∇̂hi
(
x̄i

k , ξ i
k
)

– ∇̂h̄k

]
= 0

and

Ek

[
∇̂h̄k–1 –

1
N

N∑

i=1

∇̂hi
(
x̄i

k–1, ξ i
k
)
]

= 0.

Next, we focus on the last term of the RHS of (36) and
bounding it separately. For convenience, we define Uk :=
βk( 1

N
∑N

i=1 ∇̂hi(x̄i
k , ξ i

k) – ∇̂h̄k) and Vk := (1–βk )
N

∑N
i=1(∇̂hi ×

(x̄i
k , ξ i

k))–∇̂hi(x̄i
k–1, ξ i

k)). Hence, the second term of the RHS
of (36) is modified asEk[‖Uk +Vk –Ek[Vk]‖2] and bounded

by

Ek
[∥∥Uk + Vk – Ek[Vk]

∥∥2]

≤ 2Ek
[‖Uk‖2] + 2Ek

[∥∥Vk – Ek[Vk]
∥∥2]

≤ 2Ek
[‖Uk‖2] + 2Ek

[
2‖Vk‖2 + 2Ek

[‖Vk‖2]]

≤ 2Ek
[‖Uk‖2] + 8Ek

[‖Vk‖2], (37)

where we use (13) and the Jensen’s inequality.
Next, we will derive the bounds of Ek[‖Uk‖2] and

Ek[‖Vk‖2]. Obviously, ∇̂h̄t = 1
N

∑N
i=1 Ek[∇̂hi(x̄i

t , ξ i
k)] = 1

N ×∑N
i=1 ∇̂Hi(x̄i

t). It follows from the definitions of Uk and ∇̂h̄k
that

Ek
[‖Uk‖2]

≤ β2
k

N

N∑

i=1

Ek
[∥∥∇̂hi

(
x̄i

k , ξ i
k
)

– ∇̂Hi
(
x̄i

k
)∥∥2]

=
β2

k
N

N∑

i=1

Ek
[∥∥∇̂hi

(
x̄i

k , ξ i
k
)

+ ∇hi
(
x̄i

k , ξ i
k
)

+ ∇Hi
(
x̄i

k
)

– ∇̂Hi
(
x̄i

k
)

– ∇hi
(
x̄i

k , ξ i
k
)

– ∇Hi
(
x̄i

k
)∥∥2]

(a)≤ β2
k

N

N∑

i=1

(
3Ek

[∥∥∇̂hi
(
x̄i

k , ξ i
k
)

– ∇hi
(
x̄i

k , ξ i
k
)∥∥2]

+ 3Ek
[∥∥∇Hi

(
x̄i

k
)

– ∇̂Hi
(
x̄i

k
)∥∥2]

+ 3Ek
[∥∥∇hi

(
x̄i

k , ξ i
k
)

– ∇Hi
(
x̄i

k
)∥∥2])

(b)≤ 6nL2ρ2
k + 3δ2β2

k , (38)

where (a) holds because of using the inequality (13); (b)
follows from Fact 3 and the fact that βk ≤ 1. Similarly, it
follows from (13), Fact 3, and the smoothness of hi that

Ek
[‖Vk‖2]

≤ (1 – βk)2

N

N∑

i=1

Ek
[∥∥∇̂hi

(
x̄i

k–1, ξ i
k
)

– ∇̂hi
(
x̄i

k , ξ i
k
)∥∥2]

=
(1 – βk)2

N

N∑

i=1

Ek
[∥∥∇̂hi

(
x̄i

k–1, ξ i
k
)

– ∇hi
(
x̄i

k–1, ξ i
k
)

+ ∇hi
(
x̄i

k–1, ξ i
k
)

– ∇hi
(
x̄i

k , ξ i
k
)

+ ∇hi
(
x̄i

k , ξ i
k
)

– ∇̂hi
(
x̄i

k , ξ i
k
)∥∥2]

≤ (1 – βk)2

N

N∑

i=1

(
3Ek

[∥∥∇̂hi
(
x̄i

k–1, ξ i
k
)

– ∇hi
(
x̄i

k–1, ξ i
k
)∥∥2] + 3Ek

[∥∥∇hi
(
x̄i

k , ξ i
k
)
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– ∇̂hi
(
x̄i

k , ξ i
k
)∥∥2]

+ 3Ek
[∥∥∇hi

(
x̄i

k–1, ξ i
k
)

– ∇hi
(
x̄i

k , ξ i
k
)∥∥2])

≤ (1 – βk)2

N

N∑

i=1

(
3nL2ρ2

k–1 + 3nL2ρ2
k

+ 3L2∥∥x̄i
k–1 – x̄i

k
∥∥2)

≤ 6nL2ρ2
k–1 + 3L2γ 2

k–1(d + 2C1)2, (39)

where we use Lemma 1 and the fact ρk ≤ ρk–1, and drop
the factor (1 – βk)2 in the last inequality. Substituting (38)
and (39) into (37), we obtain

Ek
[∥∥Uk + Vk – Ek[Vk]

∥∥2]

≤ 12nL2ρ2
k + 6δ2β2

k + 48nL2ρ2
k–1

+ 24L2γ 2
k–1(d + 2C1)2

≤ 60nL2ρ2
k–1 + 6δ2β2

k + 24L2γ 2
k–1(d + 2C1)2.

Substituting the above result into (36), we yield Eqn. (15).
2) Taking βk = 2

k+1 , γk = 2
k+2 and ρk ≤ d+2C1√

n(k+2) , we rewrite
(15) as

E
[‖ḡk – ∇̂h̄k‖2]

≤
(

1 –
2

k + 1

)
E

[‖ḡk–1 – ∇̂h̄k–1‖2] +
60L2(d + 2C1)2

(k + 1)2

+
24δ2

(k + 1)2 +
96L2(d + 2C1)2

(k + 1)2

=
(

1 –
2

k + 1

)
E

[‖ḡk–1 – ∇̂h̄k–1‖2]

+
156L2(d + 2C1)2 + 24δ2

(k + 1)2 .

Using Lemma 5 with a1 = 1, t0 = 1, a2 = 2, A1 = 2 and A2 =
156L2(d + 2C1)2 + 24δ2, we yield that E[‖ḡk – ∇̂h̄k‖2] ≤ C3

k+2 ,
where C3 := max{2‖ḡ1 – ∇̂h(x1)‖2, 156L2(d + 2C1)2 + 24δ2}.
Focusing onE[‖ḡk – p̄k‖2] and introducing 1

N
∑N

i=1 ∇̂Hi(x̄i
k),

according to the definition of p̄k and the relation ∇̂h̄k =
1
N

∑N
i=1 ∇̂Hi(x̄i

k), we have

E
[‖ḡk – p̄k‖2]

= E

[∥∥∥∥∥ḡk – ∇̂h̄k +
1
N

N∑

i=1

∇̂Hi
(
x̄i

k
)

–
1
N

N∑

i=1

∇Hi
(
x̄i

k
)
∥∥∥∥∥

2]

≤ 2E
[‖ḡk – ∇̂h̄k‖2]

+
2
N

N∑

i=1

E
[∥∥∇̂Hi

(
x̄i

k
)

– ∇Hi
(
x̄i

k
)∥∥2]

≤ 2C3 + 2L2(d + 2C1)2

k + 2
,

where we use (13) in the first inequality, and the last in-
equality holds due to (12). �

1.6 Proof of Lemma 4

Proof Focusing on the LHS of (17), adding and subtracting
the term (p̄k + ḡk) into ‖∇h(x̄k) – si

k‖2, we have

E
[∥∥∇h(x̄k) – si

k
∥∥2]

= E
[∥∥∇h(x̄k) – p̄k + p̄k – ḡk + ḡk – si

k
∥∥2]

≤ 3E
[∥∥∇h(x̄k) – p̄k

∥∥2] + 3E
[‖p̄k – ḡk‖2]

+ 3E
[∥∥ḡk – si

k
∥∥2], (40)

where the last inequality follows from (13). The first term
of the RHS of (40) is rewritten as

3E
[∥∥∇h(x̄k) – p̄k

∥∥2]

= 3E

[∥∥∥∥∥
1
N

N∑

i=1

(∇Hi(x̄k) – ∇Hi
(
x̄i

k
))

∥∥∥∥∥

2]

≤ 3E

[(
1
N

N∑

i=1

∥∥∇Hi(x̄k) – ∇Hi
(
x̄i

k
)∥∥

)2]

≤ 3L2

N

N∑

i=1

∥∥x̄k – x̄i
k
∥∥2

≤ 3L2C2
1γ

2
k , (41)

where we use the smoothness of hi and Lemma 1. Sub-
stituting (41), (16) and (14) into (40) and taking βk = 2

k+1 ,
γk = 2

k+2 , ρk ≤ d+2C1√
n(k+2) , we have the result. �

1.7 Proof of Theorem 1

Proof It follows from the update (7) in Algorithm 1 and
Assumption 3 that

h(x̄k+1) ≤ h(x̄k) + γk
〈∇h(x̄k), zk – x̄k

〉
+

Lγ 2
k

2
‖zk – x̄k‖2

≤ h(x̄k) + γk
〈∇h(x̄k), zk – x̄k

〉
+

Lγ 2
k d2

2
, (42)

where we use Assumption 4 in the last inequality. Focusing
on the second term of the RHS of (42) and the definition
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of z̄k , we have
〈∇h(x̄k), zk – x̄k

〉

=
1
N

N∑

i=1

〈∇h(x̄k), zi
k – x̄k

〉

=
1
N

N∑

i=1

〈∇h(x̄k) – si
k + si

k , zi
k – x̄k

〉

≤ 1
N

N∑

i=1

[〈∇h(x̄k) – si
k , zi

k – x̄k
〉
+

〈
si

k , x∗ – x̄k
〉]

,

where we use the optimality of zi
k in the last inequality.

Adding and subtracting the term 1
N

∑N
i=1[〈∇h(x̄k) – si

k , x∗〉]
into the RHS of the above inequality, we arrive at

〈∇h(x̄k), zk – x̄k
〉

≤ 1
N

N∑

i=1

[〈∇h(x̄k) – si
k , zi

k – x∗〉 +
〈∇h(x̄k), x∗ – x̄k

〉]

(a)≤ 1
N

N∑

i=1

∥∥∇h(x̄k) – si
k
∥∥∥∥zi

k – x∗∥∥ + h
(
x∗) – h(x̄k)

(b)≤ 1
N

N∑

i=1

∥∥∇h(x̄k) – si
k
∥∥d + h

(
x∗) – h(x̄k), (43)

where (a) holds by the convexity of function h(x); (b) fol-
lows from Assumption 4. Substituting (43) into (42), rear-
ranging, and subtracting h(x∗) from the RHS and LHS of
the result, we arrive at

h(x̄k+1) – h
(
x∗) ≤ (1 – γk)

(
h(x̄k) – h

(
x∗)) +

Lγ 2
k d2

2

+
dγk

N

N∑

i=1

∥∥∇h(x̄k) – si
k
∥∥. (44)

Taking the expectation on the RHS and LHS of (44), and
then using the Jensen’s inequality in the last term of RHS
of (44), we have

E
[
h(x̄k+1)

]
– h

(
x∗)

≤ (1 – γk)
(
E

[
h(x̄k)

]
– h

(
x∗)) +

Lγ 2
k d2

2

+
dγk

N

N∑

i=1

√
E

[∥∥∇h(x̄k) – si
k
∥∥2]. (45)

It follows from Lemma 4, γk = 2
k+2 , and (45) that

E
[
h(x̄k+1)

]
– h

(
x∗)

≤
(

1 –
2

k + 2

)(
E

[
h(x̄k)

]
– h

(
x∗))

+
2d

√
18L2(d + 2C1)2 + 12C2 + 6C3

(k + 2) 3
2

+
2Ld2

(k + 2) 3
2

. (46)

Using Lemma 5 with

A1 = 2,

A2 = 2Ld2 + 2d
√

18L2(d + 2C1)2 + 12C2 + 6C3,

t0 = 2, a1 = 1, and a2 = 3/2,

we prove the result. �

1.8 Proof of Theorem 2

Proof Define vk ∈ argminv∈X 〈∇h(x̄k), v〉. We have pk =
〈∇h(x̄k), x̄k – vk〉 by (18) and the definition of vk . We also
obtain from the smoothness property of h(·) that

h(x̄k+1) ≤ L
2
‖x̄k+1 – x̄k‖2 + h(x̄k) +

〈∇h(x̄k), x̄k+1 – x̄k
〉

(a)=
Lγ 2

k
2

‖z̄k – x̄k‖ + h(x̄k)

+
γk

N

N∑

i=1

〈∇h(x̄k) + si
k – si

k , zi
k – x̄k

〉

(b)≤ Lγ 2
k

2
‖z̄k – x̄k‖2 + h(x̄k) +

γk

N

N∑

i=1

〈
si

k , vk – x̄k
〉

+
γk

N

N∑

i=1

〈∇h(x̄k) – si
k , zi

k – x̄k
〉
,

where (a) holds by Lemma 6(b) and introducing si
k ; (b) is

due to the optimality of zi
k in the update (6). It follows from

the definition of pk and Assumption 4 that

h(x̄k+1) =
Lγ 2

k
2

‖z̄k – x̄k‖2 + h(x̄k)

+
γk

N

N∑

i=1

〈
si

k – ∇h(x̄k), vk – x̄k
〉

+
γk

N

N∑

i=1

〈∇h(x̄k), vk – x̄k
〉

+
γk

N

N∑

i=1

〈∇h(x̄k) – si
k , zi

k – x̄k
〉
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(c–)≤ Ld2γ 2
k

2
– γkpk + h(x̄k)

+
2dγk

N

N∑

i=1

∥∥∇h(x̄k) – si
k
∥∥. (47)

Taking the full expectation on the RHS and LHS of (47)
and using Jensen’s inequality, we yield that

E
[
h(x̄k+1)

] ≤ 2dγk

N

N∑

i=1

√
E

[∥∥∇h(x̄k) – si
k
∥∥2]

+ E
[
h(x̄k)

]
+

Ld2γ 2
k

2
– γkE[pk]

≤ E
[
h(x̄k)

]

+
4d

√
18L2(d + 2C1)2 + 12C2 + 6C3

(k + 2) 3
2

–
2E[pk]
k + 2

+
2Ld2

(k + 2)2 , (48)

where we use (17) in the last inequality, and substitute γk =
2

k+2 into the last inequality. Summing the RHS and LHS of
(48) from k = 1 to k = K and rearranging, we have

E

[ K∑

k=1

2pk

k + 2

]
≤ h(x̄1) – h(x̄K+1)

+
√

18L2(d + 2C1)2 + 12C2 + 6C3

×
K∑

k=1

4d
(k + 2) 3

2

+ Ld2
K∑

k=1

2
(k + 2)2 . (49)

Define m such that 2m = K , i.e., m = log2(K). According to
the property of p-series, we yield that m – 1 ≤ ∑2m

k=1
2

k+2 ,
∑2m

k=1
2

(k+2)2 ≤ 4, and there are some constant c such that
∑2m

k=1
4d

(k+2)
3
2

≤ c. Hence, we rewrite (49) as

(m – 1)E
[

min
k∈[1,K ]

pk

]
≤ h(x̄1) – h(x̄K+1) + 4Ld2

+
√

18L2(d + 2C1)2 + 12C2 + 6C3.

By rearranging and substituting m = log2(K), we obtain the
result. �
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