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Abstract
With the tremendous success of machine learning (ML), concerns about their black-box nature have grown. The
issue of interpretability affects trust in ML systems and raises ethical concerns such as algorithmic bias. In recent
years, the feature attribution explanation method based on Shapley value has become the mainstream explainable
artificial intelligence approach for explaining ML models. This paper provides a comprehensive overview of Shapley
value-based attribution methods. We begin by outlining the foundational theory of Shapley value rooted in
cooperative game theory and discussing its desirable properties. To enhance comprehension and aid in identifying
relevant algorithms, we propose a comprehensive classification framework for existing Shapley value-based feature
attribution methods from three dimensions: Shapley value type, feature replacement method, and approximation
method. Furthermore, we emphasize the practical application of the Shapley value at different stages of ML model
development, encompassing pre-modeling, modeling, and post-modeling phases. Finally, this work summarizes the
limitations associated with the Shapley value and discusses potential directions for future research.
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1 Introduction
Machine learning (ML) has demonstrated great potential
in various fields, including games (such as Go [1, 2] and
Starcraft [3]), autonomous driving [4, 5], protein structure
prediction [6], and natural language processing [7]. How-
ever, the growing number of parameters and the increasing
complexity of ML models have rendered them increasingly
challenging to comprehend, giving rise to concerns. On the
one hand, ML models can inadvertently generate uninten-
tional discrimination, which may manifest as biases related
to sensitive information such as gender, race, and sexual
orientation [8]. On the other hand, legal regulations such
as the General Data Protection Regulation (GDPR) of the
European Union impose restrictions on personal informa-
tion and sensitive data, aiming to protect the rights of data
subjects [9].
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Explainable artificial intelligence (XAI) is a practical ap-
proach to unveil the black-box nature of ML models. In
the domain of XAI research, local attribution explanations
have gained prominence. Several studies have put forth
methodologies for local attribution explanations, includ-
ing Integrated Gradients (IG) [10], Layer-wise Relevance
Propagation (LRP) [11], Deep Learning Important Fea-
Tures (DeepLIFT) [12], and Local Interpretable Model-
Agnostic Explanations (LIME) [13]. IG calculates the con-
tribution of each feature by considering the integral of
gradients along the path from a reference input to the
actual input concerning the prediction. LRP propagates
the relevance of predictions backward to input features
using a backpropagation-like algorithm, thereby compre-
hensively understanding how the model arrives at its pre-
dictions by decomposing it into contributions from each
layer. DeepLIFT assigns feature importance by compar-
ing the activation of each feature in the input with a ref-
erence activation. LIME fits a simple interpretable model
around a prediction sample point and explains the pre-
diction by perturbing input features and observing the re-
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Figure 1 The count of literature with the keywords “Shapley Value,
Machine Learning” in the Web of Science and Elsevier databases

sulting changes. In 2017, Lundberg and Lee [14] estab-
lished the Shapley Addition explanation (SHAP), a uni-
fied framework for feature attribution measurement based
on Shapley value, which integrates several popular fea-
ture attribution methods. Shapley value has been proven
to be the unique allocation rule that satisfies four axioms:
1) Efficiency, which ensures that the sum of the attribu-
tions equals the prediction; 2) Symmetry, which guaran-
tees that if two features have the same contribution to all
possible coalitions, their attributions should be the same;
3) Dummy player, which states that a feature that does
not affect the prediction should have attribution of zero;
and 4) Additivity/Linearity, which means that the Shap-
ley value of a player in a game composed of two separate
games should be the sum of the Shapley values of the player
in each game. Due to its desirable properties, Shapley value
has gained popularity as an attribution method. Over the
past decade, various Shapley value-based feature attribu-
tion methods and applications have also been proposed, as
shown in Fig. 1. However, this has also led to the potential
for confusion and unintentional misuse of Shapley value-
based attribution methods.

To clarify the Shapley value in ML, Rozemberczki et al.
[15] and Chen et al. [16] attempted to summarize the tech-
nical aspects of Shapley value feature attribution. Rozem-
berczki et al. [15] discussed the fundamental concepts of
cooperative game theory and the axiomatic properties of
Shapley value, followed by an overview of Shapley value’s
applications in ML. Chen et al. [16] primarily focused on
estimation algorithms of Shapley value-based feature at-
tribution. It delves into the intricacies of estimating fea-
ture attribution and offers insights into various method-
ologies and estimation strategies. In contrast, our study
provides a more detailed classification of algorithms re-
lated to Shapley value and a comprehensive review of its
applications and limitations. Specifically, our investigation
begins with thoroughly examining the fundamental prin-
ciples of Shapley value in cooperative game theory. Subse-

quently, we present a comprehensive categorization of cur-
rent feature attribution techniques rooted in Shapley val-
ues, elucidating their practical implementations, inherent
constraints, and potential directions for further research.

The main contributions are fourfold:
• This paper presents a clear introduction to the origins

of Shapley values in ML, specifically focusing on
providing a comprehensive understanding of Shapley
values and restricted Shapley values derived from
cooperative game theory.

• A three-dimensional classification framework is
proposed, categorizing existing Shapley value-based
feature attribution methods into the dimensions of
Shapley value type, feature replacement method, and
approximation method. This framework enables
researchers to identify relevant algorithms within the
field effectively.

• Detailed applications of Shapley values are provided in
the three stages of ML model development:
pre-modeling, in-modeling, and post-modeling. This
comprehensive coverage enhances the practical
understanding of how Shapley values can be utilized
throughout the ML pipeline.

• This study offers a comprehensive understanding of
the limitations of the Shapley value algorithm and
provides insights for future research directions, which
assists researchers in identifying algorithmic
deficiencies and inspires intriguing studies in the field.

The remaining sections of this paper are organized as
follows: Sect. 2 provides a comprehensive review of coop-
erative game theory, focusing on the foundational theory
of Shapley value and its various variants. Section 3 intro-
duces the application of Shapley values in the context of
ML and explores the different approximation algorithms
used for calculating Shapley values. Section 4 delves into
the constrained Shapley value. Section 5 presents a thor-
ough examination of the applications of Shapley values in
ML, covering their usage across the pre-modeling, model-
ing, and post-modeling stages. Section 6 discusses the lim-
itations of estimation methods for Shapley value and pro-
vides suggestions for future research. Finally, Sect. 7 offers
a concise summary of the key findings presented in this
paper.

2 Shapley value and Owen value in cooperative
games

This section reviews the fundamental theory of coopera-
tive games and then presents the Shapley value and the re-
stricted Shapley value (Owen value) with coalition struc-
tures in cooperative games.

2.1 Shapley value in cooperative games
A Transferable Utility (TU) cooperative game [18], often
referred to as a TU game, is represented by a binary tuple
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Figure 2 Shapley value computation: from cooperative game to ML. a, a general process for allocating contributions using the Shapley value in a
cooperative game, where the value v(S) for each subset S is determined, and the allocation Shi of contributions for each participant i is then
calculated based on (1). b, a general process for feature attribution using the Shapley value in an ML model, where the features not included in S are
replaced with their corresponding features from the background data x∗ , and subsequently, f (S) is computed, and the allocation Shi of feature
attribution for each feature i is then calculated based on (2). It is worth noting that the Shapley value of the empty set φ is 0 in cooperative games,
while in ML models, the Shapley value is f̂ (x∗). c, The visualization of Shapley value-based feature attributions. c1. Local explanation: For a machine
learning-based cervical cancer risk prediction model, a certain test individual is predicted to have a low risk, at 0.06. The local explanation shows that
the impact of increased risk factors (represented by red bars indicating positive contributions) such as sexually transmitted diseases (STDs) is offset
by the effect of decreased risk factors (represented by blue bars indicating negative contributions) like age. c2. Feature Importance: Measured by the
absolute average of Shapley values, where the number of years using hormonal contraceptives is the most important feature, causing an average
change of 2.4 percentage points in the absolute predicted cancer probability (x-axis at 0.024). c3. Shapley Value Summary Plot: Fewer years of using
hormonal contraceptives will reduce the predicted cancer risk, while more years will increase the risk [14, 17]

(N , v). In this representation, the set of players is denoted
as N = {1, 2, . . . , n}. The characteristic function v is a map-
ping: 2N → R with v(φ) = 0, representing an empty coali-
tion φ with zero value. For any subset S ⊆ N , the term v(S)
denotes the value generated by the collaborative efforts of
participants in coalition S. The allocation rule φi(N , v) is
the distribution of contributions to participant i:

φi(N , v) = Shi(N , v) = ω(n, s)
︸ ︷︷ ︸

weight factor

(

v
(

S ∪ {i}) – v(S)
)

︸ ︷︷ ︸

marginal contribution

, (1)

where ω(n, s) =
∑

S⊆2N :i /∈S
s!(n–s–1)!

n! , s denotes the number of
members in alliance S. The Shapley value [19] has been
mathematically proven to be the unique allocation that sat-
isfies the following four axioms.

• Efficiency: The sum of the payoffs allocated to all
players equals the total value of the game:
∑n

i=1 φi(N , v) = v(N).
• Symmetry: If two players i and j contribute equally to

all possible coalitions, i.e., for any coalition S,
v(S ∪ {i}) – v(S) = v(S ∪ {j}) – v(S), then their Shapley
values must be equal, φi(N , v) = φj(N , v) for all i, j ∈ N .
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• Dummy Player: If a player i does not contribute to any
coalition, i.e., for any coalition S, v(S ∪ {i}) = v(S), then
their Shapley value should be zero, φi(N , v) = 0.

• Additivity/Linearity: For two cooperative games
(N , v1) and (N , v2), the Shapley value of the combined
game (N , v1 + v2) with characteristic function v1 + v2 is
the sum of the Shapley values of each game,
φi(N , v1 + v2) = φi(N , v1) + φi(N , v2).

A motivation example is shown in Fig. 2(a), illustrating
a general process for allocating contributions using the
Shapley value in a cooperative game. It is crucial to note
that the value function for the empty set is assigned a value
of 0, and the sum of the contributions of all participants is
equal to the v(N).

2.2 Owen value in cooperative games
The Owen value is an extension of the Shapley value for
games with a priori unions or coalitions. Shapley values
consider each participant in a coalition as an individual
without considering the coalition structure. As some par-
ticipants may prefer to act together as sub-coalitions, we
use a partition denoted by C = {{C1}, {C2}, . . . , {Cm}} to
represent the coalition structure of a set N . Each Ck ∈
C with k ∈ M is a priority coalition. Specifically, we de-
fine M = {1, 2, . . . , m} as the set of indices for the prior-
ity coalitions. Additionally, define Cn = {{1}, {2}, . . . , {n}} as
the trivial coalition structure, where each forms a separate
coalition. A triplet (N , v, c) represents a TU game with a
coalition structure. In this context, one restricted form of
Shapley values, Owen value [20], is given:

φi(N , v, C) = Owi(N , v, C)

=
∑

R⊆M\{k}

∑

T∈Sk\{i}

(|M| – |R| – 1)!|R|!(|Sk | – |T | – 1)!|T |!
|M|!

· [v
(

R ∪ T ∪ {i}) – v(R ∪ T)
]

, (2)

where |R| refers to the number of sub-coalitions before Sk ,
while |M|– |R|– 1 represents the number of sub-coalitions
after Sk . The term |T | denotes the count of other partici-
pants within the sub-coalition Sk appearing before partic-
ipant i, and likewise, |Sk| – |T | – 1 represents the count of
other participants within Sk appearing after participant i.
The equation (2) essentially involves two rounds of Shapley
value allocation. The first round is the Shapley value allo-
cation among all possible coalitions, and the second round
is the Shapley value allocation within each coalition. It is
evident that when the coalition structure is trivial (each
forms a separate coalition), the Owen value is equivalent to
the Shapley value. Therefore, the Owen value can be con-
sidered an extension of the Shapley value under the con-
straint of a priority coalition structure.

3 Shapley value in ML
The Shapley value, derived initially from cooperative game
theory, has gained significant popularity in XAI research.
Before introducing the Shapley value in ML, we establish
an intuitive understanding of feature attribution through a
linear prediction model [17]:

f̂ (x) = f (x1, . . . , xn) = β0 + β1x1 + · · · + βnxn, (3)

where x represents the instance for which its contribution
is to be computed. βj denotes the weight associated with
feature xj. The contribution of the j-th feature to the pre-
diction f̂ (x) is given by φj:

φj(f̂ ) = βjxj – E(βjXj) = βjxj – βjE(Xj), (4)

where E(βjXj) represents the estimated average effect con-
tribution of feature xj. By summing up the contributions of
all features for a given instance, the result is as follows:

n
∑

j=1

φj(f̂ ) =
n

∑

j=1

(

βjxj – E(βjXj)
)

= f̂ (x) – E
(

f̂ (X)
)

. (5)

For the non-linear functions more commonly used in ML
models, explicit feature coefficients like those in linear
models are not available. Fortunately, the Shapley value of-
fers a solution for computing feature attributions. Accord-
ing to equation (1), the calculation of the Shapley value for
feature xi in model f̂ is as follows:

φi(N , f̂ ) = ω(n, s)
︸ ︷︷ ︸

weight factor

(

f̂
(

S ∪ {i}) – f̂ (S)
)

︸ ︷︷ ︸

marginal contribution

, (6)

where f̂ (S) represents the prediction for the set of feature
values in S, obtained by integrating over the features that
are not included in the set S:

f̂ (S) =
∫

f̂ (xS, XS̄) dPXS̄
– EX

(

f̂ (X)
)

, (7)

where xS represents the observed features in set S, XS̄ rep-
resents the set of features in the complement, X is ran-
dom variable in the background dataset,PXS̄

represents the
marginal distribution of XS̄ over the background dataset.
Equation (7) exclusively utilizes marginal integration, as-
suming the independence of observed features xS from
unobserved features in random variables XS̄ . In practice,
the underlying dependence between features can be ac-
counted for by the conditional distribution PXS̄/xS . How-
ever, the complex dependencies between features and the
high dimensionality of data pose challenges in determin-
ing the conditional distribution, as investigated in [21].



Li et al. Autonomous Intelligent Systems             (2024) 4:2 Page 5 of 12

Figure 3 Shapley value estimation methods classification

To illustrate the estimation of Shapley value in ML, a
motivation example is shown in Fig. 2(b), which depicts a
process for computing feature attribution using the Shap-
ley value. It introduces a background dataset denoted by
a single data x∗ to replace the missing feature in the ex-
plained instance x. It is important to note that, in the con-
text of ML, the value function corresponding to the empty
set represents the output expectation of the background
dataset, i.e., v(φ) = f̂ (x∗) (In this case, a single base value x∗
is used to represent the background data). The sum of v(φ)
and the feature attributions for the two features of instance
x is equal to the predicted value f̂ (x) of instance x. It is ev-
ident that in linear predictive models f̂ , the feature attri-
butions assigned by the Shapley value are consistent with
the results obtained from equation (4). The Shapley val-
ues attribution for individual instances, as well as the ag-
gregation of Shapley values across multiple instances, offer
explanatory insights into the behavior of the ML model at
both local and global levels. This visualization, as depicted
in Fig. 2(c), provides interpretability for the model [14, 22].

On the other hand, the computational burden is also a
significant challenge in calculating the Shapley value. This
involves iterating through all subsets S, resulting in a com-
putational complexity of O(2n), where n represents the
number of feature. Assuming 32 features in the dataset,
this would require approximately 17.1 billion enumera-
tions, which is unfeasible. In recent years, numerous re-
search efforts have focused on developing approximation
methods to accelerate computations of Shapley value. In
the following sections, we will introduce and compare
these approximation methods as shown in Fig. 3.

3.1 Model-agnostic Shapley value approximation
Model-agnostic Shapley value approximation refers to ap-
proximation methods for the Shapley value that are not de-
pendent on a specific type of ML model. The following sec-
tion will introduce several popular categories of methods.

3.1.1 Monte Carlo-based Shapley value approximation
Monte Carlo sampling [23] is a probabilistic and statistical
simulation method commonly used for approximating so-
lutions. Fatima et al. [24] proposed a randomized-based
approximation algorithm for computing Shapley values,

thereby demonstrating improved performance in terms of
approximation accuracy. Castro et al. [25] introduced a
polynomial-time method based on sampling theory to es-
timate the Shapley values. It enables the computation of
the value of any coalition in polynomial time. Štrumbelj
and Kononenko [26] highlighted the utilization of Monte
Carlo integration to expedite convergence, wherein quasi-
random sampling techniques can be employed as an al-
ternative to pseudo-random sampling. Mitchell et al. [27]
utilized sampling from a uniform distribution of permuta-
tions to compute estimates of the Shapley value. This type
of method typically involves sampling from a dataset using
a marginal distribution approach.

3.1.2 Linear regression-based Shapley value
approximation

Linear regression is a widely used statistical modeling
technique that aims to establish a linear relationship be-
tween input and output. Lundberg and Lee [14] pro-
posed KernelSHAP, which combines the idea of LIME with
weighted least squares optimization to approximate Shap-
ley values.

Unlike LIME, the kernel used here is non-heuristic.
Covert and Lee [28] extended the research on this method.
Compared to the original KernelSHAP, they employed a
new unbiased and variance reduction estimation method
to accelerate the convergence speed of KernelSHAP fur-
ther. Another method, SGD-Shapley [29], follows a similar
approach by sampling subsets. However, it employs the
Projection Stochastic Gradient Descent (SGD) method to
estimate the Weighted Least Squares solution iteratively.
Jethani et al [30] proposed FastSHAP for efficiently esti-
mating Shapley values by computing them within a single
forward pass. It employs a stochastic gradient descent ap-
proach based on a weighted least squares objective func-
tion. This method trains the FastSHAP model by mini-
mizing the weighted squared error between the predicted
Shapley values and the ground truth Shapley values.

3.1.3 Multilinear sampling-based Shapley value
approximation

To reduce the variance, Okhrati and Lipani [31] proposed
a multilinear extension technique. Compared to [25], the
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improvement of this method primarily lies in the reduction
of variance in estimating the statistical quantity, thereby
enhancing the accuracy and time efficiency of estimating
Shapley values.

3.1.4 Generalized DeepSHAP
Generalized DeepSHAP [32, 33] is an extension of
DeepSHAP. Chen et al. [33] introduced a generalized
scaling rule to explain a wide range of complex mod-
els by propagating attributions. This framework extends
DeepSHAP to explain any combination of linear, deep, and
tree models. It demonstrates that these population attri-
butions provide improved explanations for models with
many features and outperform existing model-agnostic at-
tribution techniques by providing an order-of-magnitude
improvement in speed.

In general, model-agnostic Shapley value approximation
methods offer greater flexibility, while they come with a
significant computational burden.

3.2 Model-specific Shapley value approximation
Model-specific Shapley value approximation methods are
designed to efficiently compute Shapley values for different
ML models leveraging their specific properties and struc-
tures. This section will provide a brief overview of several
commonly used model-specific Shapley value approxima-
tion methods.

3.2.1 Linear model-based Shapley value
Assuming input features independence, the Shapley val-
ues of the linear model can be approximated directly from
equation (4). This has been previously proven in [14, 26].
Exact computation of the baseline and marginal Shapley
values is feasible with a time complexity that scales linearly
with the number of features.

3.2.2 Tree-based Shapley value
TreeSHAP is a Shapley value approximation method de-
signed for tree-based models such as decision trees, ran-
dom forests, and gradient-boosting trees. These models
have a hierarchical structure, and TreeSHAP utilizes this
structure for efficient computation. It calculates the Shap-
ley value for each feature in a bottom-up manner and
leverages feature-splitting conditions to reduce the com-
putational complexity to an acceptable level. There are two
model-specific methods for tree models: Path-based Tree-
SHAP [34] and Interventional TreeSHAP [35, 36]. Inter-
ventional TreeSHAP allows for exact computation of base-
line and marginal Shapley values using marginal sampling,
with time complexity linear in the tree size and the number
of baseline values. Path-based TreeSHAP provides deter-
ministic estimates of conditional Shapley values, but it in-
troduces bias by assuming that the tree model itself can ap-
proximate conditional expectations. To estimate Shapley

values for tree ensemble models, both methods compute
explanations for each tree and then linearly combine them.
This enables exact computation of baseline and marginal
Shapley values due to the Additivity/Linearity property.

3.2.3 Neural network-based Shapley value
Neural network-based Shapley value is tailored for deep
learning models. It leverages the hierarchical structure of
neural networks to approximate Shapley values with lower
computational complexity. Shrikumar et al. [12] proposed
DeepLIFT, which approximates Shapley values through re-
cursive multipliers. Given a single reference feature vector
x∗ and the model’s output y = f̂ (x), where �y = f̂ (x) – f̂ (x∗)
and �xi = xi – x∗

i . We have �y =
∑n

i=1 pxif̂ �xi, where pxif̂
is the multiplier and the approximate Shapley value of xi is
pxif̂ �xi. Considering a feedforward neural network vNN (·),
it represents complex models as compositions of simple
functions.

v(x) ≈ vNN (x) = gL ◦ · · · ◦ gl ◦ · · · ◦ g1(x), (8)

where gl(·) = [g1
l (·), . . . , gnl

l (·)]T represents the l-th hidden
layer with n neurons, where gj

l ∈ R
n with j = 1, . . . , nl . By

applying the chain rule and linear approximation, an ap-
proximation of the Shapley value is obtained.

ϕi(N , f̂ ) = pxif̂
(

xi – x∗
i
)

,

=
n1

∑

j1=1

pxig
j1
1

· · ·
nl

∑

jl=1

p
gjl–1

l–1 gjl
l

· · ·
nL
∑

jL=1

pgjL–1
L–1 gjL

L
p

gjl–1
l–1 gjl

l

=
ϕi(g

jl
l , gl–1)

gjl–1
l–1 – g∗,jl–1

l–1

. (9)

DeepLIFT explicitly specifies that the base point x∗ is
a single data point, rather than a data distribution. The
choice of x∗ depends on the specific application context.
For example, in image recognition, it is common to set
the values of all three RGB channels to zero as the base
point. It is worth noting that the connection between
DeepLIFT and Shapley value is established in DeepSHAP
[14]. DeepSHAP builds upon DeepLIFT and differs by us-
ing marginal distributed data as the base point. In essence,
the two methods are equivalent when not considering
the choice of base value. Ancona et al. [37] introduced
a polynomial-time approximation for estimating Shapley
values in deep neural networks by incorporating the con-
cept of uncertainty propagation. Wang et al. [38] proposed
Shapley Explanation Networks (SHAPNETs), which lever-
ages Shapley values as a latent representation for deep
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models, enabling hierarchical explanations and explana-
tion regularization. SHAPNETs efficiently compute expla-
nations during training and testing by providing hierarchi-
cal explanations during the forward propagation process.

In model-agnostic approximate methods, Kernel SHAP
[14] is currently widely used. For tree and neural net-
work models, TreeSHAP [35, 36] and DeepSHAP [14] are
more applicable. All of these methods are integrated in the
SHAP library, available at: https://github.com/shap/shap.
Overall, compared to model-agnostic methods, model-
specific approximations of Shapley value have greatly im-
proved computational efficiency but lack flexibility.

4 Restricted Shapley value in ML
In ML, there are two primary types of restricted Shapley
values: Owen value and causal Shapley value. The Owen
value takes into account priority coalition structures, while
the causal Shapley value considers causal relationships be-
tween features (i.e., causal graphs are not flat) [39]. This
section will provide a brief introduction to these two types
of restricted Shapley values.

4.1 Owen value in ML
Based on equation (2), it is straightforward to derive the

expression for Owen value in ML:

Owi(N , f̂ , C) =
∑

R⊆M\{k}

∑

T∈Sk \{i}

(|M| – |R| – 1)!|R|!(|Sk | – |T | – 1)!|T |!
|M|!

· [f̂
(

R ∪ T ∪ {i}) – f̂ (R ∪ T)
]

. (10)

Currently, Owen value has not been widely applied in fea-
ture attribution research for ML models. However, Owen

value holds great potential and is expected to be employed
in various domains of ML models. For instance, it can be
leveraged to explain ML-based automatic driving decision
models. This is particularly relevant due to the collective
nature of traffic vehicles, which naturally forms a prior-
ity coalition. In such cases, all input features associated
with the vehicle are considered part of this priority coali-
tion. Consequently, Owen value emerges as a more effec-
tive attribution method in this context. The approxima-
tion methods based on Monte Carlo sampling are also em-
ployed in estimating the Owen value [40].

4.2 Causal Shapley value in ML
The Shapley value often overlooks the causal structure
within the data, inadvertently diminishing the attribution
of the dependent variable in the data. Therefore, this sec-
tion provides a review of the research on causal Shap-
ley value. To incorporate causality, Frye et al. [41] in-
troduced the framework of Asymmetric Shapley values
(ASVs), which is an extension of the traditional Shap-
ley values that relax symmetry axiom, which can be ap-
plied to various ML models without requiring a complete
causal graph, even with limited knowledge of causal re-
lationships. Heskes et al. [42] proposed causal Shapley
value framework, which utilizes Pearl’s do-calculus [43] to
overcome the assumption of independence and demon-
strates how to derive these causal Shapley values for gen-
eral causal graphs without sacrificing any desirable prop-
erties. This approach enables a more accurate and mean-
ingful attribution of the overall effects of features on pre-
dictions. To establish a unified framework capturing direct
and indirect effects among variables with causal relation-
ships, Wang et al. [44] proposed Shapley Flow, which takes

Figure 4 The distribution of the Shapley value-related papers in the 3D space of Shapley value type, feature replacement method, and
approximation method. It is evident that Shapley value approximation methods based on marginal sampling are popular. We can rotate and observe
the density of work in certain areas/planes and find the missing parts of Shapley value-related research. (See https://karim-sun.github.io/tmp-data/)

https://github.com/shap/shap
https://karim-sun.github.io/tmp-data/
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Table 1 Methods for estimating the Shapley value (SV) and the restricted SV

Reference SV type Approximation method Feature replacement method

Fatima et al. [24] Shapley value Monte Carlo marginal
Castro et al. [25] marginal
Štrumbelj et al. [26] marginal
Mitchell et al. [27] marginal

Lundberg et al. [14] Shapley value Linear Regression marginal
Covert et al. [28] marginal
Simon et al. [29] single
Jethani et al [30] marginal

Okhrati et al. [31] Shapley value Multilinear Sampling single

Chen et al. [32], Chen et al. [33] Shapley value Generalized DeepSHAP marginal

Lundberg et al. [14], Štrumbelj et al. [26] Shapley value Linear model marginal

Mase et al. [34] Shapley value Tree model conditional
Lundberg et al. [35], Lundberg et al. [36] marginal

Shrikumar et al. [12] Shapley value Deep model single
Lundberg et al. [14] marginal
Wang et al. [38] single

Saavedra-Nieves et al. [40] Owen value Monte Carlo None

Frye et al. [41] Causal Shapley value Monte Carlo marginal
Heskes et al. [42] marginal
Wang et al. [44] marginal

We ranked the algorithms based on Shapley value, Owen value, and causal Shapley value. Approximation methods for Shapley value were categorized into
model-specific and model-agnostic approaches. Model-agnostic methods were further divided into Monte Carlo sampling, linear regression, multilinear sampling, and
generalized DeepSHAP. Model-specific approaches were categorized based on linear models, tree models, and deep neural network models. Both Owen value and
causal Shapley value, introduced in our study, were model-agnostic and approximated using Monte Carlo sampling. Additionally, the three types of feature
replacement methods were represented as marginal, conditional, and single, which were used for substituting missing features. ‘None’ indicates that is not relevant
within the scope of ML.

into account the entire causal graph and allocates credit to
edges instead of treating nodes as the fundamental unit of
credit allocation. By constructing the flow of Shapley val-
ues in directed acyclic graphs, it can visualize both the di-
rect and indirect influences of variables. With the develop-
ment of causal theory, modeling causal relationships has
made significant progress [43]. However, when it comes to
real-world problems, the precise quantification of causal
relationships remains a major challenge that hinders the
practical application of causal Shapley.

Based on the contents described in Sects. 3 and 4, we
classify the methods into a three-dimensional framework
based on the dimensions of Shapley value type, feature re-
placement method, and approximation method. This can
be visualized in a 3D view, showcasing the distribution
of existing Shapley value-based feature attribution papers
(Fig. 4 provides only a 2D snapshot, and we encourage
readers to access the interactive online version for a bet-
ter visualization). Table 1 serves as another representation
of all the Shapley value methods, facilitating quick naviga-
tion.

5 Application
The application of Shapley value permeates three stages
of ML modeling: pre-modeling, mid-modeling, and post-
modeling. In the pre-modeling stage, it is utilized for fea-

ture selection. In the mid-modeling stage, it is employed
for credit assignment in cooperative multi-agent rein-
forcement learning (MARL). In the post-modeling stage,
it is used for data valuation and explaining model. The fol-
lowing comprehensive review will discuss these applica-
tions in detail.

5.1 Feature selection
Feature selection is a process of identifying relevant fea-
tures from a dataset, aiming to improve model perfor-
mance and reduce complexity. It can be seen in Fig. 2(c),
where c2 displays the feature importance ranking calcu-
lated based on Shapley values in a cervical cancer risk pre-
diction model. This assists users in selecting important
features for modeling. Cohen et al. [45] presented a fea-
ture selection algorithm based on Shapley values, called
Contribution-Selection Algorithm (CSA). The study uti-
lizes uniform sampling of feature subsets to approximate
the Shapley values, which are then used to quantify the
contribution of each feature to the classification task. By
iteratively evaluating the usefulness of features based on
their Shapley value contributions, the algorithm is able to
select the most relevant features accordingly. In [46–48],
feature selection is also explored with the core idea of rank-
ing and selecting features based on the absolute magnitude
of their Shapley values.
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5.2 Credit assignment in cooperative MARL
Cooperative MARL is a reinforcement learning approach
that investigates how multiple agents can collaborate to
solve problems, requiring them to take joint actions to
achieve shared objectives. However, MARL faces the credit
assignment problem, which pertains to how to fairly dis-
tribute the global reward among individual agents. In this
context, Wang et al. [49] proposed a local reward method
called Shapley Q Value Deep Deterministic Policy Gra-
dient (SQDDPG). The SQDDPG algorithm is evaluated in
cooperative navigation, predator-prey, and traffic intersec-
tion scenarios. Experimental results demonstrate signif-
icant improvements in convergence speed. Furthermore,
Wang et al. [50] proposed Shapley Q learning (SHAQ),
which extends the application of Shapley value theory
to Markov convex games, referred to as Markov Shapley
value (MSV), and employs it as a value decomposition
method for global reward games. While the aforemen-
tioned two works claim to have achieved promising re-
sults, their performance does not exhibit significant supe-
riority over other cooperative MARL methods. This limi-
tation may stem from the insufficient representation capa-
bility of the value decomposition model based on Shapley
values in capturing the contributions of multiple agents.

5.3 Data valuation
Data valuation is the process of assessing the importance
of each sample or instance for predicting the model’s out-
comes. It focuses on the contribution of individual data
points, representing their influence or information value
to the model. Ghorbani and Zou [51] proposed a fair data
valuation method based on the Shapley measure, which
is used to estimate the data Shapley values. These values
quantify the individual data’s worth in predictions of ML
models. Pandl et al. [52] investigated how to ensure trust-
worthy ML in healthcare. By analyzing the suitability of
different data valuation methods in the context of medical
image classification tasks, particularly in the detection of
pleural effusion, it is discovered that the Shapley valuation
scheme based on the k-nearest neighbors classifier can
successfully value a large number of data instances. Tang et
al. [53] pointed out that data with low Shapley values often
contained mislabeled samples, while data with high Shap-
ley values were more likely to include valuable data points
for pneumonia detection. These findings suggest that by
analyzing Shapley values, it is possible to identify low-
quality samples and samples that are valuable for pneu-
monia detection within the dataset. Additionally, the po-
tential applications of data valuation methods are demon-
strated in terms of incentivizing data sharing, detecting
mislabeled data, and protecting private information.

5.4 Explaining model
Explaining model refers to the process of providing an
understanding of the underlying basis and logic behind

the model’s decision when explaining its predictions. Fig-
ure 2(c) displays the Shapley Value Summary Plot, where
fewer years of using hormonal contraceptives will decrease
the predicted cancer risk, while more years will increase
the risk. This can elucidate the model’s decision-making
mechanism, aiding users in assessing the model’s validity.
Heuillet et al. [54] utilized the Shapley value to quantify
the contributions of each agent in a cooperative MARL
environment. This approach provides a quantitative ex-
planation, enabling a better understanding of the behav-
ior and decision-making process of agents. Lundberg et al.
[22] presented Prescience, an ML approach based on an
ensemble model, for predicting the near-term risk of hy-
poxemia during anesthesia care and explaining the specific
factors related to patients and surgeries that contribute to
this risk. To provide real-time explanations, it has devel-
oped an effective and theoretically sound ML technique
for explaining the importance of individual features in the
model’s predictions for each patient. These explanations
are presented in concise visualizations for anesthesiolo-
gists’ use. This capacity to offer simplified explanations re-
moves the typical trade-off between accuracy and inter-
pretability, thereby widening the applicability of ML in the
medical field. Similar explanations have already been ex-
tensively applied in domains such as finance, autonomous
driving, image recognition, and other fields. These appli-
cations have successfully utilized explanations based on
Shapley value to gain valuable insights and enhance un-
derstanding in these domains.

6 Limitation and future research directions
Despite the widespread application of the Shapley value in
ML, it still has several limitations. This section provides a
comprehensive overview of the limitations of the Shapley
value in ML and offers insights into future research direc-
tions.

6.1 Limitations
Some of the limitations and challenges associated with the
application of Shapley value in ML include: 1. Computa-
tional Complexity: Although efforts have been made to
develop fast approximation methods to alleviate the com-
putational costs of computing Shapley values, it remains
a computationally expensive task, especially when deal-
ing with large-scale models and datasets. 2. Ambiguity
in Feature Interactions: Shapley value assumes that con-
tributions of individual features are independent of their
interactions with other features. However, in reality, fea-
tures may interact with each other in complex ways, lead-
ing to challenges in accurately attributing contributions.
3. Model Sensitivity: Shapley value can be sensitive to
changes in the model or training data. Slight variations in
the model or dataset may result in significant changes in
the computed Shapley values, making them less stable and
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reliable. 4. Interpretability: While the Shapley value pro-
vides insights into feature importance, it may not always
provide intuitive explanations for complex machine learn-
ing models. Understanding the meaning and implications
of Shapley values in complex models can be challenging
for non-experts [55]. 5. Sample Representativeness: Shap-
ley value relies on sampling techniques to estimate feature
contributions. The accuracy of the estimates depends on
the representativeness of the sampled data, and biased or
unrepresentative samples may lead to inaccurate or mis-
leading results. 6. Axiom Violation: Some approximation
methods for Shapley value are based on certain assump-
tions, which may sacrifice axioms of Shapley value.

6.2 Future research direction
Despite the aforementioned limitations, Shapley value re-
mains the most theoretically comprehensive method for
feature attribution in current research. As a result, the fu-
ture research prospects for Shapley value are still promis-
ing.

6.2.1 Model diagnosis
Model diagnosis is primarily used for evaluating and ana-
lyzing ML models to identify the model’s weaknesses and
potential areas for improvement. It involves a compre-
hensive examination of the model’s performance and be-
havior. Ghorbani et al. [56] utilized the Shapley value to
quantify the contribution of individual neurons to the pre-
dictions and performance of deep neural networks. This
provides insights into filters responsible for biased pre-
dictions and susceptibility to adversarial attacks in image
recognition tasks. By removing specific responsible neu-
rons, the model can achieve fairer predictions for specific
subgroups or increased robustness against adversarial at-
tacks. Li et al. [57] analyzed erroneous predictions of an
automated lane change prediction model using the Shap-
ley value. It reveals that different types of erroneous pre-
dictions can be attributed to 1) the model’s failure to learn
the correct representation of the input space and 2) the in-
teraction between features, resulting in unexpected model
behavior. Applying the Shapley value in model diagnosis
offers insights into model anomalies for operators or de-
signers, making it a promising auxiliary tool for effective
model design. Taking the next step beyond using Shapley
value solely for feature attribution is crucial for further ad-
vancing model diagnosis in ML.

6.2.2 Model optimization
Shapley value-based feature attribution methods hold the
potential to improve model performance by incorporat-
ing prior knowledge into the model training process. This
can be achieved by assigning higher weights or impor-
tance to certain features based on their relevance to the
problem domain. By considering domain-specific knowl-
edge, such as expert opinions, domain rules, or known

causal relationships, the attribution results can better align
with human intuition. Another approach is to develop hy-
brid methods that combine Shapley value-based attribu-
tion with other training techniques. For instance, incor-
porating prior knowledge as regularization terms or con-
straints in the model optimization process can guide the
learning process and promote the discovery of more mean-
ingful and interpretable feature attributions. Indeed, there
have been previous studies exploring this direction of in-
corporating prior knowledge into other feature attribu-
tion methods. Erion et al. [58] demonstrated that encod-
ing human attribution priors as feature attributions can
help deep learning models achieve better performance
on image classification, gene expression, and healthcare
datasets. By incorporating prior knowledge in the form
of feature attributions, the models can align with human
understanding and exhibit improved performance in vari-
ous domains. Rieger et al. [59] introduced Contextual De-
composition Explanation Penalization, which allows the
integration of domain knowledge into the model to miti-
gate spurious correlations, i.e., shortcut learning, and cor-
rect errors. Therefore, encoding prior knowledge through
Shapley value during the model training to guide model
optimization is a promising approach with significant po-
tential.

7 Conclusion
This review explores the concept of Shapley values and
their significance in improving interpretability in ML. It
delves into the foundational theory of Shapley values,
which originated from cooperative game theory, and dis-
cusses their desirable properties. A framework is pre-
sented to enhance comprehension and facilitate the iden-
tification of relevant algorithms, classifying existing fea-
ture attribution methods based on Shapley values across
three dimensions: Shapley value type, feature replacement
method, and approximation method. A visualization link
is provided to illustrate the distribution of these meth-
ods in three-dimensional space. Furthermore, the practi-
cal application of Shapley values throughout various stages
of ML model development is emphasized, including pre-
modeling, in-modeling, and post-modeling phases.

From the perspective of Shapley value approximation
methods, this study examines several limitations associ-
ated with them. These limitations encompass the compu-
tational complexity of computing Shapley values, the am-
biguity of feature interactions, the sensitivity of models to
changes, the challenges in interpretability, the represen-
tativeness of sampled data, and the potential violation of
axioms in approximation methods. It is crucial to con-
sider these factors. However, despite these limitations, the
Shapley value holds significant potential in model diagno-
sis and performance improvement. Further exploration is
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warranted to address various challenges in machine learn-
ing, including model defects and shortcut learning. More-
over, selecting appropriate base values to construct expla-
nations that better align with human intuition is also an
intriguing avenue to explore.
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